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In this paper, we present the semi-analytical/semi-numerical solution of an axis-symmetric flow
between two coaxial infinite stretching disks. The governing momentum equations in cylindrical co-
ordinates are reduced to fourth order nonlinear ordinary differential equation (NODE) with the relevant
boundary conditions. The resulting nonlinear boundary value problem is solved by using Computer
Extended Series Solution (CESS) and Homotopy Analysis Method (HAM). The effects of Reynolds number
R and disk stretching parameter y are discussed in detail. The resulting solutions are compared with the
. earlier numerical findings. The above methods admit a desired accuracy and the results are presented in
Stretchable disks - . L. .
Dirichlet series the form of graphs. The validity of the series solution is extended to a much larger values of R up to infin-
CESS ity. Further, the variations of shear stress and pressure parameter as a functions of R and y are analyzed.
For very large R, the governing equation reduces to third order NODE with infinite boundary is solved by
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Residual error

using Dirichlet series and the solution is compared with the numerical findings.
© 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of boundary layer flow of a viscous incompressible
fluid over a moving boundary/stretching boundary has significant
applications in engineering and industrial processes, such as plas-
tic and metal industries involving surface stretching or extrusion
processes [1-3]. Sakiadis [4,5] was the first researcher to propose
the surface stretching problem based on boundary layer assump-
tions. According to Wang [6] it is not an exact solution of the
Navier-Stokes (NS) equations. Crane [7] find an exact solution for
the two dimensional stretching sheet problems, where the surface
stretching velocity is proportional to the distance from the fixed
slot. The generalization of Crane problem to a power law stretching
velocity based on boundary layer flows discussed by Kukien [8]
and Bank [9]. Gupta and Gupta [10] considered the Crane problem
with mass injection/suction at the wall and Wang [11] studied the
same problem in a rotating system. Wang [12] examined the three
dimensional flow due to stretching flat surface. Brady and Acrivos
[13] find another exact solution of NS equations involving the flow
inside a channel or tube with a stretching wall. Wang [14] studied
the flow outside an accelerating stretching tube, which was also
demonstrated as an exact solution for the NS equations. The
unsteady developments [15-17] and the spatial stability [18] of a
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class of similarity solutions for the Brady and Acrivos problem
[13] were further studied. Zaturska and Bank [19] discussed the
channel problem with combined effects of porous and stretching
walls. Rasmussen [20] examined the steady viscous flow between
porous disks with mass suction. Turkyilmazoglu [21-23], exam-
ined the MHD fluid flow and heat transfer, three dimensional
MHD stagnation flow also discussed the flow and heat simultane-
ously induced due to a stretchable rotating disk. Mustafa et al. [24]
analyzed on Bodewadt flow and heat transfer of nanofluids over a
stretching stationary disk. Hayat and his collaborators [25-28]
have discussed the various physical aspects of convection flow of
carbon nanotubes with thermal radiation effects, partial slip effect
and effects of homogeneous-heterogeneous reactions in flow of
magnetic-Fes04 nanoparticles, and unsteady stagnation point flow
of viscous fluid between rotating disks.

Recently Sheikholeslami and his associates [29-38| have exam-
ined the various semi-analytical methods such as DTM, ADM, HPM
and OHAM for the solution of different types flow and heat transfer
problems arise in fluid mechanics. In this paper, we present the
series solution of the flow between two coaxial stretching disks
for small and moderately large Reynolds numbers. In the first
method, we investigate the flow problem based on a new type of
series analysis (CESS) and present some interesting results. The
salient features of this method are evidently explained by Van
Dyke [39]. Bujurke and his associates [40-43] have clearly shown
the potential applications of these methods in computational fluid
dynamics. These methods reveal the analytical structure of the
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Nomenclature

d distance between the disks

p fluid pressure

r radius of the disk

E disk stretching strength parameter

R Reynolds number

U, Uy velocity components in the directions r and z
respectively

F,H dimensionless stream functions

n similarity independent variable

) kinematic viscosity of the fluid (m? s—1)
0 density of the fluid (kg m~3)

