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Abstract

In this paper we consider boundary-value problems in domains with perforated boundaries.
We use the classification of homogenized (limit) problems depending on the ratio of small
parameters, which characterize the diameter of the holes and the distance between them. We
study the analogue of the Helmholtz resonator for domains with a perforated boundary.
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0. Introduction

The main goal of this paper is to study problems in unbounded domains with perfo-
rated boundaries. We find the ratio of the small parameters characterizing the diameter
and the distance between holes, that implies in the limit the decomposition of the orig-
inal problem into a pair of independent problems. One of them is set in the bounded
domain and the other is set in the unbounded complement. We show that this decompo-
sition leads to the appearance of poles (scattering frequencies) with a small imaginary
part of the analytical continuation of solutions to the original problem. It is well known
that such poles for the Helmholtz resonator do exist (see, for instance, Arsen’ev[3],
Beale [4], Hislop and Martínez [26], Gadyl’shin [20–22]). Exactly, these poles generate
a resonance in the Helmholtz resonator (Arsen’ev [3], Gadyl’shin [20–22]). Recall that
the classical Helmholtz resonator is modelled by a boundary-value problem for the
Helmholtz equation in an unbounded domain outside the surface with a small aperture
(Lord Rayleigh [39], Miles [34]). A model two-dimensional analogue of the Helmholtz
resonator in a periodically perforated domain was considered by Gadyl’shin [23,25].
The author discovered the resonances for this analogue of the Helmholtz resonator. The
two-dimensional analogue of the Helmholtz resonator is a particular case of such phys-
ical models. In this paper we consider the most natural situation of three-dimensional
analogue of the Helmholtz resonator in homogenization theory. The main difference
from the papers mentioned above is that in this paper we do not have a locally peri-
odic microstructure along the whole boundary. We deal with a number of holes situated
only on a part of the boundary. Models of this kind can be found in everyday life.
For instance, the construction of a classical microwave assumes that the door of the
microwave on the one hand must be transparent and on the other must protect people
against electromagnetic radiation. For this purpose engineers install a wire net inside
the door. Hence, we deal with the Helmholtz resonator perforated along a part of the
boundary. Here we investigate exactly such a problem. By studying this problem we
prove the existence of the scattering frequencies with a small imaginary part.
The technique of the proof assumes that we have to consider various problems

in bounded domains with perforated boundaries (similar problems were considered
by Marchenko and Khruslov [33], Sánchez-Palencia [42], Cioranescu, Murat [15,35],
Allaire [1,2], Jäger et al. [28], Lobo et al. [31] and Belyaev et al. [6]) and uses the
results close to problems with frequently alternating type of boundary conditions. These
problems have been attracting the attention of mathematicians for almost 40 years
(from the mid of 1960s) see, for instance, Marchenko and Khruslov [33], Sánchez-
Palencia [42], Cioranescu and Murat [15], Murat [35], Allaire [1,2], Jäger et al. [28],
Lobo et al. [31], Damlamian and L. Ta-Tsien [16], Lobo and Pérez [32], Chechkin
[10–12], Brillard et al. [9], Friedman et al. [19], Oleinik and Chechkin [37], Chechkin
and Gadyl’shin [13], Beliaev and Chechkin [5], Chechkin and Doronina [14], Borisov
[8]. Such problems appear in physics and engineering sciences, when one studies, for
example, the scattering of acoustic waves on the small periodic obstacles, the behavior
of partially fastened membranes and many others. The engineering applications of such
problems could also be found in the construction of atomic power stations, in space
antennas. One can study the problem of permeation of fuel through the walls of a
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plastic tank. In order to reduce permeation of fuel, the inner boundary of the container
is coated with a thin barrier layer of fluorine by a blow-molding process. The resulting
thin layer, however, typically has flaws: it leaves many small patches uncovered. This
model is described in more detail in Rosi and Nulman[40] and Friedman [18].
It should be noted that in problems with frequently alternating type of boundary

conditions (as well as in problems in domains with perforated boundaries) the conver-
gence of solutions was established by Friedman et al. [19] in a general situation on
the basis of different methods. A nonperiodic boundary structure was also considered
by Beliaev and Chechkin [5] and Oleinik and Chechkin [37]. On the other hand, the
direct combination of the approaches from Chechkin [12] and Gadyl’shin [23], [25]
gives an opportunity to obtain the estimate for the rate of convergence for solutions in
the periodic situation (see also Chechkin and Gadyl’shin [13]) in the most appropriate
form. Roughly speaking, the combination of the homogenization methods (Bensoussan
et al. [7], Sánchez-Palencia [41], Oleinik [36], Jikov et al. [29]) and the method of
matching asymptotic expansions (Van Dyke [43], Il’in [27]) give a chance to study the
problems of this kind in the most reasonable and shortest way.
Let us describe briefly the contents of this paper. In Section 1 we introduce notation,

describe the domains, set the problems and formulate main theorems. In Section 2 we
construct the analytic continuation of the solutions. Auxiliary problems on convergence
of solutions of singularly perturbed problems in bounded domains are considered in
Sections 3 and 4. In Section 5 the proofs of the main theorems are proved. We give
the conclusion remarks in Section 6.

