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Analysis of the phylogenetically ancient NK-2 class of homeobox genes has opened up an entirely new approach to
molecular, genetic, and biochemical analysis of early heart development. The Drosophila NK-2 homeobox gene tinman
plays an essential role in segregating cardiac and visceral muscle potentiality, as well as that of some somatic muscles, in
nascent mesoderm of the fly embryo. In its absence, precursor cells for these muscles do not form. tinman homologues
have now been isolated from vertebrate genomes and at least one of them, Nkx2-5, is expressed in heart progenitor cells
and is essential for myogenic and morphogenetic differentiation of the mammalian heart. Signaling pathways that establish
the tin expression domain also appear to be conserved in vertebrates. These findings suggest that heart development in
flies and vertebrates utilize similar genetic pathways and engender optimism that the dissection of mammalian heart
development will profoundly profit from the rich genetics of Drosophila. The findings also prompt the questions: are the
hearts of vertebrates and invertebrates actually homologous, and how much can we learn from the comparative approach?
In the sections below, the structure, regulation, function, and evolution of NK class homeobox genes will be reviewed,
emphasizing and contrasting the roles of tinman and Nkx2-5 in heart development. q 1996 Academic Press, Inc.

NK HOMEOBOX GENES—ISOLATION msh-2. For vertebrate genes most closely related to vnd/
NK2, most authors have adopted the Nkx2 (or related) no-AND CLASSIFICATION
menclature, acknowledging names given to the first verte-
brate isolates (Price et al., 1992). Mouse Nkx-2.3, Nkx-2.5,NK homeobox genes were first cloned by screening a Dro-
and Nkx-2.6 (Lints et al., 1993) have been renamed Nkx2-sophila DNA library with degenerate homeodomain oligo-
3, Nkx2-5, and Nkx2-6, respectively (Himmelbauer et al.,nucleotides (Kim and Nirenberg, 1989). Four new genes
1995), to satisfy recommendations of the mouse gene no-were identified (NK1–NK4) and the encoded proteins were
menclature committee.classified by Burglin into two new homeodomain protein

Homeodomains of NK-2 proteins have a tyrosine at posi-classes, NK-1 (containing NK1) and NK-2 (containing NK2–
tion 54 (Fig. 1A). Since tyrosine is not found in this positionNK4) (Burglin, 1993). Additional NK-1 and NK-2 genes have
in other homeodomains, it is currently the most unambigu-now been isolated from diverse phyla (Fig. 1A) and it is clear
ous feature of the NK-2 class and a useful classificationfrom homeodomain comparisons that the two classes are
tool. At least two distinct families are currently discernibledistinct and of ancient origin (Fig. 1B). The proteins encoded
within the NK-2 class (Figs. 1A and 1B; see Burglin, 1993).by two recently isolated mouse genes, Nkx-5.1 and Nkx-5.2
Referring to the original Drosophila isolates, individual pro-(Bober et al., 1994), can be regarded as members of a related
teins tend to be highly related within their homeodomainsbut separate class (Figs. 1A and 1B).
to either vnd or bap (up to 95% identity), while vnd andNK gene nomenclature is currently nonsystematic. Dif-
bap themselves are only moderately similar (66%). Theferent given names for individual genes have been listed in
presence of vertebrate genes within both of these familiesFig. 1A, but for convenience a single name has been chosen
suggests that this particular split in the NK-2 homeoboxfor use in this text, in line with trends in the recent litera-
gene class occurred before divergence of the vertebrate andture (see legend to Fig. 1). For example, the original Drosoph-
arthropod lines. Among vertebrate genes related to vnd, or-ila NK-2 isolates have become known by descriptors of their
thologues of Nkx2-3, 2-5, and 2-6 seems to represent a dis-mutant phenotypes: ventral nervous system defective (vnd )

for NK2, bagpipe (bap) for NK3, and tinman (tin) for NK4/ tinct phylogenetic group (Fig. 1B).
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204 Richard P. Harvey

FIG. 1. Conserved features of NK-2 homeodomain proteins. (A) Compilation of homeodomain sequences from NK proteins. The 60-
amino-acid homeodomain is represented along with gene names and species of origin. The tyrosine at homeodomain position 54 (tyr54,
arrowed), unique to NK-2 homeodomain proteins, is shaded. To highlight the divergence between classes, amino acids conserved within
isolates related to NK-1 and Nkx-5 (bottom panels) that never occur in the NK-2 class (top panel) are shaded. (B) Dendrogrammatic
representation of the sequence relationships between NK homeodomains created by progressive pairwise alignment of sequences using
the Pile-up program of the Wisconsin/GCG suite of programs. (C) Domain structure of NK-2 homeodomain proteins. Only members
whose full structure is know have been listed. (D) Compilation of TN-Domain sequences from different isolates. The distance in amino
acids from the predicted N-terminal methionine (NH2-METHIONINE) is given in parentheses. (E) Compilation of NK2-Specific Domain
(NK2-SD) and linker region sequences from different isolates. The linker region refers to those amino acids between the homeodomain
and the NK2-SD. Where conservation of the linker sequence is observed between isolates, the full amino acid sequence is given. Where
no conservation is observed, the number of amino acids separating the homeodomain and the NK2-SD is given in parentheses. Dots
represent gaps in the sequence. The Nkx2-6 sequence is incomplete by one amino acid. Relative to other isolates, a single amino acid
insertion (E or D) is observed in the bap and Xbap sequences, represented above the line to preserve maximum homology. In A–E, the
original Drosophila isolates are represented in bold. References for individual genes are as follows: NK1-NK4 (Kim and Nirenberg, 1989);
vnd (Jiminez et al., 1995); Lox-10 (Nardelli-Haefliger and Shankland, 1993); ceh-22 (Okkema and Fire, 1994); Dth-1/Dth-2 (Garcia-Fernandez
et al., 1991); EgHbx1/3 (Rangini et al., 1989); Nkx-2.1/Nkx-2.2/Nkx-2.3 (Price et al., 1992); TTF-1 (Guazzi et al., 1990); T/ebp (Mizuno et
al., 1991); XeNK2 (Saha et al., 1993); nk2.2 (Anukampa and Wilson, 1995); XNkx-2.3 (Evans et al., 1995); cNKx-2.3 (Buchberger et
al., 1996); XNkx-2.5 (Tonissen et al., 1994); nkx2.5 (R. Breitbart, personal communication); zebrafish tinman (M. Fishman, personal
communication); cNkx-2.5 (Schultheiss et al., 1995); Nkx2-3/Nkx2-5/Nkx2-6 (Lints et al., 1993); Csx (Komuro and Izumo, 1993); CSX (I.
Komuro, personal communication); tinman (tin) (Bodmer, 1993); msh-2 (Bodmer et al., 1990); bagpipe (bap) (Azpiazu and Frasch, 1993);
prox1 (Seimiya et al., 1994); Xbap (P. Krieg, T. Mohun, personal communications); S59 (Dohrmann et al., 1990); ceh-1 (Hawkins and
McGhee, 1990); CHox3 (Hawkins and McGhee, 1990); Nkx-1.1/Nkx-5.1/Nkx-5.2 (Bober et al., 1994).