Y disk stretching parameter

B pressure parameter

solution which is not clear in case of other methods. The few man-
ually calculated perturbation solutions in the low Reynolds num-
ber of the boundary value problem which enables us to propose
a systematic series expansion to generate large number of univer-
sal polynomial coefficients by using recurrence relation and Math-
ematica. The resulting series will be limited in convergence by
nonphysical singularities are extended to moderately high Rey-
nolds numbers using an analytic continuation of the series solu-
tion. The location and nature of the singularity which restricts
the convergence of the series is predicted using Domb-Sykes plot
[44]. The analytic continuation can be achieved by extend the
validity of the perturbation series to moderately larger values of
Reynolds number using Pade’ approximants. For large R, the gov-
erning NODE is reduced to third NODE with infinite interval and
for the solution of this equation we have used the Dirichlet series
method.

We also investigate the same flow problem using fast converg-
ing semi-analytical method called Homotopy analysis method
(HAM) proposed by Liao [45]. The HAM provides the solution in
much convenient way, to adjust and control convergence region
of the series. In this method we have the liberty to choose base
functions of the required solution and the corresponding auxil-
iary linear operator. Therefore, the HAM has an excellent flexibility
and generality over all other analytical or approximate methods
and also it is easy to use. Awati et al. [46] discussed the solution
of MHD flow of viscous fluid between two parallel porous plates
using CESS and HAM. Most recently, Hayat and his research
colleagues [47-59], have successfully analyzed different types of
fluids in MHD flow problems and stretching surfaces which arise
in the engineering and science fields using HAM.

The paper is structured as follows. Section 1 describes the intro-
duction; Section 2 develops the mathematical formulation of the
proposed problem with relevant boundary conditions. The solution
of the problem is obtained by Computer extended series as well as
Homotopy analysis method in Sections 3 and 4 respectively. Sec-
tion 5 presents results and discussion; Section 6 is about the con-
clusion (see Table 1).

2. Mathematical formulation

Consider an axis-symmetric viscous flow between two coaxial
infinite stretching disks with a distance d between them. The disks
are stretched in the radial direction with the velocity proportional
to the radii and the lower disk is placed at the plane z = 0. The
schematic diagram for the considered flow problem phenomenon
is given in Fig. 1.

Table 1

Fig. 1. Schematic diagram of the flow phenomenon.

For the viscous incompressible fluid in the absence of body
forces and based on an axis-symmetry flow, the steady state NS
equations in cylindrical polar coordinates [60] becomes

10 ou,

7o U +5,-=0 (2.1)
ou, ou  19p ou, 1ou o*u, u

Uor T e = T par V(w*?ﬁ o2 @2)
ou, ou;  10p Pu, 1ou, u,

“or Yo = Tpa v<8r2 ror o2 @3)

where V = (u,,u,) is the velocity vector, v is the kinematic viscosity
of the fluid, p be the pressure of the fluid and p is the density of the
fluid. We use the following transformations [61] such as

Comparison of shear stress at the surface f"(0), f(co) by using Dirichlet series with numerical method [61].

Dirichlet series

Numerical [61]

a v 1'0)

f(o0) (0 f(o0)

1.13583860 —1.50299405 —2.347441

—1.50299405 —2.347442 —1.502996
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1
u, = rEF(y)), u, =EdH(yy), p = pEv {P(n) +2 pr? /dz} (2.4)
where E is the parameter corresponding to the disk stretching
strength and # = z/d is a similarity variable. Substituting Eq. (2.4)

into Egs. (2.1)-(2.3), we get

H = -2F (2.5)
— B =R(F*+FH) (2.6)

