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If R is an integral domain and K is its field of fractions, we let
Int(R) stand for the subring of K [x] which maps R into itself. We
show that if R is the ring of integers of a p-adic field, then Int(R)

is generated, as an R-algebra, by the coefficients of the endomor-
phisms of any Lubin–Tate group attached to R .

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

For an integral domain R , with field of fractions K , we denote by Int(R) the R-subalgebra of K [x]
consisting of the polynomials which map R into itself. These polynomials are called R-valued or,
sometimes, by abuse of language, integer valued. It is well known, and easy, that Int(Z) is generated
(in fact, linearly spanned) by the binomial coefficients

(x
n

)
. One “explanation” for the fact that these

polynomials are integer valued is the following. Consider the multiplicative formal group, as a formal
group over Z. Multiplication by x on the formal group is given by a power series whose coefficients
are

(x
n

)
. Since for integral x these coefficients must be integral, the binomial coefficients are integer

valued.
Our main theorem is a generalization of this fact to Lubin–Tate groups over the ring of integers

R of a p-adic field K (a finite extension of Qp). If F (t1, t2) is a Lubin–Tate formal group law over R ,
then for every x ∈ R there is a unique power series

[x](t) = [x]F (t) =
∞∑

n=1

cn(x)tn (1.1)
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such that F ([x](t1), [x](t2)) = [x](F (t1, t2)) and c1(x) = x. It turns out that cn(x) ∈ K [x] is an integer
valued polynomial of degree � n and what we show is that they generate Int(R) as an R-algebra:

Int(R) = R[c1, c2, . . .]. (1.2)

In fact, it follows from our proof that c1, cq, cq2,... is a minimal set of generators for Int(R), where q
is the cardinality of the residue field of R . For global applications it is nevertheless better to keep all
the cn .

The theory of elliptic curves with complex multiplication and an easy localization argument allow
us to apply our result to determine a system of “natural” generators for Int(R) when R is the ring of
S-integers in a quadratic imaginary field of class number 1, and S is an explicit small set of primes.

The ring Int(R) is in general non-noetherian, and has been studied by several authors, beginning
with Pólya and Ostrowski in 1919. The case of Int(Z) is of course much older, and must have been
known to Euler. For a comprehensive survey, see the book [Ca-Ch1], and the recent paper [Ca-Ch2] by
the same authors. We thank the referee for calling our attention to past work, which we now briefly
summarize, in order to put our result in a historic perspective.

For R the ring of integers of a number field K , Int(R) is a free R-module, as follows from a general
theorem of Bass (see [Za, Section 2]). Of special interest are number fields K for which Int(R) admits
an R-basis { fn} with deg( fn) = n. Such a basis is called a regular basis. Pólya [Po] remarked that a
regular basis exists if and only if for every n � 0, the fractional ideal an of leading coefficients of
polynomials of degree � n in Int(R) is principal, and proved that if K is quadratic this happens if
and only if all the ramified primes in K are principal. In a paper published back-to-back with Pólya’s
paper, Ostrowski [Os] proved the following more general criterion: Int(R) admits a regular basis if
and only if for every rational prime power q, the ideal

∏
Np=q

p (1.3)

(the product extending over all the prime ideals of R of absolute norm q) is principal. The subgroup of
the ideal class group of K generated by the classes of these ideals is called the Pólya–Ostrowski group
of R , and may be regarded as the obstruction to Int(R) possessing a regular basis. If K/Q is Galois,
it is enough to check Ostrowski’s criterion for q = p f where p is ramified in K . In this case Zantema
[Za, Proposition 3.1] found an equivalent formulation of the criterion in terms of H1(G, U ) where G =
Gal(K/Q) and U = R× is the group of units of K . Number fields of class number 1 evidently admit a
regular basis for Int(R), but so do many others, for example all the cyclotomic fields Q(e2π i/m).

All of the above concerns bases of Int(R) as an R-module. The question of finding generators as an
R-algebra, addressed by us, seemed to have escaped attention. So did, to the best of our knowledge,
the relation with formal groups, although the quantities wq(n), which play a key role in our proof,
show up in various circumstances.

We end our brief historic survey with the remark that there are other aspects of the ring Int(R)

which make it an object worth studying. For example, if R is the ring of integers of a number field,
Int(R) is a two-dimensional Prüfer domain. There are analogous results of Carlitz in the function-field
case. We refer to the paper of Cahen and Chabert for a list of known results and open problems.