1. Statements

Let � be a bounded domain inR3 with a C∞-boundary�. We suppose that� lies
in the half-spacex3 < 0, �1 = int ({x : x3 = 0} ∩ �), mes2�1 �= 0. Denote by� a
two-dimensional bounded domain with a smooth boundary, on the planex3 = 0. We
suppose that 0< ε, � 	 1 are small parameters. Introduce the following notation:
�ε = {x : xε−1 ∈ �}, �ε = {x : x = (2n,2m,0) + x′, x′ ∈ �ε, n,m ∈ Z},
��
ε = {x : �−1x ∈ �ε}, �2 = �\�1, �D

ε,� = �1 ∩ ��
ε , and �S

ε,� = �1\�Dε,� (see
Fig. 1).

Fig. 1. Domain with fine-grained boundary.
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We consider the case when� = �(ε) depends onε and

lim
ε→0

ε

�(ε)
= p, p = 0 and p = ∞.

Assume thatF is a function fromL2(R
3) with bounded support. We consider the

following boundary-value problems in unbounded domains:

{ (
� + k2) uε,� = F, x ∈ R3\�D

ε,� ∪ �2,
uε,� = 0, x ∈ �D

ε,� ∪ �2,
(1.1)


(
� + k2) uε,� = F, x ∈ R3\�S

ε,� ∪ �2,

uε,� = 0, x ∈ �2,
�uε,�
�x3

= 0, x ∈ �S
ε,�,

(1.2)

with the radiation condition

uε,� = O(r−1), �uε,�
�r

− ikuε,� = o(r−1), r → ∞, (1.3)

wherek satisfies the inequality Imk�0 and r = |x|.
Our goal is to prove the following two auxiliary statements:

Theorem 1.1. Let p = ∞. Suppose also that f and̃f are the restrictions of F in�
and in R3\�, respectively. Then the solution of problems(1.1), (1.3)converges to the
function

u(x) =
{
u0(x), x ∈ �,
ũ0(x), x ∈ R3\� (1.4)

strongly inH 1loc(R
3) asε → 0,whereu0(x) is a solution to the boundary-value problem

{ −�u0 = k2u0 − f, x ∈ �,
u0 = 0, x ∈ �,

(1.5)

and ũ0(x) is a solution to the boundary-value problem

{ (
� + k2) ũ0 = f̃ , x ∈ R3\�,
ũ0 = 0, x ∈ �,

(1.6)
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satisfying the radiation condition

ũ0 = O(r−1), �ũ0
�r

− ikũ0 = o(r−1), r → ∞. (1.7)

It is assumed here thatk2 is not an eigenvalue of problem(1.5).
If k2 = k20 is an eigenvalue to problem(1.5), then there exists a pole�ε,�(ε) of

the analytic continuation of the solution of(1.1), (1.3) in the half planeIm k < 0,
converging tok0 as ε → 0.

Theorem 1.2. Let p = 0, f and f̃ be the restrictions of F in� and in R3\�, respec-
tively. Then the solution to problems(1.2), (1.3)converges strongly inH 1loc(R

3\�1) as
ε → 0 to function (1.4), whereu0(x) is a solution to the boundary-value problem


−�u0 = k2u0 − f, x ∈ �,
u0 = 0, x ∈ �2,
�u0
�x3

= 0, x ∈ �1
(1.8)

and ũ0(x) is a solution to the boundary-value problem


(
� + k2) ũ0 = f̃ , x ∈ R3\�,
ũ0 = 0, x ∈ �2,

�ũ0
�x3

= 0, x ∈ �1
(1.9)

with the radiation condition(1.7).
Here it is assumed thatk2 is not an eigenvalue of problem(1.8).
If k2 = k20 is an eigenvalue of problem(1.8), then there is a pole�ε,�(ε) of the analytic

continuation of the solution to(1.2), (1.3)in the half-planeIm k < 0, converging tok0
as ε → 0.

The notions of an analytic continuation and of a convergence inHmloc are classical
and we shall give all the necessary definitions in Section 2.

2. Construction of analytic continuations of solutions

In this section we construct the solutions to problems (1.1)–(1.9) and their analytic
continuations. This construction is similar to the standard construction of Sánchez-
Palencia [41, Chapter 16, § 4], employed in Gadyl’shin [24] for the Helmholtz resonator
and in Gadyl’shin [23,25] for its two-dimensional analogue in homogenization.

Given a Banach spaceX (for instance,X = L2), we putXloc(D) def={u : u ∈ X(D ∩
S(R)) ∀R}, where S(R) is the open ball of radiusR centered at the origin. We
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Fig. 2. Domain with perforated boundary.

say that a sequence converges inXloc(D), if it converges inX(D ∩ S(R)) for all R.
Let B(X, Y ) be the Banach space of bounded linear operators, mapping the Banach
spaceX into the Banach spaceY, B(X) def= B(X,X), B(Y,Xloc(D)) be the set of maps
A : Y → Xloc(D) such thatA ∈ B(Y,X(D∩S(R))) for all R. We denote byBh(X, Y )
(by Bm(X, Y )) the set of holomorphic (meromorphic) operator-valued functions whose
values belong toB(X, Y ); Bh(m)(X,X) def= Bh(m)(X), Bh(m)(X, Yloc(D)) def={A : A ∈
Bh(m)(X, Y (D ∩ S(R))) ∀R}.
The following proposition is well known (see, for example,[41]).