P’ = 2RFH — 2F (2.7)

with the relevant boundary conditions are

F(0O)=1, H(O)=0, H(1)=0, F(1)=yand P(0)=0 (2.8)

where R = Ed®/v is the wall stretching Reynolds number propor-
tional to the disk stretching strength and y is the upper disk stretch-
ing parameter representing the velocity ratio of the upper disk to
the lower disk. Without loss of generality, it is assumed that
0 <y < 1. For y > 1, we normalize the flow problem by the upper
disk and switch the coordinate direction. Substituting Eq. (2.5) into
Eq. (2.6), we get

RH2
2
and the boundary conditions take the forms

H” + p—RHH' +—==0 (2.9)

H(0)=0, H(1)=0, H(0)=-2, H(1)=-2y (2.10)
Differentiating Eq. (2.9) with respect to #, we get
H" —RHH” =0 (2.11)

The pressure parameter 8 can be obtained from Eq. (2.9) and (2.10)
for putting # = 0, we get

B=-2R—-H"(0) (2.12)

For large R: Let us define a new variable ¢ = vRy and the corre-

sponding new function f(¢) = vRH(1), then substituting f(¢) into
Eq. (2.9), we get

f20

Rf" +p—RJ"+R (2.13)
with the appropriate boundary conditions are
f(0)=0, f(VR)=0, f(0)=-2, f(VR)=-2y (2.14)
For large R, then the Eq. (2.9) becomes

/1 /! l !
=i +§f2:0 (2.15)

For the above equation, when R — oo, the flow represents the
boundary layer behavior near the wall, the fluid far from the wall
and not affected by the wall. The associated boundary conditions
becomes

f0)=0, f(0)=-2, f(e0)= (2.16)

We seek Dirichlet series solution of Eq. (2.15) satisfying the deriva-
tive boundary conditions at infinity in the form

fn) ==y+7> buae™ (2.17)
n=1

where the parameter y > 0 and |a| < 1 are to be determined. Substi-
tuting Eq. (2.17) into Eq. (2.15), we get

oo n-1

—Zn3b a'e” "”7+Zn2b ae”™ — ZZk beb,_,ae™""
n=2 k=1
1 o n-1
zZZ

n=2 k=1

nka’e”m =0 (2.18)
To obtain b, as functions of unknown parameters y and a. For n = 1
in (2.18), we have the identity —b,a + b;a = 0. We write the above
recurrence relation (2.18) in the form

1 n-1

1
b, = 72 {_kz + ik(n — k) |bibn_

=) 2 (2.20)

forn=1,2,3,...1f |a] < 1 and |by| < 1 then the series (2.17) con-
verges absolutely for any y > 0 and # = —¢, where

1n|a|

+5} >0

and J > 0 is sufficiently small number depending on a and y. The
series converges absolutely and uniformly on the half axis n > —e.
A general convergence criterion of the Dirichlet series may be found
in Riesz [62].

To obtain the shear stress at the surface f”(0) as fallows

0) =9 bya"(—ny)
n=1

The series (2.21) contains two unknown parameters a and ) are
determined from the remaining boundary conditions (2.16) at
n = 0; namely

(2.21)

=-7+7) ba"=0 (2.22)
n=1
= vzz(fn)bna” =-2 (2.23)
n=1

3. Series solution

We seek a perturbation solution of Eq. (2.11) in powers of R in
the form

(3.24)

Substituting Eq. (3.24) into Eq. (2.11) and equating like powers of R
on both sides, we get

/w

Hy =0 (3.25)
s n- 1

Hy\y = HoHyl + HaHy + Y [HiHpl, n=1,2,3... (3.26)
L=1

where m = n — L. The associated boundary conditions are
Ho(0) =0, Ho(1)=0, Hy(0)=-2, Hy(l)=-2y (3.27)
Hn(0) =0, Hy(1) (3.28)

The solutions of the above equations satisfying the boundary
conditions are given by

—0, H,(0)=0, H,(1)=0, n>1

= 7217 +@+2)n -2+ 20’

H, = 105 [(12+3y = 9y*)” + (=22 — 9y + 129"

+(214+21)1° + (=14 =21y = 79*)m° + 3+ 67 + 39*)1"]

(3.29)
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|| +(-16434 14652y — 79297 — 25747 )7 + (34650 + 51975y + 173257)yy®

H: = 737650
+(—24640 — 49280y — 2849072 — 38507%)1° + (

| +(—1134 — 34027y — 3402y — 1134y3)n"!