2. Integer valued polynomials

2.1. General facts

As in the introduction, let R be an integral domain, K its field of fractions, and

Int(R) = {
f ∈ K [x] ∣∣ f (R) ⊂ R

}
, (2.1)

Intn(R) = {
f ∈ Int(R)

∣∣ deg( f ) � n
}
, (2.2)

an(R) = {
leading coefficients of f ∈ Intn(R)

}
. (2.3)
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Clearly Int(R) is an R-subalgebra of K [x], and an(R) is an R-submodule (a fractional ideal) of K . It
is also clear that if R is a principal ideal domain then Int(R) has a basis { fn}n�0 over R such that
deg( fn) = n (a regular basis) and that fn is unique up to multiplication by a unit of R and a linear
combination of f0, . . . , fn−1. In fact, any fn whose leading coefficient generates an(R) will do.

We next examine the effect of localization, under the mere assumption that R is a noetherian
domain. For any prime p of R ,

Int(R)p = Int(Rp) (2.4)

(as submodules of K [x], see [Ca-Ch1, Theorem I.2.3]). Let M be the collection of maximal ideals of R .
It follows that

Int(R) =
⋂

p∈M
Int(Rp). (2.5)

Indeed, let f belong to the right-hand side, and let I be the ideal of all a ∈ R such that af ∈ Int(R).
For every p ∈ M, from the fact that f ∈ Int(Rp) = Int(R)p we learn that there is an a ∈ I , a /∈ p. Thus
I is contained in no maximal ideal, so must contain 1.

We shall also need the following lemma, whose easy proof we leave out.

Lemma 2.1. Let Q ⊂ P ⊂ K [x] be two R-submodules and let an(Q ) denote the set of leading coefficients of
polynomials of degree n in Q . If an(Q ) = an(P ) for all n � 0, then Q = P .

2.2. Integer valued polynomials over discrete valuation ring

Assume now that R is a discrete valuation ring, let π be a uniformizer, and v the normalized
valuation, so that v(π) = 1. If the residue field of R is infinite, it is easy to see that Int(R) = R[x].
Assume therefore that the cardinality of R/π R is finite, and denote it by q.

Let

wq(n) =
⌊

n

q

⌋
+

⌊
n

q2

⌋
+

⌊
n

q3

⌋
+ · · · (2.6)

(see [Ca-Ch2] for the history of these numbers, going back to Legendre and ending with recent work
of Bhargava). Below we shall use the fact that

wq(i1) + · · · + wq(il) � wq(i1 + · · · + il), (2.7)

and that the inequality is strict if l � 2, all the i j � 1 and i1 + · · · + il = qm for some m.

Proposition 2.2. We have

an(R) = π−wq(n)R. (2.8)

Proof. See [Ca-Ch2, Proposition 1.3] or [Za, Lemma 2.2]. �
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3. Relation with Lubin–Tate formal groups

Let K be a finite extension of Qp with ring of integers R . As before let π be a uniformizer, and
denote by q the cardinality of κ = R/π R . Let F be a Lubin–Tate formal group law over R associ-
ated with the uniformizer π [L-T]. As in the introduction, to every x ∈ R we can associate a unique
endomorphism [x] of F of the form

[x](t) = xt + c2(x)t2 + c3(x)t3 + · · · ∈ R[[t]]. (3.1)

Using the logarithm of the formal group F it is easy to see that cn(x) ∈ K [x] is a polynomial of degree
� n. Since it is R-valued, cn ∈ Int(R).

In particular

[π ](t) = πt + a2t2 + · · · + aqtq + · · · (3.2)

lifts the Frobenius endomorphism: it satisfies ai ≡ 0 mod π for i �= q, and aq ≡ 1 mod π . Let u = aq .

Theorem 3.1. We have

R[c1, c2, . . .] = Int(R). (3.3)

Moreover, {cqm | m � 0} is a minimal set of generators of Int(R) as an R-algebra.

Proof. Let Q = R[c1, cq, cq2 , . . .]. From the lemma and the proposition we deduce that in order to
prove that Q = Int(R) it is enough to show that

π−wq(n)R ⊂ an(Q ) (3.4)

for every n � 0.
If we expand n = bmqm + bm−1qm−1 + · · · + b1q + b0 with 0 � bi < q, we see that

wq(n) = bm wq
(
qm) + bm−1 wq

(
qm−1) + · · · + b1 wq(q) (3.5)

where wq(qm) = (qm − 1)/(q − 1) (m � 1). Let λn be the coefficient of xn in cn(x). Then the coefficient

of xn in cbm
qm c

bm−1

qm−1 . . . cb1
q cb0

1 (which is a polynomial of degree n in Q ) is

λ
bm
qm λ

bm−1

qm−1 . . . λ
b1
q λ

b0
1 . (3.6)