The position occupied by tin is somewhat uncertain. FUNCTIONAL ANALYSIS OF NK-2
None of the existing gene isolates is significantly more PROTEINS
homologous to tin than to vnd or bap (Fig.1B). At present
it is not clear whether the sequence difference between The NK-2 Homeodomain
NK-2 members or families reflects unique functional
properties or merely the idiosyncratic path of their evolu- NK-2 genes encode sequence-specific DNA-binding tran-

scriptional activators. The most characterized member istion (see below).
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FIG. 1—Continued

Nkx-2.1 (TTF-1; T/ebp), the first vertebrate NK-2 member napedia homeodomain class (see Damante et al., 1994).
Some (but not all) natural target sites recognized by Nkx-cloned (Guazzi et al., 1990; Mizuno et al., 1991). Nkx-2.1

is expressed in the developing thyroid, lung, and brain and 2.1 bear close similarity to the in vitro-derived consensus,
as do those of another NK-2 member, the C. elegans proteina number of thyroid and lung target genes are already known

(Guazzi et al., 1990; Kikkawa et al., 1990; Mizuno et al., ceh-22 (Kikkawa et al., 1990; Mizuno et al., 1991; Francis-
Lang et al., 1992; Civitareale et al., 1993; Damante et al.,1991; Francis-Lang et al., 1992; Civitareale et al., 1993; Boh-

inski et al., 1994; Ray et al., 1996). The sequences to which 1994; Okkema and Fire, 1994; Ray et al., 1996).
These binding site determinations suggest that NK-2 pro-Nkx-2.1 binds within the cis-elements of these target genes

differ considerably from those recognized by other homeo- teins have the same or very similar binding specificities in
vitro. However, specificities may be modified in vivodomain proteins (Laughon, 1991) and this specificity is de-

termined wholly by the Nkx-2.1 homeodomain (Guazzi et through association with other factors (Popperl et al., 1995),
and the homeodomain itself is known to serve as a pro-al., 1990).

Random oligonucleotide selection has been used to deter- tein:protein interface (Pomerantz et al., 1992; Kutoh et al.,
1992; Lai et al., 1992). An elegant experiment addressesmine binding sites for a number of NK-2 proteins: Drosoph-

ila vnd (Tsao et al., 1994), mouse Nkx2-5 (Chen et al., 1995; whether the divergent homeodomain of tin has, during the
course of its evolution, acquired a unique specificity. WhenT. Mohun, personal communication), and Xenopus Nkx-2.2

and 2.3 (T. Mohun, personal communication). In all cases, a chimaeric form of tin in which the homeobox has been
substituted for that of murine Nkx2-5 is introduced intothe high-affinity sites conform to the consensus 5* T(C/

T)AAGTG 3*, in which the 5* (C/T)AAG 3* core is a unique flies lacking tin function, formation of heart and visceral
muscle progenitor cells is restored, as they are with wild-variant of the 5* TAAT 3* core recognized by the Anten-
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type tin (R. Bodmer, personal communication). This sug- line or isoleucine in every second position ((V/I)n(V/
I)nVnV), possibly a protein:protein interface (Price et al.,gests that the homeodomains of Nkx2-5 and tin are inter-

changeable and that their sequence differences relate solely 1992), and flanking basic amino acids (Fig. 1E). The NK2-
SDs of the bagpipe family show less conservation, althoughto ancestry.

The specificity of DNA binding by homeodomains is some of the features mentioned above are still in evidence
(Fig. 1E). So far, a specific assay has not been found whichthought to be controlled primarily by helix 3 (the recogni-

tion helix), which becomes positioned within the major describes NK2-SD function. It is not required for high-affin-
ity sequence-specific DNA binding in vitro (Guazzi et al.,groove of DNA upon binding. For some homeodomains,

amino acid 50 (within the recognition helix) makes critical 1990; Damante et al., 1994), nor for transactivation of syn-
thetic or natural promoters in transient transfection assaysbase pair contacts (Triesman et al., 1989; Hanes and Brent,

1989). Other amino acids within the homeodomain also (Chen and Schwartz, 1995; De Felice et al., 1995). The do-
main may dock with factors that modulate transcriptionalcontact DNA and contribute to affinity or specificity (Per-

cival-Smith et al., 1990; Kissinger et al., 1990; Otting et activity in its natural setting.
Preliminary studies hint that Nkx-2.1 and Nkx2-5 carryal., 1990). Mutagenesis of the Nkx-2.1 homeodomain has

shown that amino acids outside of the recognition helix are both transcriptional activation and inhibitory domains (De
Felice et al., 1995; Chen and Schwartz, 1995). The transcrip-indeed critical for binding (Damante and Di Lauro, 1991).