Proposition 2.1. The map defined by

(� + k2)−1g def= − 1

4�

∫
S(L)

eik|x−y|

|x − y| g(y) dy, x ∈ R3,

g ∈ L2(S(L)), belongs toBh(L2(S(L),H 2loc(R3)).
The functionU = (� + k2)−1g satisfies the equation(� + k2)U = g in R3 and for

Im k�0 it also satisfies the radiation conditions

U = O(r−1), �U
�r

− ikU = o(r−1), r → ∞.

Hereinafter we use the same notation for a function fromL2(S(L)) and its contin-
uation by zero outsideS(L), regarding the latter as a function fromL2(R

3) (Fig. 2).

Denote�(1)
ε,� = S(L)\�D

ε,� ∪ �2, �
(2)
ε,� = S(L)\�S

ε,� ∪ �2 (see Fig. 2). We assume that

L > 0 is such that� ⊂ S
(
L
3

)
. Consider two families of boundary-value problems in

bounded domains:{ (
� − 1) uε,� = (

� − 1)w, x ∈ �(1)
ε,�,

uε,� = 0, x ∈ �D
ε,� ∪ �2, uε,� = w, x ∈ �S(L),

(2.1)
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and


(
� − 1) uε,� = (

� − 1)w, x ∈ �(2)
ε,�,

uε,� = 0, x ∈ �2, uε,� = w, x ∈ �S(L),
�uε,�
�x3

= 0, x ∈ �S
ε,�,

(2.2)

wherew ∈ H 2(S(L)). Denote by�(1)
ε,� an operator whose value onw ∈ H 2(S(L)) is

the solutionuε,� ∈ H 1(�(1)
ε,�) of problem (2.1) and denote by�(2)

ε,� an operator whose

value onw ∈ H 2(S(L)) is the solutionuε,� ∈ H 1(�(2)
ε,�) of problem (2.2). Similarly,

denote by�(1)0,0 an operator whose value onw ∈ H 2(S(L)) is the pair of the solutions
u0 ∈ H 1(�) and ũ0 ∈ H 1(S(L)\�) to the problems

{ (
� − 1) u0 = (

� − 1)w, x ∈ �,
u0 = 0, x ∈ �

and { (
� − 1) ũ0 = (

� − 1)w, x ∈ S(L)\�,
ũ0 = 0, x ∈ �, ũ0 = w, x ∈ �S(L),

respectively, and denote by�(2)0,0 an operator whose value onw ∈ H 2(S(L)) is the pair
of the solutionsu0 ∈ H 1(�) and ũ0 ∈ H 1(S(L)\�) to the problems


(� − 1)u0 = (� − 1)w, x ∈ �,
u0 = 0, x ∈ �2,
�u0
�x3

= 0, x ∈ �1,


(� − 1)̃u0 = (� − 1)w, x ∈ S(L)\�,
ũ0 = 0, x ∈ �2, ũ0 = w, x ∈ �S(L),
�ũ0
�x3

= 0, x ∈ �1,

respectively.
Using the general theory of boundary value problems one can obtain the following

Proposition.

Proposition 2.2. The operator �(1)0,0 belongs to B(H 2(S(L)),H 1(S(L))) and to

B(H 2(S(L)),H 2(S(L)\�)).
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The operator�(2)0,0 belongs toB(H 2(S(L)),H 1(S(L)\�1)) and to

B(H 2(S(L)),H 2(Q)) for any domainQ ⊂ S(L)\� separated from��1.
For any fixedε and � the operator�(1)

ε,� belongs toB(H 2(S(L)),H 1(S(L))), the

operator �(2)
ε,� belongs toB(H 2(S(L)),H 1(S(L)\�1)), and, in addition, �(i)

ε,� belongs

to B(H 2(S(L)),H 2(Q)) for any domainQ ⊂ �(i)
ε,� separated from��S

ε,�.

Denote by�(t) a smooth cut-off function that disappears fort < 1/3 and equals to
zero for t > 2/3 and bypL the operator of the restriction fromR

3 to S(L),

A
(j)

ε,�(k)
def=

(
1− �

( r
L

))
(� + k2)−1+ �

( r
L

)
�(j)
ε,�pL(� + k2)−1,

A
(j)
0,0(k)

def=
(
1− �

( r
L

))
(� + k2)−1+ �

( r
L

)
�(j)0,0pL(� + k2)−1,

T
(j)

ε,� (k)g
def=

((
� + k2

) (
�

( r
L

)) ((
1− �(j)

ε,� pL

) (
� + k2

)−1)

+ 2
2∑
i=1

�
�xi

(
�

( r
L

)) �
�xi

((
1− �(j)

ε,� pL

) (
� + k2

)−1))
g,

T
(j)
0,0 (k)g

def=
((

� + k2
) (

�
( r
L

)) ((
1− �(j)0,0pL

) (
� + k2

)−1)

+ 2
2∑
i=1

�
�xi

(
�

( r
L

)) �
�xi

((
1− �(j)0,0pL

) (
� + k2

)−1))
g,

B
(j)

ε,�(k) = I − T (j)
ε,� (k), B

(j)
0,0(k)=I − T (j)0,0 (k),

where I is the identity mapping.
From the definitions ofT (j)�,� (k) it follows that for g ∈ L2(S(L)) the function

T
(j)
�,� (k)g ∈ L2(R

3) and suppT (j)�,� (k)g ⊂ S(L). For this reason, the mapsT (j)�,� (k)

andB(j)�,�(k) can be considered as operators fromL2(S(L)) into L2(S(L)). Under this

interpretation, from the definitions ofA(j)�,�(k) andT
(j)
�,� (k) and from Propositions2.1, 2.2

the following statements hold.