3.1. Computer extended series

It is not sufficient to analyze the series (3.24) by using the above
three terms of the series. We require sufficiently large number of
terms (universal polynomial coefficients) to analyze the series to
reveal the true nature of the solution representing the series. As
we proceed for higher order terms, the algebra becomes cumber-
some and it is difficult to perform this manually, but it can be made
automatic using Mathematica. Based on the nature of solution
functions (3.29), we are able to propose a systematic series expan-
sion with universal polynomial coefficients which is quite useful
and efficient in generating the higher order terms of the series.
Towards this goal, we find a general form H,(#) to be of the form

4n+1

Ho() = Y Auig 1% = 20% D 4 9%], n=1,2,3,...  (3.30)
k=2

The above expression generates exactly the earlier calculated
approximations H; for (i =1,2). Using the following recurrence
relation and Mathematica we can generate H; for (i > 2). Substitute
Eq. (3.30) into Eq. (3.26) and equate various powers of 17 on both
sides and obtain a recurrence relation for generating the unknown
coefficients A, in the form

A4y = 2Am41,4n--1)) — Ams1.4n-(-2))
1
dn—(J-2))(4n—-(J-1)(@4n-J)(4n-(J+1))

1

5 n-1 4L+l
X{ZA("»’OS"(I‘)+ [ Z Se(ki,4n—ki —(J+3))-Aky) -Aiman—k —+3))
io1 [T ky=4L_(j+4)

4L+1

+ Z S7(l<1,4n—k1 —(’+2))'A(L,k1)'A(m.4nfk,7(112))
ky =41~ (J+3)

4L+1

+ Z Sg(ki,4n—ki—(J+1))-Awk,) -Aman—io—g+1))
ky=4L—(+2)

4L+1

+ Z Sg(ki,4n—ki —(J+1))-Aky) -Aiman—ig—g+1))
kg =41 (+2)

4L+1

+ Z So(ky,4n—ki —])-Awk,) - Aman—i, )
Ky =4L—(J+1)

4L
+ Z Sio(ki,4n—ki —(J—1))-Ak,) -Amani,—g-1))] }

ky=4L—]

where m=n-1L varies form

0,1,...(4n—2).

and | ~5,-4,-3,-2, 1,

[ (498 — 1740y — 35472 + 18847%)n% — (~3566 — 2777y — 277792 + 35667°)1>
+(15246 + 6237y — 900972)1° + (—12936 — 12705y + 531372 + 508273 )

8316 + 20790y + 166322
n
+4158y?

Sik) = (=2 =2y)(k+2)(k+ 1)k — 6(2 +2y)

Sa(k) = =2(=2-2y)(k+1k(k— 1)+ (4 +69)(k+2)(k+ 1)k
+12(2+2y)

Ss(k) = (=2 = 2p)k(k — 1)(k—2) = 2(4 + 2y)(k+ Dk(k - 1)
—2(k+2)(k+1)k—-6(2+2y)

Sa(k) = (4 +2y)k(k —1)(k —2) +4(k+ 1)k(k — 1)

Ss(k) = —2k(k — 1)(k — 2)

Se(ki,ka) = (ky +2)(ky + 1)ks

So(ki,ky) = —2(ky + Dka(ky — 1) = 2(ky + 2) (ko + 1)k,

Ss(ki,ka) = 4(ky + 1)ka(ky — 1) + ko (k — 1) (ko — 2)
+(ks +2) (ks + 1)k

So(ki, k) = —2ky(ky — 1)(ky — 2) — 2(ka + 1)ka(ky — 1)

