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In our paper [l] we introduced a system of nonlinear differential 
equations which in a certain sense was an analog of the Korteweg-de Vries 
equation. Our system was discovered by a probabilistic analogy that, in 
part at least, also explained why exponential unharmonicity is the 
natural one. 

The present note shows how simply the semi-infinite and the finite 
cases fit into the inverse scattering scheme yielding at the same time 
alternative (and independently arrived at) derivations of some results 
recently obtained by J. Moser [2]. 

At this point we should like to acknowledge our debt to H. Flaschka [3] 
who first solved the doubly infinite Toda lattice by applying a discrete 
version of the inverse scattering problem. The strategy we use is essen- 
tially that of Flaschka although the details of execution are somewhat 
different. 

If gives us particular pleasure to include this note in a volume dedicated 
to S. M. Ulam because it is a direct, though by far not the most illustrious, 
descendant of the classic Fermi, Pasta, Ulam paper. 
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1 

Consider the system of nonlinear differential equations 

dR,/dt = -FR@, (l.la) 

dR,l& = e--Rdt) _ e--R,+&t), n 2 2, (l.lb) 

and let Q(t) be the (semi-infinite) matrix 

0 1 -+Rl(t) 
ze 0 0 . . . 

1 -iRIb) 1 -+R&) 
2e Q(t) = ze o ’ o ’ 

t 

+e-t%(t) 1 -&Q&) 
ze 

::I 

i 

(14 

. . . . . . . . . . . . 

If B(t) is the antisymmetric matrix whose elements are given by the 
formulas 

B. 
k k+2 = &e-t(Ra(t)+Rlc+&t)) 3 (1.3a) 

B,,,-, = _ge-tfRb-z(t)+Rh-*(t)), and (1.3b) 

B,J = 0 otherwise, (1.3c) 

then we can check immediately that 

dQ/dt = BQ - QB. (1.4) 

We can thus use the method of Lax [2] and define unitary matrices V(t) 
by the equation 

dV(t)/dt = BV, V(0) = I. (1.5) 

We then verify directly that 

Wt> Q(t) v(t) = Q(O), (1.6) 

and thus if &,(A; n) (n = 1, 2,...) is such that 

Q(O) A,@; n) = 4W; n>, 

then 

(1.7) 

VW; 4 = f VT&) Mk.?l V-8) 
j=l 
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clearly satisfy 

Q(t) VW; 4 = %W; 4. 

It now follows from (1.8) that 

(1.9) 

-g h@; 4 = f &#,(kj) = B n.n+294(k n + 2) + B,,,-,h(k n - 2). (1.10) 
j-1 

For large n and h = cos 0 we have 

#,(A; n) - A@; t) eine + B(B; t) e-in@, 

and since we shall be interested only in solutions for which 

&(n) + 0, n-b w, 

we must have 

(1.11) 

(1.12) 

B n.n+2 -4, Bn-2.9,~-8, n--+ w. 

From (l.lO), (1.11) and (1.13) it follows that 

(1.13) 

so that 

dA/dt = i(sin 28)A, 

dBjdt = -i(sin 2e)B 

A(B; t) = &sin28 A(& 0), 

B(0; t) = e-itsin2e B(0; 0). 

It thus follows that the phase shift S,(e) of #J~(COS 8; n) is given by the 
formula 

s,(e) = s,(e) + t sin 28. (1.14) 

Assuming (for the sake of simplicity only) that there are no bound 
states we can use formula (5.17) of [5] to determine the spectral function 
Pt(3 of Q(t) in t erms of the spectral function pO(X) of Q(0) and the result is 

Pt(4 = (1.15) 
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We determine orthogonal plynomials r&(X; n) such that 

*@= J w; m)$t(k 4 M4 = La (1.16) 
--m 

($,(A; n) is of degree n - 1) and obtain the solution to our problem (1.1) 
in the formulas 

1 -fRk(t) _ m  
9 - 

s 
&(k k) &(k k + 1) 449 (1.17) 

-co 

It is easy to see that, even if there are bound states, formula (1.15) 
is still valid in the slightly modified form 

(1.18) 

2 

Having found the solution of the system (1 .l) by an application of a 
reasonably sophisticated method, we may note that a direct verification is 
extremely simple. 