Lemma 2.1. For k ∈ C

A
(1)
�,�(k) ∈ Bh (

L2(S(L)),H
1
loc(R

3)
)
, A

(2)
�,�(k) ∈ Bh

(
L2(S(L)),H

1
loc(R

3\�1)
)
,

T
(j)
�,� (k) ∈ Bh (L2(S(L))) , B

(j)
�,�(k) ∈ Bh (L2(S(L))) ,

and, for any fixed k, � and �, T (j)�,� (k) is a compact operator inL2(S(L)); here(�, �)
take the value(ε, �) or (0,0).
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One can see that

(� + k2)A(1)
ε,�(k)g = B(1)

ε,�(k)g on R3\�D
ε,� ∪ �2,

(� + k2)A(2)
ε,�(k)g = B(2)

ε,�(k)g on R3\�S
ε,� ∪ �2,

(� + k2)A(j)0,0(k)g = B(j)0,0(k)g on R3\�.

Hence, due to the definitions ofA(j)�,�(k) and Proposition2.1 we have

Lemma 2.2. For k ∈ C,
(a) the functionuε,� = A(1)

ε,�(k)g satisfies(1.1) for F = B(1)
ε,�(k)g;

(b) the functionuε,� = A(2)
ε,�(k)g satisfies(1.2) for F = B(2)

ε,�(k)g;

(c) the restrictionu0 of A(1)0,0(k)g to � satisfies(1.5),where f is equal to the restriction

of B(1)0,0(k)g to �;

(d) the restriction ũ0 of A(1)0,0(k)g to R3\� satisfies(1.6), where f̃ is equal to the

restriction ofB(1)0,0(k)g to S(L)\�;
(e) the restrictionu0 of A(2)0,0(k)g to � satisfies(1.8),where f is equal to the restriction

of B(2)0,0(k)g to �;

(f) the restriction ũ0 of A(2)0,0(k)g to R3\� satisfies(1.9), where f̃ equals to the

restriction ofB(2)0,0(k)g to S(L)\�; and
(g) for Im k�0, the functionsuε,� and ũ0 satisfy the radiation conditions(1.3), (1.7).

The square root of the eigenvalue is calledthe eigenfrequencyof the boundary-
value problem. Denote by�(1) and�(2) the sets of eigenfrequencies of boundary-value
problems (1.5) and (1.8), respectively.

Proposition 2.3. If Im k�0 then the solutions of the perturbed problems(1.1) ((1.2)),
(1.3) and the limit external problems(1.6) ((1.9)), (1.7)are unique. Ifk /∈ �(1) (k /∈
�(2)) then the solution of the limit internal problem(1.5) ((1.8)) is unique.

The proof of this statement is well known (for the three-dimensional external Neu-
mann problem outside nonclosed surfaces see, for instance Gadyl’shin [24]).

Lemma 2.3. If g ∈ L2(S(L)) and g �= 0, thenA(j)�,�(k)g �= 0.

Proof. If B(j)�,�(k)g �= 0, then the statement of the lemma is obvious. LetB
(j)
�,�(k)g = 0,

and letu�,� = A(j)�,�(k)g = 0. The definition ofA(j)�,�(k) implies that

u�,�(x) = w(x)− �
( r
L

)
(w(x)− v�,�(x)),
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wherew = (� + k2)−1g and v�,� = �(j)�,�pL(S(L))w. The above formula implies that

0= w(x)− �
( r
L

)
(w(x)− v�,�(x)), (2.3)

whencew = 0 outsideS(2L3 ), and v�,� = 0 in S(L3 ). Hence,U�,� = w − v�,� belongs
to H 2(S(L)) and is a solution of the problem

(� − 1)U�,� = 0, x ∈ S(L), U�,� = 0, x ∈ �S(L). (2.4)

It is obvious that the solution of (2.4) is trivial. Formula (2.3) implies thatw = 0 in
R3. The definition ofw givesg = 0. We have come to a contradiction, which completes
the proof of the lemma. �

Lemma 2.4. If Im k > 0 or k > 0, and k /∈ �(j), then there exists the operator(
B
(j)
�,�

)−1
(k) ∈ B(L2(S(L))).

Proof. SinceB(j)�,� is the Fredholm operator of the second kind, then it is sufficient to
show that the equation

B
(j)
�,�g = 0

has a trivial solution only. Assume that there exists a nontrivialg, which satisfies
the equation; then, due to Lemma2.2 the functionA(j)�,�g is a nontrivial solution to
the corresponding boundary value problem. Moreover, this function is nonzero due to
Lemma 2.3. It contradicts Proposition 2.3.�

In further analysis we shall use the following statement from Sánchez-Palencia [41,
Chapter 15, § 7, Theorem 7.1].