So(ky, ky) = ka(ky — 1)(ky — 2)

The expression for axial velocity profile obtained in the form

H(n) = =20+ (4 +2)n* - 2+ 297

%) 4n+1
Y RS A [ = 2% 4 ] (3.31)
n=1 k=2
The shear stress at the wall is given by
00 4n+1
H'(0) = (8+4y) +2) R"> Aup- (3.32)
n=1 k=2

The universal coefficients of the above series (3.32) represent-
ing shear stress which are decreasing in magnitude but displays
random sign patterns. The radius of the convergence of the series

12

10}

y=0, 1

ICnI1/n

0.0 0.2 0.4 0.6 0.8 1.0
1/n

Fig. 2. Domb-Sykes plot for the series H"(0) for different values of y.
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is obtained from Domb-Sykes plot (Fig. 2) for the stretching param-
eter y =0 and 1. Results are further extrapolated using rational
approximation [63] for determining the radius of convergence.
The Domb-Sykes plot (Fig. 2) after extrapolation, confirms the
radius of convergence of the series to be Ry=19.38991 and
56.10381 for y =0 and 1 respectively for the series (3.32). The
direct sum of the series for vertical and radial velocities is valid
only up to the radius of convergence. The regions of the validity
of the series are further increased by using the Pade’ approximants.

4. Homotopy analysis method
4.1. Basic Idea of HAM

In general, Let us consider the nonlinear differential equation
N[u(x)=0 (4.33)

where R is the nonlinear differential operator, x be the independent
variable and u(x) is the unknown function. By means of generalizing
the traditional concept of homotopy Liao [45,64,65] constructed the
following zeroth order deformation equation

(1-q)LU(x,q) - uo(x)] = ghR[U(x,q)]

where g € [0, 1] is an embedding parameter, L is an auxiliary linear
operator, ug(x) is an initial guess, h is the non-zero auxiliary param-
eter and U(x) is an unknown function on the independent variable x
and q.

For ¢ =0 and q = 1, then zeroth order deformation equation
have the solutions respectively as

U(x,0) = up(x) and U(x,1) = u(x)

(4.34)

(4.35)

As g vary from 0 to 1, U(x, q) also vary from the initial guess uo(x) to
the exact solution u(x). Using the parameter g, we expand U(x,q) in
terms of Taylor’s series as follows

o0

U(x,q) = uo(X) + Y un(x)q"

m=1

(4.36)

where um(x):# MU(x.9)

oqm

. Assume that the auxiliary linear opera-
=

tor, the initial guess, the auxiliary function are selected in such a
way that the series (4.36) is convergent at g = 1, we have

00

u(x,q) = Uo(X) + » Un

m=1

(4.37)

Differentiating the zeroth order deformation problem (4.34) 'm’
times with respect to g then dividing it by m! and finally setting
q = 0. The resulting mth-order deformation equation becomes

L{um(x) = YmUm-1(X)] = hH(X)Rpn (Um-1) (4.38)
where
. 1 "RuE,q)]
Fon (Un—1)= 0 =9y ~ g oo (439)
and

0, m<1;
X'":{l, m>1; (4.40)

To solve the linear system of equations (4.34) with the homoge-
neous boundary conditions up to any order of approximations. In
this paper we used the Mathematica software for solving the flow
problem.