Although these have not been mapped in detail, the tyro- tional activity of these two proteins is low when analyzed
on reporter genes carrying multimerized binding sites (Chensine 54 that is unique to NK-2 proteins is likely to be

involved (Damante et al., 1994). NMR structures of the and Schwartz, 1995; De Felice et al., 1995). However, activ-
ity of Nkx2-5 is stimulated 501when the C-terminal regionNkx-2.1 and NK2 homeodomains (Viglino et al., 1993;

Tsao et al., 1994) suggest a working model in which tyro- of the protein is deleted (Chen and Schwartz, 1995). These
assays are, of course, highly artificial and may not accu-sine 54, normally lying outside of the recognition helix in

the unbound state, becomes incorporated into this helix rately reflect how the protein is regulated. For example,
while limited C-terminal deletions of Nkx-2.1 also result inas it lengthens upon DNA binding. It is then positioned

to make crucial contacts with the 5*AAG3* core of the a dramatic (851) activation when assayed in a heterologous
context (fused to a GAL4 DNA binding domain) in fibro-binding site (Damante et al., 1994).
blasts, this is much weaker in thyroid cells (141) and not
observed at all in the context of the Nkx-2.1 homeodomainOther Domains (De Felice et al., 1995). Nevertheless, the studies do point
to possible associations with other factors that activate,Two peptide domains, in addition to the homeodomain,

are conserved within NK-2 class proteins (Figs. 1C–1E). repress, or de-repress transcriptional activity (see below).
The data so far do not implicate the NK2-SD directly inCurrently, most members (referred to here as Type I) con-

tain both the conserved TN-Domain near the amino termi- this particular activity.
nus (Lints et al., 1993; Bodmer, 1995) and the NK2-Specific
Domain (NK2-SD) carboxy terminal to the homeodomain
(Price et al., 1992; Lints et al., 1993). Not all NK-2 proteins NK-2 HOMEOBOX GENES AND THEIR
bear these homology domains. Those from the most primi- ROLE IN CARDIOGENESIS
tive organisms analyzed (flatworms and C. elegans) lack
both domains (Type III, Fig. 1C), as do isolates related to tinman and Drosophila Heart Development
NK1 and Nkx-5.1. This suggests that the ancestral NK gene
possessed neither domain. tin is again notable in that it Interest in the role of NK-2 genes in heart development

began with isolation of the Drosophila gene tin and charac-carries the TN-Domain but lacks the NK2-SD (Type II, Fig.
1C). This arrangement could be degenerate or represent a terization of its role in formation of the Drosophila dorsal

vessel or heart (Kim and Nirenberg, 1989; Bodmer et al.,transitional form.
The functions of the TN-Domain and NK2-SD are not 1990). Drosophila has an open circulation with a pulsatory

muscular vessel that pumps cellular haemolymph aroundknown. The TN-Domain actually has weak similarity (con-
sensus: FS(I/V)—(I/L)(L/M)) to a conserved peptide present the body cavity. The heart is a linear dorsal midline struc-

ture containing muscular cardial and nephrocytic pericar-in a variety of transcription factors (B. Hensch, personal
communication), for example, the octapeptide in paired box dial cells, as well as a lymph gland (derived from cardiac

mesoderm), ring gland, and radiating attachment (alary)proteins (Burri et al., 1989; Allen et al., 1991) and the Hep
motif in homeodomain proteins related to Hlx and engrailed muscles (Rizki, 1978; Rugendorff et al., 1994). The cardial

cells resemble vertebrate cardiac muscle in that myofila-(Allen et al., 1991).
The NK2-SD, on the other hand, is unique to NK-2 class ments insert head on into adherens type junctions, similar

to intercalated discs (Rugendorff et al., 1994).proteins (Fig. 1E). It is separated from the homeodomain
by a linker of 9–32 amino acids which, among vertebrate The tin gene is first expressed in presumptive mesoderm

before gastrulation (Bodmer et al., 1990), just minutes aftermembers, shows some conservation. The NK2-SD itself
contains a proline-rich region, a hydrophobic core with va- activation of twist, a basic helix-loop-helix gene situated at
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the top of the genetic cascade for mesodermal specification is not activated. In embryos carrying a weak tin allele, some
muscle progenitors do form, but bap mRNA does not accu-(Nusslein-Volhard, 1991). Before gastrulation, the fate of

mesodermal cells is undecided (Beer et al., 1987), so tin is mulate and visceral development is disrupted as in the par-
tial loss of function bap mutant (Azpiazu and Frasch, 1993).likely to be involved in the earliest stages of mesodermal

patterning. In fact, twist may regulate tin directly since Ectopic ventral expression of Decapentaplegic, a TGFb-re-
lated factor thought to be involved in specifying dorsal em-binding sites for the twist protein can be found within the

tin promoter (Bodmer, 1995). tin remains transcriptionally bryonic domains, induces ectopic expression of tin and bap,
as well a marker of the visceral mesodermal lineage, fas-active in mesodermal progenitors throughout gastrulation

and during subsequent spreading and organisation of the ciclin III (Staehling-Hampton et al., 1994; Frasch, 1995).
In summary, tin appears to sit at or close to the headmesoderm into a bilayer. The gene is then turned off in all

mesoderm except that in paired dorsal regions of the trunk of a pathway that restricts developmental potency within
mesoderm to dorsal derivatives. Although specification ofthat contain precursors for muscles of the heart, midgut

(Bodmer et al., 1990), and dorsal body wall (M. Frasch, per- cardiac, visceral and dorsal body wall muscles depends on
tin, multiple regulatory signals are required for formationsonal communication). tin is not expressed in gut endo-

derm. Expression in visceral progenitors is transient, but of these lineages.
transcripts are detected in both cardial and pericardial cells
of the heart throughout larval development. tinman Homologues and the Vertebrate HeartFly embryos in which tin function has been inactivated
do not form midgut or heart muscles, nor their progenitors The myoD-related myogenic factors that are master regu-

lators of skeletal muscle development are not expressed in(Bodmer et al., 1990; Azpiazu and Frasch, 1993; Bodmer,
1993). Some body wall muscles are also disrupted. Dorsal vertebrate heart muscle (Olson, 1993). In order to identify

heart regulatory genes, two groups searched for murine ho-muscles are missing and others are abnormally patterned
or have too many nuclei (Azpiazu and Frasch, 1993). These mologues of tin. New members of the vertebrate NK-2 class

were discovered and one of these, Nkx2-5/Csx, was foundlatter effects may reflect the ability of some cardiac or vis-
ceral progenitors to incorporate into the somatic lineage in to be expressed at high levels in the developing and adult