Proposition 2.4. Suppose that D is a connected domain of the complex plane, T (k),
(k ∈ D) is a holomorphic family of compact operators in a Banach spaceX and
there exists a pointk∗ ∈ D, such that(I − T (k∗))−1 ∈ B(X ). Then (I − T (k))−1 is a
meromorphic function in D with values inB(X ).

From Proposition2.4 and Lemma 2.4 the following lemma follows:

Lemma 2.5. There exists
(
B
(j)
�,�

)−1
(k) belonging toBm(L2(S(L))) for k ∈ C.

DenoteA(j)�,�(k)
def= A

(j)
�,�(k)

(
B
(j)
�,�

)−1
(k).
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Theorem 2.1. For k ∈ C

(a)

A(1)�,�(k) ∈ Bm (
L2(S(L)),H

1
loc(R

3)
)
,

A(2)�,�(k) ∈ Bm
(
L2(S(L)),H

1
loc(R

3\�1)
)
;

(b) the functionuε,�(ε) = A(1)
ε,�(ε)(k)F satisfies(1.1), the functionuε,�(ε) = A(2)

ε,�(ε)(k)F

satisfies(1.2), the restrictionu0 (̃u0) of A(1)0,0(k)F to � (to R3\�) satisfies(1.5) ((1.6)),

where f(f̃ ) is the restriction of F to� (to S(L)\�), the restrictionu0 (̃u0) of A(2)0,0(k)F
to � (to R3\�) satisfy(1.8) ((1.9)),where f(f̃ ) is the restriction of F to� (to S(L)\�),
and, for Im k�0, the functionsuε,�(ε) and ũ0 satisfy the radiation conditions(1.3),
(1.7);
(c) if suppF ⊂ S(T ), then the functionA(j)�,�(k)F does not depend onL�T ; j =

1,2;
(d) the set of poles of the operatorsA(j)�,�(k) and

(
B
(j)
�,�(k)

)−1
coincide for fixed j;

j = 1,2; and
(e) the set of poles of the operatorA(j)�,�(k) does not depend on L; j = 1,2.

Proof. Statement (a) follows from Lemmas 2.1 and 2.5. Statement (b) follows from
Lemmas 2.2. Statement (c) follows from Proposition 2.3 and the uniqueness of the
analytic continuation. Statement (d) follows from Lemma 2.3 and the definition of the
operatorsA(j)�,�(k); j = 1,2. Let us prove statement (e) forj = 1. Denote byA(1)�,�,t (k)

the operatorA(1)�,�(k) defined forL = t . Supposea > b. It is obvious that the set

of poles ofA(1)�,�,b(k) is a subset of the set of poles ofA(1)�,�,a(k). Now we show the
inverse inclusion. Suppose that suppF ⊂ S(a) and assume that

W = (1− �(rb−1))(� + k2)−1F.

Since the support supp(F − (� + k2)W) ⊂ S(b), then due to (b) the solution of the
perturbed problems (1.5) and (1.3) for�, � > 0 and of the limit problems (1.1) and
(1.6), (1.3) for� = � = 0 can be defined by one of the following formulae:

u�,� = A(1)�,�,a(k)F, u�,� = A(1)�,�,a(k)(F − (� + k2)W)+W.

SinceW is holomorphic, the set of poles ofA(1)ε,a is a subset of the set of poles of
A(1)ε,b. The casej = 2 can be proved in an analogues way. The theorem is proved.�

3. Convergence of the operator�(1)
�,�

The goal of this section is to prove the following statement.
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Theorem 3.1. If p = ∞, then

‖�(1)
ε,�(ε) − �(1)0,0‖B(H2(S(L)),H1(S(L))) →

ε→0
0.

The proof of the following lemma is carried out along the main lines of the proof
of a similar two-dimensional lemma from[12].

Lemma 3.1. For any v ∈ H 1(S(L)) such thatv = 0 on �S(L)∪�D
ε,�∪�2 the following

estimates

‖v‖L2(�)�C
(

�
ε

)1/2
‖v‖H1(�)

and

‖v‖L2(�)�C
(

�
ε

)1/2
‖v‖H1(S(L)\�)

are valid.

From Lemma3.1 one can deduce the following statement (in the same way as it
was proved in two-dimensional case in [12]; see also [10]).

Lemma 3.2. Let p = ∞. Suppose also thatF, Fε ∈ L2(S(L)), f and f̃ are the
restrictions of F in� and in S(L)\�, respectively, and Fε ⇀ F as ε → 0 weakly in
L2(S(L)). Then the solution of the boundary-value problem

{
(� − 1)uε,�(ε) = Fε, x ∈ S(L)\�D

ε,�(ε) ∪ �2,
uε,�(ε) = 0, x ∈ �D

ε,�(ε) ∪ �2 ∪ �S(L),
(3.1)

converges to the function

u(x) =
{
u0(x), x ∈ �,
ũ0(x), x ∈ S(L)\� (3.2)

weakly inH 1(S(L)) as ε → 0, whereu0(x) satisfies the boundary-value problem

{
(� − 1)u0 = f, x ∈ �,

u0 = 0, x ∈ �
(3.3)
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and ũ0(x) satisfies the boundary-value problem

{
(� − 1)̃u0 = f̃ , x ∈ S(L)\�,
ũ0 = 0, x ∈ � ∪ �S(L).