Denoting by p&t) the even moments of p,(h), i.e., 

l-%?k(4 = j X2” 444, 

we find that the first few orthonormal polynomials df(A; m) are 

(2.1) 

etc. 
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Thus, e.g., 

1 --f%(t) = 2e 
s 

%(l ; 4 (6tcz 4 +tm = (P2w>“2 

and hence 

e--R,(t) = 4~~ y --R&j e = 4 p2t% - I.L42 

p2b4 - p22) 

R,(t) = --log 4 - log(p4 - p22) + log p2 - 

Now, 

and 

d%(t) -=- 
dt 

h&t - Wt4W + dt+ldt 
P4 - P22 CL2 

+,ldt = 4k4 - ~2~1, 

dtddt = 4(~e - ~2~4). 

It is thus easy to see that 

dR,(t)/dt = eFRltt) - ewRsct) 

and that to check (1.1) in general one only needs the easily verifiable 
formula 

&ddt = 4(11.2k+2 - P~J+& (2.2) 

It now becomes clear that for every distribution function p&A) and a 
correspondingly defined pi(h) ( see formula (1.15)) the formulas (1.17) 
provide the solution of the system (1 .l). 

If, in particular, pO(X) is purely discontinuous with jumps dl,dB,...,dN-r 
at A, < A, < --- < AN-r I, (A, + A, + **- + dNml = 1) pi(X) is also 
purely discontinuous with jumps at the same points (i.e., A1 , A, ,..., AN-i) 
but with the jump at Ai given by the expression 

(2.3) 

1 It should be clear that the x’s come in positive-negative pairs so that X1 = -& , 
A, = -A,-, , etc. 
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It is clear that the eigenvalues hi are the roots of $@; N), i.e., 

Mk N) = 0, i = 1, 2 )..., N - 1, 

and hence 

I 2e --fry - - s Wk N - 1) Mk N) 444 

= 0. 

(2.4) 

(2.5) 

In this way we arrive at the solution of the finite system 

dR,ldt = -emRzct), 

dR,/dt = e-%l(t) _ e-Rk+dt) k = 2,..., N - 1, 

dR,-,/dt = emRN-act), 

(2.6a) 

(2.6b) 

(2.6~) 

which has been suggested by the application of the inverse scattering 
problem to the solution of the infinite system (1.1). 

3 

We shall now show how the solution of the system (2.6) yields also the 
solution to the finite Toda chain with two free ends, a problem that has 
been recently solved by Moser [2]. 

Let N be even (N = 2n) and set 

rr&> = &it> + Rs+dt), k = 1, 2,..., n 

*, = -(e-%(t) + e--Rd) + ~, 

Pm = -e-%,+&) + ol, 

where 01 is to be defined later on. 
Let us finally set 

‘k = !?k+l - qk 9 

and verify at once that 

k = 1, 2 )...) n - 1) 

1, 

1, 

dykldt = (dq,+,ldt) - (dq,ldt) = pk,, - pk , k = 1, 2,..., n - 1 

(3.1) 

(3.2a) 

(3.2b) 

(3.3) 

(3.4) 
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We shall also repuire that 

4,ldt = P, (35) 

which determines q%(t) once ~~(0) is given and p,(t) determined. 
Equations (3.4) and (3.5) imply at once that 

4&t = Pk 9 k = 1, 2 ,..., n. (3.6) 

Going back to (3.2) and (2.6) we verify that 

dp,/& = -e-7~ = -e-(QrQd, 

dpk/dt = e-Tk-l _ e-rk = e-(ak-Qk-l) _ e-(qk+l-qk), k = 2 ,..., n - 1, (3.7) 

dpn/dt = e-Tn-t = ,-b&-d, 

and hence that (3.6) and (3.7) are the Hamilton equations corresponding 
to the Hamiltonian 

2 = ; f p; + nfl e-(qk+l-de 

1 k=l 
(34 

It remains to show that given qk(0), p,(O), k = 1, 2,..., n, one can always 
determine &.(O), k = 1, 2 ,..., 2n - 1. In other words, given rk(0) = 
p,++r(O) - qk(0), k = 1, 2 ,..., n - 1 and j+(O), k = 1, 2 ,..., n one can 
find real solutions Rk(0) of the equations 

rk(o) = &k(O) + &k+dO), 

p,(o) = +.-R,k(0) + e--R2k-l(0)) + a, 

p,(O) = -e-R--l(O) + a. 