heart (Komuro and Izumo, 1993; Lints et al., 1993). As ex-the absence of tin function (Azpiazu and Frasch, 1993).
Ubiquitous expression of tin in fly embryos using a heat pected of a tin homologue, Nkx2-5 expression was first de-

tected in early cardiac progenitors (Lints et al., 1993), pres-shock promoter partially rescues formation of heart, midgut
muscle, and body wall muscles, but does not induce ectopic ent in vertebrates as paired bilaterally symmetrical cell pop-

ulations at the anterior-lateral aspect of the mesodermalheart formation (Bodmer, 1993). Similarly, induction of tin
expression in ventral mesoderm expands the visceral pro- plate (Rawles, 1943; DeRuiter et al., 1992). Nkx2-5 expres-

sion continues as paired progenitors fuse into a crescent andgenitor population, but not that of the heart (Azpiazu and
Frasch, 1993). Thus, tin does not appear to be a heart master undergo further morphogenesis.

Nkx2-5 cognate genes have now been isolated from hu-regulatory gene in the strictest sense—heart formation
clearly requires signals other than tin (Wu et al., 1995). man, chicken, quail, frog, and fish (Fig. 1A), indicating

strong conservation among vertebrates. Figure 2 shows theThe earliest role of tin is therefore in embryonic patterning,
acting to define the dorsal domain of mesoderm in which in situ hybridization patterns of tin in fly embryos and that

of Nkx2-5 or its cognates in the cardiogenic region of frog,developmental potential is restricted to the cardiac, visceral
and some body wall muscle lineages (Bodmer, 1993; Azpi- mouse, chick, and zebrafish embryos. The patterns in these

species are strikingly similar, with expression in pairedazu and Frasch, 1993).
bap, also an NK-2 class homeobox gene, appears to lie myocardial progenitor cells derived from splanchnic meso-

derm, continuing as progenitors begin to differentiate anddownstream of tin in the visceral lineage (Azpiazu and
Frasch, 1993). bap is transiently expressed in segmentally coalesce at the midline to form a heart tube.

Vertebrate Nkx2-5 genes do not appear to be expressedreiterated patches of dorsal mesodermal cells that contain
progenitors of the midgut muscle. bap is also expressed in in nascent mesoderm, with the possible exception of the

zebrafish homologue (M. Fishman, personal communica-foregut and hindgut muscle progenitors and from a late
stage in the heart. Only 30–40% of bap-expressing cells tion). Murine Nkx2-5 is expressed in cardiac mesoderm

around the time it undergoes a transformation from mesen-develop into visceral mesoderm, the rest most likely form-
ing somatic muscle. In a partial loss of function bap mutant, chyme to a cuboidal epithelium, the first physical sign of

the committed state (Lints et al., 1993). However, the tim-midgut muscle is reduced byÇ70% and some of its progeni-
tors are transformed into body wall muscle or gonadal meso- ing of Nkx2-5 activation relative to heart muscle commit-

ment can be more accurately assessed in the chicken andderm (Azpiazu and Frasch, 1993). In a null mutant, no mid-
gut muscle forms, although the heart is normal (M. Frasch, frog systems. In the chicken, Bader and colleagues have

shown that individual cells or explants isolated from stagepersonal communication).
Genetic experiments suggest that bap expression in the 4 (mid-gastrulation) embryos can differentiate as cardiac

muscle when cultured (Montgomery et al., 1994). The pro-midgut muscle is directly dependent upon tin. In tin null
embryos, no midgut mesodermal progenitors form and bap cess is sensitive to inhibitors if explants are taken before
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stages 7–8, the beginning of differentiation (Gonzalez-San- dermal structure in the head that may be involved in pha-
ryngeal patterning (Bodmer, 1993).chez and Bader, 1990; Montgomery et al., 1994). cNkx2-5

Despite the complexities of endodermal expression, stud-expression is first detected by in situ hybridization at stage
ies in the frog allow us to make a reasonably accurate assess-5, early enough to be considered an early response to heart
ment of the stage of heart commitment at which Nkx2-5induction or an early marker of heart commitment (Schul-
is activated in mesoderm. XNkx-2.5 mesodermal expressiontheiss et al., 1995). A similar conclusion was reached in
is more extensive than the region actually fated to the myo-the frog, where XNkx-2.5 transcripts accumulate from mid-
genic heart (Tonissen et al., 1994). The pattern appears simi-gastrulation (Sater and Jacobson, 1989; Evans et al., 1995;
lar to the extent of the heart morphogenetic field, or regionNascone and Mercola, 1995).
of heart potency from which the heart is formed by bothAcquisition of cardiac potential within the mesoderm of
positive and negative interactions (Sater and Jacobson,frog and chick embryos can be perceived as a progressive
1990). Since explants from the field have heart potencyprocess (Gonzalez-Sanchez and Bader, 1990; Montgomery
when cultured in a neutral environment, according to Slacket al., 1994; Nascone and Mercola, 1995). Individual steps
we can say that the cells are specified (Slack, 1984). Al-include receipt of inductive signals from an axis organising
though not rigorously proven, expression of XNkx-2.5 mostcentre (Sater and Jacobson, 1990) and from anterior endo-
likely contributes to heart potency within the field as wellderm (Schultheiss et al., 1995; Nascone and Mercola, 1995).
as its regulative characteristics (Jacobson and Sater, 1988).In considering the possible stepwise nature of commitment,
However, since only a portion of these cells become fullyit has been useful to adopt the terms specification and deter-
determined and differentiate into heart muscle, we can alsomination (Jacobson and Sater, 1988), proposed by Slack to
say that XNkx-2.5 expression does not necessarily reflectdescribe the progressive increase in stability of the commit-
the fully determined state. Although it is not yet clear ifted state (Slack, 1984). A key point is whether Nkx2-5 is
the morphogenetic field concept can be applied to heartexpressed only in fully determined cardiac cells. This issue
development in all vertebrates (Jacobson and Sater, 1988),is somewhat complicated by the fact that Nkx2-5 is initially
these observations in Xenopus and those in chick embryosexpressed in anterior endoderm (the proposed heart induc-
described above reinforce the notion that Nkx-2.5, like tin,ing tissue) and ectoderm, as well as in cardiogenic meso-
participates in patterning the region of mesoderm fromderm (Lints et al., 1993; Schultheiss et al., 1995; Evans et
which cardiac progenitors are derived through multiple in-al., 1995). It is not clear if Nkx2-5 expression in endoderm
teractions.