(3.4)

Lemma 3.3. Under the conditions of Lemma3.2 the convergence of the solutionsuε,�
is strong in the Sobolev spaceH 1(S(L)).

Proof. Using the integral identities of problems (3.1), (3.3) and (3.4), we obtain esti-
mates

‖uε,�(ε)‖2H1(S(L)) =
∫
S(L)

Fεuε,�(ε) dx, ‖u‖2
H1(S(L))

=
∫
S(L)

Fu dx.

Sinceuε,�(ε) −→ u strongly inL2(S(L)) andFε ⇀ F weakly inL2(S(L)), it follows
that ∫

S(L)

Fεuε,�(ε) dx −→
∫
S(L)

Fu dx.

Hence,

‖uε,�(ε)‖2H1(S(L)) −→ ‖u‖2
H1(S(L))

.

Taking into account the weak convergence ofuε,�(ε) in H
1(S(L)), we complete the

proof. �

We use the notationL(1)ε for the operator mapping a functionF into the solution of
(3.1) and the notationL(1)0 for the operator mapping a functionF into the pair(u0, ũ0)
of solutions of (3.3) and (3.4), wheref and f̃ are the restrictions ofF in � and in
S(L)\�, respectively.

Lemma 3.4. Let p = ∞. Then

‖L(1)ε − L(1)0 ‖B(H2(S(L)),H1(S(L))) → 0 as ε → 0. (3.5)

Proof. We prove (3.5) by arguing by contradiction. If (3.5) is wrong, then there exist
constantc > 0, and sequencesεi → 0 as i → ∞ and F̃i ∈ L2(S(L)), such that
‖F̃i‖L2(S(L)) = 1 and

‖
(
L(1)εi − L(1)0

)
F̃i‖H1(S(L)) > c, (3.6)
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F̃i ⇀ F0 weakly in L2(S(L)). (3.7)

On the other hand, due to Lemma3.3 and (3.7) we have

‖
(
L(1)εi − L(1)0

)
F̃i‖H1(S(L)) � ‖L(1)εi (F̃i − F0)‖H1(S(L)) + ‖(L(1)εi − L(1)0 )F0‖H1(S(L))

+‖L(1)0 (F0 − F̃i)‖H1(S(L)) → 0 as i → ∞.

This contradiction with (3.6) completes the proof.�

Theorem 3.1 is a direct consequence of Lemma 3.4 and the definition of�(1)
ε,�.

4. Convergence of the operator�(2)
�,�

The goal of this section is to prove the following.

Theorem 4.1. If p = 0, then

‖�(2)
ε,�(ε) − �(2)0,0‖B(H2(S(L)),H1((S(L)\�1)))−→ε→0

0.

It is known (see, for instance Eskin[17, Chapter 6, § 22]) that there exists a harmonic

in R3− = {x : x3 < 0} function X0 ∈ H 1loc(R3−) ∩ C∞(R3−\��) which disappears at
infinity and satisfies the boundary conditionsX0 = 1 in � and �X0/�x3 = 0 on
	 = {x : x3 = 0, (x1, x2) /∈ �}. In addition, the functionX0 has the differentiable
asymptotics

X0(x) = c�r−1+O(r−2) as r → ∞,

wherec� > 0 is the capacity of� (see,[30, Chapter II, § 3], [38, Chapter I]).
Let � = (−1,1) × (−1,1) × (0,−∞). Denote byWε(x) the even continuation of

the function

1− �(rε−1/2)X0(xε−1)

defined in�, with respect tox3. We employ the same notation for the(−1,1)×(−1,1)-
periodic translation of the functionWε(x) on the planex3 = 0. DenoteWε,�(ε)(x) =
Wε

(
x

�(ε)

)
. Taking into account the definition ofX0 one can obtain the following

statement.
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Lemma 4.1. Let p = 0. ThenWε,�(ε) ∈ H 1
(
S(L)\�S

ε,�(ε)

)
, Wε,�(ε)(x) = 0 on �D

ε,�(ε),

‖Wε,�(ε) − 1‖
H1(S(L)\�1) →

ε→0
0.

Lemma 4.2. Let p = 0. Suppose also thatF, Fε ∈ L2(S(L)), f and f̃ are the re-
strictions of F in � and in S(L)\�, respectively, and Fε ⇀ F as ε → 0 weakly in
L2(S(L)). Then the solution of the boundary-value problem

(� − 1)uε,�(ε) = Fε, x ∈ S(L)\�S
ε,�(ε) ∪ �2,

uε,�(ε) = 0, x ∈ �2 ∪ �S(L),
�uε,�(ε)

�x3
= 0, x ∈ �S

ε,�(ε)

(4.1)

converges strongly inH 1
(
S(L)\�1

)
as ε → 0 to function(3.2),whereu0(x) satisfies

the boundary-value problem


(� − 1)u0 = f, x ∈ �,

u0 = 0, x ∈ �2,
�u0
�x3

= 0, x ∈ �1
(4.2)

and ũ0(x) satisfies the boundary-value problem

 (� − 1)̃u0 = f̃ , x ∈ S(L)\�,
ũ0 = 0, x ∈ �2 ∪ �S(L),

�ũ0
�x3

= 0, x ∈ �1.
(4.3)