It follows that it is enough to prove that

v
(
λqm

) = −wq
(
qm)

(3.7)

for every m � 0. Since λ1 = 1, this holds for m = 0.
From [πx](t) = [π ]([x](t)) we derive the basic identity

∑
cn(πx)tn = π

(∑
cn(x)tn

)
+ a2

(∑
cn(x)tn

)2 + · · · + u
(∑

cn(x)tn
)q + · · · . (3.8)
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Comparing coefficients of xqtq we get

λq
(
πq − π

) = a2(2λ1λq−1 + · · ·) + a3(· · ·) + · · · + u. (3.9)

In this last equation, v(LHS) = v(λq)+1. On the right-hand side, each term is of the form alλi1λi2 . . . λil
where l � 2 and i1 + i2 + · · · + il = q. Since v(λi j ) � 0, and v(al) � 1, unless l = q and aq = u, we
deduce that v(RHS) = v(u) = 0. Hence v(λq) = −1, as we wanted to show.

We will now prove that v(λqm ) = −wq(qm) by induction on m, the cases m = 0 and 1 having been
proved above. Suppose that v(λqm−1 ) = −wq(qm−1). Note also:

• For each n, v(λn) � −wq(n) (because λn ∈ an(R)).
• If i1 + i2 + · · · + il = qm then wq(i1) + · · · + wq(il) < wq(qm) (we assume here that the i j � 1 and

l � 2).

Comparing the coefficients of xqm
tqm

in the basic identity, as we did when m was 1, yields

λqm
(
πqm − π

) = a2

( ∑
i1+i2=qm

λi1λi2

)
+ a3

( ∑
i1+i2+i3=qm

λi1λi2λi3

)
+ · · ·

+ u

( ∑
i1+···+iq=qm

λi1λi2 . . . λiq

)
+ aq+1(· · ·) + · · · . (3.10)

The valuation of the left-hand side, v(LHS) = v(λqm ) + 1. The right-hand side is a sum of terms of the
form alλi1λi2 . . . λil where l � 2 and i1 + · · · + il = qm . We shall show that the term uλ

q
qm−1 has strictly

smaller valuation than any other term, so

v(RHS) = v
(
uλ

q
qm−1

) = −qwq
(
qm−1) (3.11)

by the induction hypothesis, and v(λqm ) = −1 − qwq(qm−1) = −wq(qm).
To conclude the proof we examine a term of the form alλi1λi2 . . . λil , other than uλ

q
qm−1 , distin-

guishing two cases. If l �= q,

v(alλi1λi2 . . . λil ) � 1 − wq(i1) − · · · − wq(il) > 1 − wq
(
qm) = −qwq

(
qm−1). (3.12)

If l = q but not all the i j are equal to qm−1, then without loss of generality i1 < qm−1. We shall show
shortly that in this case

wq(i1) + · · · + wq(iq) < qwq
(
qm−1) (3.13)

so that once again

v(uλi1λi2 . . . λiq ) � −wq(i1) − · · · − wq(iq) > −qwq
(
qm−1). (3.14)

Assume therefore that i1 + · · · + iq = qm and i1 < qm−1. This implies � i1
qm−1 	 = 0. By definition

wq(i j) =
⌊

i j

q

⌋
+

⌊
i j

q2

⌋
+ · · · +

⌊
i j

qm−1

⌋
. (3.15)
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Therefore, recalling that
∑�x j	 � �∑ x j	,

wq(i1) + · · · + wq(iq) =
q∑

j=1

⌊
i j

q

⌋
+

q∑
j=1

⌊
i j

q2

⌋
+ · · · +

q∑
j=1

⌊
i j

qm−2

⌋
+

q∑
j=2

⌊
i j

qm−1

⌋

�
⌊

qm

q

⌋
+

⌊
qm

q2

⌋
+ · · · +

⌊
qm

qm−2

⌋
+

⌊
qm − i1

qm−1

⌋

< qm−1 + qm−2 + · · · + q2 + q = qwq
(
qm−1). (3.16)

This concludes the proof that Q = Int(R). It remains to see that no cqm can be eliminated from the
set of generators of Q . Suppose bi � 0 and

qm = bm−1qm−1 + bm−2qm−2 + · · · + b1q + b0. (3.17)