has anything to do with heart induction, but it is likely
Are there Nkx2 genes that perform the visceral function

to have some consequence for pharyngeal patterning. For of tin? Nkx2-5 itself is only expressed in the developing
example, Nkx2-5 expression continues in anterior endo- spleen, pancreas, and a small portion of the stomach (Lints
derm after formation of the pharynx. Expression is restricted et al., 1993; Evans et al., 1995). However, preliminary ex-
to the pharyngeal floor and then continues in a derivative pression data shows that Nkx2-3, a close relative of Nkx2-
structure, the thyroid. Expression in thyroid overlaps that of 5, is expressed broadly in visceral mesoderm in frog, chick,
Nkx-2.1, shown by gene targeting to be essential for thyroid and mouse embryos (Evans et al., 1995; Buchberger et al.,
development and differentiation (Kimura et al., 1996). 1996; R. P. Harvey, unpublished data), although not those of
Nkx2-6 (Lints et al., 1993) is also expressed from an early zebrafish (R. Breitbart, personal communication). For these
time in the pharynx, but only in its pouches (C. Biben and former cases at least, it is attractive to propose that Nkx2-
R. P. Harvey, unpublished data). In zebrafish, a new NK-2 3 performs the visceral function of tin and therefore that
gene, nkx2.7, and its Nkx2-3 cognate (nkx2.3) are expressed tin function in vertebrates is distributed between multiple
in the pharynx (R. Breitbart, personal communication). Nkx2 genes.
These data suggest that NK-2 homeobox genes have been

Gain of Function Effects of Nkx2-5recruited to the task of pharyngeal patterning during verte-
brate evolution. It is interesting that the tin gene is ex- Direct injection of XNkx-2.5 mRNA into cleaving Xeno-

pus embryos leads to enlarged hearts at the tadpole stagepressed in epithelial cells of the stomatodeum, a nonmeso-

FIG. 2. Expression of tin and its vertebrate relatives in heart progenitor cells during embryogenesis. All panels depict the results of
wholemount in situ hybridizations using digoxygenin-labeled cRNA probes. (A) Lateral view of a Drosophila embryo hybridized to a tin
probe. At this stage, heart progenitors have migrated to the dorsal midline. (B) Xenopus embryo at stage 20 (ventroanterior view) hybridized
with a XNkx-2.5 probe. Note hybridization signal in paired progenitors that have almost fused at the ventral midline and the narrower
patch that has migrated more anteriorly corresponding to expression in pharyngeal floor (P. Krieg, personal communication). (C, D) Mouse
embryos at E7.5 (anterior aspect) and E8.75 (ventral aspect), respectively, hybridized to an Nkx2-5 probe. Note the clear separation of the
heart progenitors at E7.5. (E, F) Ventral aspect of chick embryos at stages 6 and 10, respectively, hybridized to a cNkx-2.5 probe. (G, H)
Zebrafish embryos at 19.5 (ventroanterior aspect) and 24 (lateral aspect) hr of development, respectively, hybridized to an nkx2.5 probe.
Note expression in paired progenitor populations at 19.5 hr. Signal along the midline is background hybridization due to probe trapping.
Images have been kindly contributed from the following sources: A, R. Bodmer; B, K. Patterson, P. Krieg; C, D, C. Biben, T. Lints, R. P.
Harvey; E, F, T. Schultheiss, A. Lassar; G, J. Alexander, D. Stainier; H, Q. Xu, R. Breitbart.
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(P. Krieg, personal communication). Similar results have very similar if not identical patterns in the early cardiogenic
region (Tonissen et al., 1994; Evans et al., 1995). Chickenbeen obtained in zebrafish embryos with its Nkx2-5 cog-

nate, although in this case ectopic myosin-positive tissue NKx-2.3 is also expressed in the developing and adult heart,
although not as early as cNkx-2.5 (Buchberger et al., 1996).was seen in rare cases (M. Fishman, personal communica-

tion). While it is not known whether this phenotype occurs Further gene characterization and genetic experiments will
be required to find out which mouse genes, if any, act redun-through recruitment of more cells into the heart progenitor

pool from the heart field, proliferation of committed heart dantly with Nkx2-5.
Redundancy, however, could work on another level. Forprogenitors, or by some other mechanism, the observation

strengthens the conclusion drawn above that Nkx2-5 has a example, even though Nkx2-5 may indeed play a tin-like
role, the activity of other classes of regulators, perhaps therole in patterning the anterior of the embryo and that it

must, like tin, work in collaboration with other regulators MEF2 proteins (Olson et al., 1995), may be sufficient to
initiate heart development in vertebrates, at least to theto specify the heart lineage.
point where Nkx2-5 mutant hearts fail. Alternatively, me-
sodermal patterning and commitment to the heart lineageNkx2-5 Knockout Mice in vertebrates may not require Nkx2 genes at all, even
though they are the nearest relatives of tin. In this case,A knockout of the murine Nkx2-5 gene has recently been

reported (Lyons et al., 1995). Targeted interruption of the Nkx2-5 would be subservient to a higher regulatory order,
yet to be discovered. Redundancy presents intriguing mech-homeodomain caused abnormal heart morphogenesis at