Proof. From the integral identity of problem (4.1) we deduce the uniform boundedness
of the functionuε,�(ε) in H

1(S(L)\�1). Let {εn} be a sequence which tends to zero
as n → ∞. Due to the embedding theorems, weak compactness of the bounded set
of functions in H 1(S(L)), there exists a subsequence{ε′n}, such thatuε,�(ε) ⇀ u∗
weakly in H 1(�) and strongly inL2(�) as ε′n → 0, u∗ ∈ H 1(�), u∗ = 0 on �2,
and uε,�(ε) ⇀ ũ∗ weakly in H 1(S(L)\�) and strongly inL2(S(L)\�) as ε′n → 0,
ũ∗ ∈ H 1(S(L)\�), ũ∗ = 0 on �S(L) ∪ �2.
Let V be any function fromC∞(�) such thatV = 0 on �2, and Ṽ be any function

from C∞(S(L)\�) such thatṼ = 0 on �S(L) ∪ �2. Then, due to Lemma 4.1, first,

‖V −Wε,�(ε)V ‖H1(�) + ‖Ṽ −Wε,�(ε)Ṽ ‖
H1(S(L)\�) →

ε→0
0, (4.4)

and, second, the continuation ofWε,�(ε)V into S(L)\� by zero and the continuation of

Wε,�(ε)Ṽ into � by zero are functions from the spaceH 1(S(L)\�S
ε,�(ε)) which equal
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zero on �S(L) ∪ �2. Hence, substitutingv = Wε,�(ε)V and v = Wε,�(ε)Ṽ into the
integral identity of problem (4.1), we have∫

�

(
∇uε,�(ε)∇

(
Wε,�(ε)V

)
+ uε,�(ε)

(
Wε,�(ε)V

))
dx =

∫
�
fεW

ε,�(ε)V dx (4.5)

and ∫
S(L)\�

(
∇uε,�(ε)∇

(
Wε,�(ε)Ṽ

)
+ uε,�(ε)

(
Wε,�(ε)Ṽ

))
dx

= −
∫
S(L)\�

f̃εW
ε,�(ε)Ṽ dx, (4.6)

wherefε and f̃ε are the restrictions ofFε on � and S(L)\�, respectively.
Keeping in mind (4.4) and passing to the limit in (4.5), and (4.6) asε′n → 0, we

obtain ∫
�
(∇u∗∇V + u∗V ) dx =

∫
�
fV dx

and ∫
S(L)\�

(∇ũ∗∇Ṽ + ũ∗Ṽ
)
dx =

∫
S(L)\�

f̃ Ṽ dx,

respectively. Due to the uniqueness of solutions to problems (4.2) and (4.3) we conclude
that u∗ ≡ u0 and ũ∗ ≡ ũ0.
On the other hand, owing to the freedom in choosing the sequence{εn}, we obtain

that uε,�(ε) ⇀ u weakly inH 1
(
S(L)\�1

)
and strongly inL2(S(L)) as ε → 0.

The proof of the strong convergence ofuε,�(ε) → u in H 1
(
S(L)\�1

)
is similar to

that in the Lemma 3.3. The lemma is proved.�

We use the notationL(2)ε for the operator mapping a functionF into the solution of
(3.1) and the notationL(2)0 for the operator mapping a functionF into the pair(u0, ũ0)
of solutions of (4.2) and (4.3), wheref and f̃ are the restrictions ofF in � and in
S(L)\�, respectively.
The proof of the following lemma is analogues to the proof of Lemma 3.4, keeping

in mind Lemma 4.2.

Lemma 4.3. Let p = 0. Then

‖L(2)ε − L(2)0 ‖B(H2(S(L)),H1((S(L)\�1))) → 0 asε → 0.

Theorem4.1 is a direct consequence of Lemma 4.3 and the definition of�(2)
ε,�.
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5. Proof of Theorems 1.1 and 1.2

The next lemma follows from the definitions of operatorsT (j)�,� (k), B
(j)
�,�(k), Proposi-

tion 2.1, and Theorems 3.1 and 4.1.

Lemma 5.1. Assume that K is an arbitrary compact set inC. Then
(a) if p = ∞, then T (1)

ε,�(ε)(k) →
ε→0

T
(1)
0,0 (k) and B(1)

ε,�(ε)(k) →
ε→0

B
(1)
0,0(k) in the norm

B(L2(S(L))) uniformly onk ∈ K; and
(b) if p = 0, then T (2)

ε,�(ε)(k) →
ε→0

T
(2)
0,0 (k) and B(2)

ε,�(ε)(k) →
ε→0

B
(2)
0,0(k) in the norm

B(L2(S(L))) uniformly onk ∈ K.
In what follows, we shall use the following statement from Sánchez-Palencia[41,

Chapter 15, § 7, Theorem 7.2]:

Proposition 5.1. Suppose that D is a connected domain in the complex plane, T (k,�)
is a family of compact operators in Banach spaceX , defined fork ∈ D and � ∈
[0,�0], such that it is a holomorphic of k for each� and continuous onD × [0,�0]
in the normB(X ). Furthermore, assume that there exists a pointk0 ∈ D, such that
(I − T (k0,�))−1 ∈ B(X ) for any � ∈ (0,�0). Then
(a) (I−T (k,�))−1 (for any�) is a meromorphic function in D with values inB(X );
(b) if k∗ is not a pole (I − T (k,�∗))−1, then the operator-values function(I −

T (k,�))−1 is continuous in the norm in a neighborhood of(k∗,�∗);
(c) the poles(I − T (k,�))−1 depend on� continuously.