4.2. Solution for problem

We seek the HAM solution of Eq. (2.11) subjected to the bound-
ary conditions (2.10). We choose the initial guess which satisfies
the boundary conditions automatically and auxiliary linear opera-
tor as

Ho(n) = =20+ (4 +2y)n* — (2 + 2y (4.41)
and
L[H =H" (4.42)
The linear operator satisfy the below property

woo~n
LC1€+C17+C37]+C4 =0 (443)

where Cq,C;,C; and C4 are arbitrary constants.
If g € [0,1] then the zeroth order deformation problem can be
constructed as

(1 —=q)L[H(n,q) — Ho(1)] = qhR[H(1, q)] (4.44)
also the boundary conditions becomes
H(0,9)=0, H(1,q)=0, H'(0,q)=-2, H'(1,q)=-2y. (4.45)

where q € [0, 1] is an embedding parameter, i and H are the non-

zero auxiliary parameter and auxiliary function respectively. Fur-

ther N is the non-linear differential operator and is given by
a*H(n,q) PH(n,q)

RH(1,q)] = ——573—-RH(N,q) — 5

oy i (4.46)

For ¢ = 0 and q = 1, Eq. (4.44) have the solutions respectively
H(n,0) = Ho(i7) and H(n7,1) = H(n) (4.47)

As g vary from 0 to 1, H(#, q) also vary from the initial guess Hy(7}) to
the exact (final) solution H(#). By Taylor’s theorem, Eq. (4.47) can be
written as

o0

H(11,q) = Ho() + > _Hm(n)q"

m=1

(4.48)

where Hp ()= M‘ . The convergence of the series (4.48)
-

—m! ogm
depends on the auxiliary parameter . To select the value of i in
such a way that the series (4.48) is convergent at ¢ = 1, we have

o0

H(n,q) = Ho() + Y _Hm(n)

m=1

(4.49)

Differentiating the zeroth order deformation problem (4.44) 'm’
times with respect to g and finally setting q = 0. The resulting
mth-order deformation problem becomes

LHm (1) = fmHm-1(1)] = h%m (1) (4.50)
and the homogeneous boundary conditions are

Hn(0)=0, Hn(1)=0, H,(0)=0, H,(1)=0, (4.51)

where
m—1

Rin(17) = Hyp_y +RY_[HaHy ). (4.52)
n=0

and

0, m<1;
Xm:{] ms1: (4.53)

We use Mathematica to solve the linear system of equations (4.50)
with the appropriate homogeneous boundary conditions (4.51) up
to first few orders of approximations
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— 9y =1,R=15
40} y=0,R=10‘

Fig. 3. h curves for the series H'(0) for different values of y and R.

1

H1 :hR|:35(747'y+3y2)’,]2 +L(22+9V713V2)773

105

_l_XSL NZGL___q27
+< 5 5)n 15237 g (<1 -2y )| (4.54)

_ —hR 2,2 1
H, = fm(—l + ) (1+7)(6930(12 + n(2 — 5y)

— 9y +31°(1 +9) —n*(8 +7)) + h(6930(12 + n(2 — 5y)
— 9y +31°(1+7) —n*(8+7)) + R(113417 (1 4 7)?
+1(2570 — 1867 — 202?) — 3781°(16 + 217 + 59?)

— 717*(826 — 515y + 34?) — 141°(818 — 464y + 76)?)
— 6(83 — 373y + 3149%) + 61> (—1090 — 178y + 5277?)
+217%(2819 — 29867 + 7407%))))

4.3. Convergence of HAM

The series (4.48) contains the auxiliary parameter i and the
convergence of the series strictly depends upon the value of
parameter h which is known as convergence control parameter.
This parameter plays an important role in determining the conver-
gence region and rate of approximation for the HAM solutions. To
obtain the permissible ranges of the parameter f, draw the line
segment of the h curves parallel to #-axis. Fig. 3 shows the h curves
for the series H"(0) for different values of R at the 10th order of
approximations, it clearly indicates that the admissible ranges of
h are —1.25<h<-025and -1.5<h<-0.25 for y=0 and 1

0. 0p— f
0.051
5 \ |
o
g N A
3 0004 - :
3
[7]
Q
2
-0.05 R=1, y=1
-0.10 ; : , :
20 16 12 08  -04 0.0
h

Fig. 3a. Residual error for h for the function fwhen R=1and y = 1.

Table 2

Convergence of HAM solutions for increasing
order of approximations for R =10 and y = 10.