E8.5 and early embryonic death due to hemodynamic insuf- anistic and evolutionary problems (Tautz, 1992; Thomas,
1993) and it is necessary to deal with them so that we canficiency. A linear heart tube formed apparently normally,

but looping morphogenesis was severely disrupted and the fully understand the regulatory circuits that underpin heart
development and exploit the opportunities offered by cross-subsequent events of trabeculation and endocardial cushion

formation were also blocked. species comparisons.
Several aspects of this phenotype are worthy of further

consideration. First, while it establishes Nkx2-5 as essential
Nkx2-5 and Myogenesisfor early heart development in a mammal, it has not con-

firmed a tin-like role for the gene. If this were true, no Irrespective of the precise evolutionary relationship be-
tween tin and Nkx2-5, analysis of the vertebrate gene hascardiac lineage would form (Bodmer, 1993). The heart tube

in Nkx2-5 mutants contains beating myocytes which ex- revealed valuable insights into genetic control of heart de-
velopment. In mutant hearts, expression of the ventricle-press several myofilament genes at normal levels. Commit-

ment to the cardiac muscle lineage could in principle be specific myosin light chain 2 gene (MLC2V) is inhibited
(Lyons et al., 1995), demonstrating a role in at least onepartially compromised yet lead to a relatively normal heart

due to regulation. However, the normal propensity for beat- branch of the heart myogenic program. It is not at all clear
why this particular myofilament gene, and not others, ising cardiac muscle foci to form in ES cell-derived embryoid

bodies that are mutant for Nkx2-5 suggests that heart com- affected. The related atrial myosin light chain 2 gene, for
example, is expressed at normal levels.mitment is not compromised in the absence of the Nkx2-

5 gene (Lyons et al., 1995). The narrow myogenic phenotype displayed in Nkx2-5
mutants may relate to the issues of redundancy discussedThere are two broad ways in which the disparity between

the tin and Nkx2-5 mutant phenotypes could be reconciled. above, or Nkx2-5 may indeed be required uniquely for
MLC2V regulation, or both. MLC2V is the only knownFirst, the phenotype may reflect only one facet of Nkx2-5

function. This could occur if the targeted mutation was not myofilament gene in the mouse that is activated in a re-
stricted region of the developing cardiac crescent, proba-null for some aspects of Nkx2-5 function (see below) or if

other Nkx2 genes were also expressed in the early cardio- bly the ventricular progenitors (O’Brien et al., 1993; Ly-
ons et al., 1995). There is, however, no evidence to dategenic region and partially compensated for loss of Nkx2-5.

Implicit in both of these possibilities is the suggestion that that Nkx2-5 confers regional information onto its down-
stream target genes or to heart progenitors in general.the Nkx2-5 protein would have two levels of function: those

that are revealed by the mutant phenotype and those that First, analysis of mutant hearts with regional markers
suggests that other aspects of regional myogenic special-are not. There is a strong suggestion that individual mem-

bers of the Nkx2 gene family substantially overlap in their ization can be accomplished in the absence of Nkx2-5
(Lyons et al., 1995). Furthermore, mice carrying a b-galac-expression domains, where they may be functionally redun-

dant. For example, expression of Nkx-2.1 and Nkx2-5 over- tosidase transgene driven by the proximal MLC2V pro-
moter show transgene expression with temporal and spa-lap in the developing thyroid (Lazzaro et al., 1991; Lints et

al., 1993), Nkx-2.1 and Nkx-2.2 in the developing brain tial characteristics very similar to that of the endogenous
MLC2V gene, even when crossed into the mutant Nkx2-(Price et al., 1992), Nkx2-5 and Nkx2-6 in the tongue (R.

Harvey, unpublished data), and Nkx-2.1 and Nkx2-6 in the 5 background (Ross et al., 1996). This result must be inter-
preted cautiously since it is not at all clear why an MLC2Vlung (Price et al., 1993; C. Biben and R. Harvey, unpublished

data). In Xenopus, XNkx-2.5 and XNkx-2.3 are expressed in transgene, but not the endogenous gene, should be ex-
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pressed in Nkx2-5 mutant embryos. Nevertheless, it does Nkx2-5 and Heart Morphogenesis
suggest that Nkx2-5 is not required for the restriction of

Nkx2-5 also appears to regulate heart morphogenesis.
MLC2V expression to the ventricles. Recent studies have

Mutant hearts rarely develop beyond their primitive state,
identified a cardiac muscle-enriched ankyrin-repeat pro-

a linear tube with an open atrioventricular chamber (Lyons
tein (CARP) that may be a transcriptional coregulator of

et al., 1995). Looping morphogenesis, a key early step in
the MLC2V gene (Y. Zou, K. Chien, personal communica-

achieving the correct spatiotemporal organization of thetion). Expression of the CARP gene is down-regulated in
heart chambers and great vessels, is dramatically inhibited.Nkx2-5 mutant hearts, demonstrating that at least one
Trabeculation and endocardial cushion formation are alsoaxis through which Nkx2-5 regulates MLC2V is indirect.
blocked. Although the genetic basis of heart looping is notExpression of the cardiac a-actin gene, an early marker
understood, defects in looping are thought to underlie manyof myogenic differentiation in the embryo, does not appear
human congenital heart malformations, particularly thoseto be disturbed in Nkx2-5 mutant embryos. However, recent
that are associated with abnormalities of laterality (Merklinin vitro experiments by R. Schwartz and colleagues suggest
and Verano, 1963; Campbell and Deuchar, 1966; Layton etthat Nkx2-5 collaborates with Serum Response Factor (SRF)
al., 1980; Burn, 1991). Trabeculation and endocardial cush-in activating this gene in cardiac muscle cells (R. Schwartz,
ion formation occur at later stages of heart development as

personal communication). Each of these factors can dramat-
a result of local inductive interactions (Meyer and Birch-

ically facilitate the ability of the other to activate the actin
meier, 1995; Huang et al., 1995). In Nkx2-5 mutants, myo-

promoter in transiently transfected fibroblasts. Nkx2-5 pro-
cardial functions directly or indirectly essential for these

tein can bind to essential Serum Response Elements (SREs)
processes may not be expressed.in the actin promoter that are also sites for SRF interaction.