The leading coefficient of c
bm−1

qm−1 . . . cb1
q cb0

1 has valuation

−bm−1 wq
(
qm−1) − · · · − b1 wq(q) > −wq

(
qm)

, (3.18)

so we need cqm to guarantee that aqm (Q ) = π−wq(qm)R . �
4. Global applications

4.1. Applications to elliptic curves with complex multiplication

Let K be a quadratic imaginary field of class number 1. Let O K be its ring of integers, and E/K an
elliptic curve with complex multiplication by the ring O K . Pick a Weierstrass equation for E defined
over K ,

Y 2 + a1 XY + a3Y = X3 + a2 X2 + a4 X + a6. (4.1)

Let t = −X/Y be the local parameter at the origin as defined in [Si, Chapter IV] and

[x]Ê(t) = xt + c2(x)t2 + c3(x)t3 + · · · (x ∈ O K ) (4.2)

the power series giving the multiplication by x in the formal group. Then cn(x) ∈ K [x] is of degree � n.
Let S be a finite set of primes such that if p /∈ S the chosen Weierstrass model is integral and has
good reduction at p. Let R = O K ,S be the ring of S-integers in K . At a prime p /∈ S the formal group
of E is Lubin–Tate, and cn(x) ∈ Rp = O K ,p . Our main theorem yields

Int(Rp) = Rp[c1, c2, c3, . . .]. (4.3)

From Int(R) = ⋂
p/∈S Int(Rp) we deduce:

Corollary 4.1. Under the conditions mentioned above, Int(R) is generated over R by the cn(x).

In fact it is enough to take cn for n′s which are powers of cardinalities of residue fields of R .
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Example. Let E be the elliptic curve given, in Weierstrass form, by Y 2 = X3 − X . This model has
complex multiplication by Z[i] and good reduction everywhere away from 2. We may therefore apply
the corollary to the ring Z[i, 1

2 ]. By a simple computation we find that the polynomials cn(x) vanish
for n �= 1 mod 4. The first few non-vanishing polynomials are

c1(x) = x,

c5(x) = 2

5

(
x5 − x

)
,

c9(x) = 2

15
x9 − 4

5
x5 + 2

3
x,

c13(x) = 44

975
x13 − 12

25
x9 + 148

75
x5 − 20

13
x,

c17(x) = 39422

27625
x17 − 88

375
x13 + 196

125
x9 − 26648

4875
x5 + 46

17
x.

Note that the next in line, c21(x), is redundant, according to the remark following the corollary.

4.2. Formal globalization

As pointed out by the referee, the use of complex multiplication, as much as it points to a relation
between our problem and geometry, is not essential. We only need to know a one-dimensional formal
group over R , admitting R as endomorphisms, all of whose localizations are Lubin–Tate formal groups.
This can be done much more generally with little effort.

Let K be any number field, and S a finite set of primes such that R = O K ,S is of class number 1
(S may be empty). For any prime p /∈ S let πp ∈ R be a generator of pR . Consider the formal Dirichlet
series

L(s) =
∏
p/∈S

(
1 − π−1

p Np−s)−1

=
∞∑

n=1

ann−s. (4.4)

Clearly a1 = 1 and an ∈ K . For every p /∈ S , the Dirichlet series (1 − π−1
p Np−s)L(s) has p-integral

coefficients. Consider the formal power series

f (X) =
∞∑

n=1

an Xn (4.5)

and the group law

F (X, Y ) = f −1( f (X) + f (Y )
)

(4.6)

for which f is a logarithm. A priori F is defined over K , but we claim that it is in fact defined over R .
For every p /∈ S

f (X) − π−1
p f

(
XNp

) ∈ O K ,p[[X]]. (4.7)
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To see this, we must show that, if Np = q, an −π−1
p an/q ∈ O K ,p (if q does not divide n, we understand

an/q = 0). But this is guaranteed by the fact that (1 − π−1
p Np−s)L(s) has p-integral coefficients. The

functional equation lemma [Haz, I.2.2] implies now that F has coefficients in O K ,p , and that so does
the endomorphism

[x]F (t) = f −1(xf (t)
)

(4.8)

for every x ∈ O K ,p . Furthermore, by [Haz, I.8.3.6] F is a Lubin–Tate formal group law associated with
the prime πp .

It follows that F , as well as the endomorphisms [x]F , for x ∈ R , are defined over R , and there-
fore that the Taylor coefficients cn(x) in [x]F belong to Int(R). Moreover, by our main theorem, they
generate Int(Rp) at each maximal ideal p, so we may deduce as before that they generate Int(R)

globally.
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