It is immediately clear that since 

k = 1, 2 ,..., TZ - 1, (3.9a) 

k = 1, 2 ,..., n - 1, (3.9b) 

(3.9c) 

01 -p,(O) = &TR-l(0) > 0 

(Y must be chosen sufficiently large and what we shall show is that OL can be 
chosen so large as to make the system (3.9) solvable. 

Setting 

k = 1, 2,..., n - 1, (3.10) 
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we rewrite the system (3.9) as follows 

&o) _ 
- sk7k+l > K = 1, 2 )..., n - 1) 

a -p,(O) = [k $7k, k = 1,2 )..., n - 1, 

and we note that 

e-r,-,(o) 
L-1 = (y. -p,(O) ’ 

7,-I = a -AZ-l(O) - 
e-T”-l(O) 

a -P,(O) ’ 

e-T”-8(0) 

L2 = 01 - p,-,(O) - e-%-dO)/(a - p,(O)) ’ 

etc. 

e-T”-a(O) 

7n-2 = 01 - JL~(O) - a - p,-l(~) _ e-+n-l(~)lp,(~) 

It is clear that if 01 is chosen sufficiently large the t’s and q’s will be 
positive and hence their logarithms (which are the negatives of R,(O)) 
real. 

It is somewhat curious that while the p’s and q’s are uniquely 
determined the R’s are not owing to the arbitrariness of (Y. 

4 

To appreciate a little better the rather neutral role of 01, consider the 
case N = 4 which can be solved in a completely elementary way obtaining 

R,(t) = C + bg[D - v=mh(t v’=+ r)], (4.la) 

R,(t) = log[D - d/Etanh(t @+ r)] - log[E sech2(t do+ r)], (4.lb) 

&(t) = -log[D - fltanb(t fl+ r>l, 

where D > 0, E > 0 and 

D2 = ewe + E. 

(4.lc) 

(4.2) 
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The constants E, C, y are expressible in terms of R,(O), R,(O), &(O) by 
the formulas 

,y = &(,-R,(O) + e-Ra(O) _ e-Ra(0))Z + e-Rz(O) e-RS(~), 
(4.3a) 

e -c =e -RI e-Rs(0) 
, (4.3b) 

tanhy= 
e-R,(~) + e-Rs(0) _ e-Rs(0) 

[(e-R,(O) + e-R,(O) _ e-R,(O))2 + 4e-Rp(0) e-R8t0,]l/Z ' (4'3c) 

whence by (4.2) it follows that 

D = B(~-RI(O) + e-Rs(~) + e--R~(~)). (4.3d) 

Recall now that 

pi(t) = 01 _ (eeRltO) + eeR2(0)), 

p2(t) = a - emRJt), 

r1(4 = R20) + W) = 42(t) - Pl(Q 

(4.4a) 

(4.4b) 

(4.4c) 

so that 

p,(O) = 01 - (emRlcO) + ewRafo)), 

p,(O) = a - evR3(0), 

e-7Jo) =e -&do) e-R,(~) 
I 

and it follows from (4.3) that 

E = HPdO) - plW2 + e+(O), (4.5a) 

(4.5b) tanhy = P2KQ -P,(O) 

[(p,(O) - pl(O))2 + 4e-rl(0)]1/2 ’ 

e -c = o1 _ PlP) +P2ua2 
2 - &(pl(0) -p2(O)2 - e+‘), (4.5~) 

D = o1 _ Pi(O) +P2@) 
2 * (4.5d) 

Since D and e-c are to be positive, 01 has to be chosen sufficiently large. 
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Once 01 has been so chosen, we note using (4.4a) and (4.4b) that 

PI(t) = 
PIP) + Pm 

2 
- &%mh(t dE+ y), 

P&> = 
PI(O) + P,(O) 

2 + e tanh(t v’E + r), 

and by (4.5a), (4.5b) E and y do not depend on CY. 
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i We take this opportunity to correct a number of minor but annoying errors and 
misprints: 1, In formula (3.13) insert d/dx after c. 2, The right-hand side of (4.22) should 
be (2/n)(l - Xr)i/r dh/l A(cos-’ h)12 and correspondingly formula (4.21) and the one 
which precedes it should be corrected. 3, In the line just above formula (5.11) z -+O should 
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