A note of caution about overzealous interpretation of car-In doing so, it facilitates the binding of SRF to these sites,
diac morphogenetic defects is warranted here. It is entirelyin a way that resembles the ability of another homeobox
possible that morphogenetic progression in the developingprotein, Phox, to facilitate binding of SRF to the c-fos SRE
heart is dependent upon normal function. The key question(Grueneberg et al., 1992). Although an Nkx2-5/SRF com-
is whether the morphogenetic defects in Nkx2-5 mutantplex over the SRE has not yet been rigorously demonstrated,
hearts are a direct consequence of the mutation or an indi-SRF and Nkx2-5 can associate in solution and can be co-
rect result of poor myogenic performance. This concern isimmunoprecipitated from transfected muscle cell extracts.
heightened by the fact that defective hearts are observed atThese experiments suggest an important collaborative in-
similar stages in mouse embryos carrying mutations in

terface between two transcription factor families in heart
genes encoding p120rasGAP, affecting vascular organiza-

development and support the genetic evidence described
tion (Henkemeyer et al., 1995), and the basic helix-loop-

above that directly implicate Nkx2-5 in regulation of car-
helix (bHLH) factor Scl/tal-1, affecting formation of blood

diac myogenesis. The data also fit the increasing evidence
cells (Robb et al., 1995; Shivdasani et al., 1995) However,from a variety of sources that homeodomain and MADS box
at least one of the morphogenetic defects observed in Nkx2-factors such as SRF and MEF2 exert their function through
5 mutants appears to be direct. Recent results from thiscollaboration with other proteins.
laboratory show that the gene encoding the bHLH transcrip-If the proposed Nkx2-5/SRF interaction is meaningful in
tion factor eHAND, normally expressed in several lineagesvivo, why then is expression of cardiac a-actin not per-
within the embryo including the heart (Cserjesi et al., 1995)turbed in Nkx2-5 mutant embryos? Once again, it is conve-
and implicated in heart morphogenesis (Srivastava et al.,nient to invoke genetic redundancy, but another possible
1995), is not expressed in the myocardium of Nkx2-5 mu-explanation is that the documented homeodomain disrup-
tants (C. Biben and R. P. Harvey, unpublished observations).tion is not null for all aspects of Nkx2-5 function. This
These findings lead to the remarkable conclusion that

suggestion is given weight by the fact that in the in vitro
Nkx2-5 controls both myogenic and morphogenetic progres-

assays performed by Schwartz et al., the DNA-binding func-
sion in heart development. For the first time, the regulatory

tion of Nkx2-5 is not required for association with SRF and
logic that integrates these two processes is accessible at a

coactivation of the actin gene. The interaction requires only
genetic and biochemical level.the N-terminal regions of the Nkx2-5 homeodomain. The

mutation introduced into the Nkx2-5 locus by gene tar-
geting disrupted helix three of the homeodomain (essential

UPSTREAM OF TINMAN AND NKX2-5for DNA binding), but left the N-terminal homeodomain
sequences that apparently interact with SRF intact (Lyons
et al., 1995). If a truncated protein was produced in the Two signaling molecules have recently been shown to be

required for formation of heart progenitors in Drosophila.mutants, it might still perform cofactor-dependent func-
tions. A similar DNA-binding-independent activity for the One is Decapentaplegic (dpp), a member of the TGFb super-

family, normally expressed in the dorsal ectoderm exactlypair ruled homeodomain protein ftz has recently been re-
ported (Copeland et al., 1996). A complete knockout of the overlying the mesoderm to which tin expression becomes

restricted (Azpiazu and Frasch, 1993). dpp acts through anNkx2-5 gene will present an opportunity to distinguish ge-
netically between the two possible levels of its function. inductive interaction to maintain tin expression in dorsal
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mesoderm and is therefore essential for formation of cardiac act to segregate their heart muscle lineages from mesoderm
and visceral progenitors (Staehling-Hampton et al., 1994; and in the genetic interpretation of those signals through
Frasch, 1995). Ectopic expression of dpp in ventral ectoderm NK-2 homeobox gene pathways. While there are a host of
expands the expression domain of tin and bap into ventral interesting and unanswered questions, the findings raise the
mesoderm (Staehling-Hampton et al., 1994; Frasch, 1995). possibility that the hearts of flies and vertebrates are actu-
Interestingly, expression of tin in ventral mesoderm in- ally homologous (Bodmer, 1995) or, more precisely, inde-
creases the number of visceral muscle progenitors, but not pendent adaptations of a common ancestral structure. Simi-
those of the cardiac lineage. Formation of cardiac cells ap- lar debate is ongoing regarding the evolution of photosensi-
parently requires other dorsal signals. tive organs and eyes, previously thought to have appeared

A close vertebrate relative of dpp, the bone morphogene- independently in the animal kingdom as many as 40 times
tic protein 2 gene (BMP-2), is expressed in definitive endo- (Halder et al., 1995). Based on the findings that all visual
derm in the cardiogenic region of frog (Clement et al., 1995) systems so far analyzed utilize homologous pigment pro-
as well as mouse and chick embryos (R. Arkell, R. Bed- teins and that development of the dissimilar Drosophila
dington; T. Schultheiss, A. Lassar, personal communica- and mammalian eyes are regulated by functionally identical
tions). Chicken BMP-2 is expressed in endoderm in a cres- genes (Halder et al., 1995), it is now supposed that there was
cent precisely underlying the zone of cNkx-2.5 expression a monophyletic origin for photoreceptor cells in evolution.
in mesoderm. Remarkably, ectopic placement of BMP-2 Metazoans (see Fig. 3) have evolved an incredible diversity
protein in the anterior part of the chick embryo induces of hearts and heart-like structures (reviewed in Withers,
ectopic cNkx-2.5 expression (T. Schultheiss, A. Lassar, per- 1992), with multiple or accessory hearts being common-
sonal communication). Thus, like dpp, BMP-2 acts on meso- place, even in lower vertebrates. However, there is a trend
derm through an inductive interaction and the spatial re-

toward a cardiovascular plan with unidirectional circula-
striction of its expression serves to define the area of cardiac

tion, closed vascular system and dominant multichamberedpotential.
valvular heart under neuronal control. Remarkably, theThe Drosophila segment polarity gene wingless (wg), en-
hearts of the most active cephalopod molluscs, cuttlefish,coding a signaling molecule of the wnt superfamily, is also
and squid, achieve outputs approaching that of the humanrequired for formation of cardiac muscle precursors in the
heart. This shared solution to cardiovascular efficiency hasfly (Wu et al., 1995). wg is expressed at the posterior bound-
long been considered a classical example of convergent evo-aries of parasegments in the ectoderm, where it is required
lution, or parallelism (Martin, 1980).for correct segmentation (Klingensmith and Nusse, 1994).