Denote by�(j)�,� the set of the poles of the operatorA(j)�,�(k). Obviously,�
(j) ⊂ �(j)0,0.

By Lemmas2.5 and 5.3 the familyT (j)�,� (k) satisfies the conditions of Proposition 5.1.
Then the following lemma holds true:

Lemma 5.2. (a) Assume thatp = ∞. If K is an arbitrary compact set inC, such that

K∩�(1)0,0 = ∅, then
(
B
(1)
ε,�(ε)(k)

)−1−→
ε→0

(
B
(1)
0,0(k)

)−1
in the normB(L2(S(L))) uniformly

on k ∈ K. If �0 ∈ �(1)0,0, then there exists the pole�ε,�(ε) ∈ �(1)
ε,�(ε), converging to�0 as

ε → 0.
(b) Assume thatp = 0. If K is an arbitrary compact set inC, such thatK∩�(2)0,0 = ∅,

then
(
B
(2)
ε,�(ε)(k)

)−1−→
ε→0

(
B
(2)
0,0(k)

)−1
in the normB(L2(S(L))) uniformly onk ∈ K. If

�0 ∈ �(2)0,0, then there exists the pole�ε,�(ε) ∈ �(2)
ε,�(ε), converging to�0 as ε → 0.

Definition 5.1. Suppose thatDε is a family of operators acting fromL2(S(L)) in
H 1loc(R

3) (in H 1loc(R
3\�1)).

We say thatDε −→
ε→0

D0 in the topology ofB(L2(S(L)),H 1loc(R3)) (of B(L2(S(L)),H 1loc
(R3\�1))), if Dε −→

ε→0
D0 in B(L2(S(L)),H 1(S(R)))

(in B(L2(S(L)),H 1(S(R)\�1))) for any R > 0.
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From the definitions of operatorsA(j)�,�(k), and Lemma5.1 it follows that:

Lemma 5.3. Assume that K is an arbitrary compact set inC. Then
(a) if p = ∞, then

A
(1)
ε,�(ε)(k)−→ε→0

A
(1)
0,0(k)

in the topology ofB(L2(S(L)),H 1loc(R3)) uniformly onk ∈ K;
(b) if p = 0, then

A
(2)
ε,�(ε)(k)−→ε→0

A
(2)
0,0(k)

in the topology ofB(L2(S(L)),H 1loc(R3\�1)) uniformly on k ∈ K.

Finally from Lemmas5.3, 5.2 and the definitions of operatorsA(j)�,�(k) we deduce

Theorem 5.1. (a) Suppose thatp = ∞. If K is an arbitrary compact set inC, such
that K ∩ �(1)0,0 = ∅, then

A(1)
ε,�(ε)(k) →

ε→0
A(1)0,0(k)

in the topology ofB(L2(S(L)),H 1loc(R3)) uniformly onk ∈ K. If �0 ∈ �(1)0,0, then there

exists a pole�ε,�(ε) ∈ �(1)
ε,�(ε), converging to�0 as ε → 0.

(b) Suppose thatp = 0. If K is an arbitrary compact set inC, such thatK∩�(2)0,0 = ∅,
then

A(2)
ε,�(ε)(k) →

ε→0
A(2)0,0(k)

in the topology ofB(L2(S(L)),H 1loc(R3\�1)) uniformly on k ∈ K. If �0 ∈ �(2)0,0, then

there exists a pole�ε,�(ε) ∈ �(2)
ε,�(ε), converging to�0 as ε → 0.

Since�(j) ⊂ �(j)0,0, then Theorems1.1 and 1.2 are the implication of Theorems 5.1
and 2.1.

6. Conclusion remarks

If k2 = k20 is a simple eigenvalue of the limit problem (1.5) (or (1.8)), by analogy
with [25] one can show that there exists a unique pole�ε,�(ε) of the analytic continuation



520 G.A. Chechkin, R.R. Gadyl’shin / J. Differential Equations 216 (2005) 502–522

of the solution to the perturbed problems (1.1), (1.3) (or (1.2), (1.3)), converging tok0
as ε → 0. In addition,�ε,�(ε) is a pole of the first order and the associated residue is
“one dimensional”.
Note that in the case 0< p < +∞ the perturbed problem does not decompose into

two domains in the limit, one of which has a discrete spectrum. In this case the limit
problem is a problem inR3 with compatibility conditions on the surface�. Hence, this
limit problem does not have a discrete spectrum and there are no poles of the analytic
continuation of solutions with small imaginary parts, which give rise to resonances.
In our three-dimensional case the construction of a complete asymptotic expansion of

�ε,�(ε) is impossible in contrast to the two-dimensional case considered in [25]. It was
assumed in the two-dimensional case that the whole boundary has a locally periodic
structure. In our case we consider the domain with a partially perforated boundary and
the absence of a periodic structure does not allow us to construct complete asymptotics
by the method of matching of asymptotic expansions [43], [27] used in [25].
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