Is there evidence for an ancestral structure from whichA number of other segment polarity genes—those that sup-
vertebrate and invertebrate hearts evolved? Comparativeport wg expression—as well as genes downstream in the
anatomy and embryology suggest that hearts developedwg signaling pathway, are also essential for heart formation
from pulsatory muscular vessels, components of a vascular(Park et al., 1996). wg signaling appears to play some role
system (reviewed in Martin, 1980; Randall and Davie, 1980).in restricting cardiac potential within the tin domain, since
The origin of the vertebrate heart can be traced back toectopic expression of wg leads to an overabundance of heart
the ancestral cephalochordate level, represented today byprogenitors at the expense of visceral progenitors (Lawrence
amphioxus (Randall and Davie, 1980). Although amphioxuset al., 1995; Park et al., 1996). While the highest level of
does not have a true heart, it has a number of pulsatorywg expression is in ectoderm, low expression has also been

detected in mesoderm itself (Baker, 1987; Wu et al., 1995) muscular vessels which pump blood unidirectionally
and this alone may suffice for specification of heart forming through an ‘‘in parallel’’ vascular bed, as seen in vertebrates.
cells (Lawrence et al., 1995). Thus, heart formation may Tunicates (a more primitive chordate) do have hearts, but
involve a combination of inductive, planar, and autocrine they are probably not homologous to the vertebrate heart
wg signaling. since they develop atypically from an invagination of a peri-

The wg signaling pathway appears to be conserved in ver- cardial vesicle and exhibit bidirectional pumping through
tebrates. Not only are there a large number of vertebrate an ‘‘in series’’ vascular bed (Nunzi et al., 1979; Randall and
wg-related proteins (the wnt family), but vertebrate homo- Davie, 1980). Thus, the vertebrate heart probably arose from
logues of its downstream signaling molecules have also one or more muscular vessels similar to the ones seen in
been isolated (Klingensmith and Nusse, 1994). At least one amphioxus (Randall and Davie, 1980), although it remains
wnt protein, Wnt-2, is expressed in the cardiac crescent possible that the common ancestor of amphioxus and verte-
of mouse embryos (S. Monkley, B. Wainwright, personal brates possessed a more advanced structure.
communication). Although few details are known, this sug- In invertebrates, evidence also suggest that hearts evolved
gests that wg signaling is also part of cardiogenesis in mam- from muscular vessels. A possible evolutionary progression
mals. is presented in one class of annelid worms, the oligochaetes

(Stephenson, 1930; Martin, 1980). In primitive forms, thereINSECT AND VERTEBRATE HEARTS—ARE
are one or more muscular dorsal vessels that are structurally

THEY HOMOLOGOUS? and functionally an extension of the gut sinus—the vascu-
lar-like cavity between the endodermal gut epithelium andAs detailed above, striking parallels are emerging between

flies and vertebrates in both the signaling molecules that its muscular coat. In more advanced forms, a completely
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FIG. 3. Simplified, partial evolutionary tree depicting metazoan evolution. This figure has been adapted from Field et al. (1988) and
Turbeville et al. (1992) to represent the relative phylogenetic relationship of organisms discussed in the text.

separate dorsal muscular vessel has formed, which is often tablishing morphological homology (Bolker and Raff, 1996).
Clearly, use of the term ‘‘homology’’ in relation to the phy-valved and capable of autonomous peristaltic contraction.

In yet others, specialized valvular hearts that lead directly logenetic origins of hearts needs careful qualification. Since
no ancestral heart or even progenitor tissue has been identi-from the dorsal vessel or gut sinus are present. With respect

to ontogeny, muscular vessels appear to arise from the same fied, we certainly cannot yet say that the hearts of Drosoph-
ila and vertebrates are homologous. However, homologyprogenitors as muscles of the gut (Stephenson, 1930; Ander-

son, 1973; Martin, 1980) The paradoxical discrepancy in between the underlying genetic pathways seems likely and
we can be optimistic that experimental dissection of verte-position of invertebrate heart structures (dorsal) compared

to those of vertebrates (ventral) can be accounted for by the brate heart development will continue to profoundly profit
from the rich genetics of Drosophila, at least up to a point.apparent inversion of this whole axis in one group after

divergence of their common ancestor (Holley et al., 1995). There would, however, seem to be a limit to the amount
of information on genetic control of vertebrate heart devel-Was a vascular system already in place in the common

ancestor of protostomes and deuterostomes? The nermer- opment that can be gleaned from Drosophila genetics. Ge-
netic homology should be strictly limited to the earliesttean (ribbon) worms, long regarded as acoelomates and a

sister group to flatworms, appear to have a closed vascular stages of heart development, not extending beyond the lin-
ear tube structure. Complex morphogenesis in vertebratesystem. However, recent morphogenetic and 18S rRNA se-

quence data strongly support a minority hypothesis that (or even invertebrate) hearts presumably requires other ge-
netic pathways. However, these limitations may not be ab-they are actually coelomates (Fig. 3) and that the coelom

was previously misconstrued as vessels (Turbeville et al., solute. Nkx2-5 appears to be involved in heart morphogene-
sis beyond the linear tube stage. Intriguingly, this may re-1992). While there is a suggestion of channels in flatworms,

it is not totally clear what these structures represent (Mar- flect opportunistic recruitment of an existing regulatory
pathway in the generation of further morphogenetic com-tin, 1980). Thus, a demonstration that muscular vessels

were present in the common vertebrate/invertebrate ances- plexity. This is truly an exciting bonus, not only because
we stand to learn more than expected about genetic controltor is lacking.

The definition of the term ‘‘homology’’ in reference to of mammalian heart development from cross-species com-
parisons, but also for the valuable insights into molecularmorphology is under constant scrutiny and jealously

guarded by comparative morphologists (Bolker and Raff, and regulatory evolution that will follow.
1996). The definition is in fact fundamental to their disci-
pline. New definitions of homology which include the crite- ACKNOWLEDGMENTS
ria of conserved genetic pathways have been formulated
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