Order of approximations H"(0)
5 09.142857
10 10.262188
15 10316786
20 10.317959
25 10.317990
30 10.317991
35 10.317991
40 10.317991
1.0 :
Lines ->CESS /
08}
R Symbols ->HAM i
A\ /
06} | /
| Fon //
* F/
04r AN\ v=0,0.25,05,0751 /
\\\ L3 /®

F(n) and H(n)

Fig. 4. Radial and vertical velocity profiles for different stretching parameter for
R=2.

respectively. In order to obtain the suitable value for A, the f curve
for residual error [50-52,66] of f is plotted in Fig. 3a. From this
range, the HAM results are obtained up to 5th decimal places cor-
rectly. Our computation depicts that the series converges in the
whole region of # when h = —1. Also Table 2 presents the conver-
gence analysis of the series solutions for shear stress for various
orders of approximations. It is observed that the convergence is
attained for the function H"(0) at 30th order of approximation
and it is enough to calculate the driveled quantities.

5. Results and discussions

The equation of motion for the fluid flow is governed by nonlin-
ear ODE (2.11) together with the boundary conditions (2.10) are
solved by CESS, Dirichlet series and HAM. A new type of series
expansion scheme with universal polynomial coefficients proposed
here enables in deriving a recurrence relation, which generates
large number of universal polynomial coefficients Ag),k =
2,3,...4n+1and n=1,2,....,31. These coefficients in turn give
universal polynomial functions H,(),n=1,2,....,31. The series
(3.31) representing velocity profiles can be analyzed by using Pade’
approximants for much larger values of Reynolds number for dif-
ferent stretching parameters (7). The velocity profiles are shown
in Figs 3 and 4, which are found to be identical with the HAM
curves for different values of Reynolds number and 7. The coeffi-
cients of the series (3.32) representing shear stress for different
values of the stretching parameter y have random sign patterns
and decrease in magnitude. Fig. 2 shows the Domb-Sykes plot,
which estimates the location and identify the nature of the nearest
singularity which restricting the convergence region. The rational
extrapolation yields the radius of convergence of the series (3.32)
to be Ryp=19.38991 and 56.10381 for y =0 and 1 respectively.
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Fig. 5a. The velocity profiles for y = 0 as a function of R.
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Fig. 5b. The velocity profiles for y = 1 as a function of R.

The direct sum of the series (3.32) is valid only up to the radius of
convergence. We use Pade’ approximants [67] for summing the
series which give a converging sum for much larger values of
Reynolds number up to oco.

The velocity profiles are shown in Fig. 4 for different values of
wall stretching parameters y with R=2. It is observed that the
radial velocity near the wall is stretched by the wall movement.
However, away from the wall there exists a negative radial flow
to balance the mass stretched out by the wall to be consistent
for the force balance. In the radial direction the fluid is stretched

150 Lines-> CESS
Symbols-> HAM

| k=1000 units

120 |

90 -

60
¥=0,0.5, 1

30

0.1 1 10 100 1k 10k 100k

1000k

Fig. 6. The shear stress profiles for different values of y as a function of R.

along the wall with outer flow near the right side wall for non-
zero stretching parameter. Due to the wall stretching the vertical
velocity is downward near the left wall. As we seen, the negative
velocity profiles dominant for stretching parameters less than
one, the overall net flow rate is downward.

The net flow along the vertical direction is zero due to a sym-
metric stretching for y = 1. In the vertical direction the maximum
negative velocity decreases with the increase of stretching param-
eter while in the radial direction there occurs a larger maximum
negative velocity for symmetric stretching disks.

The radial velocity profiles are shown in Fig. 5a for various Rey-
nolds number with asymmetric stretching parameter y = 0. It is
seen that the velocity profiles become closer to the left wall and
also the maximum negative velocity decreases with the increase
of R. The radial velocity profiles are presented in Fig. 5b for differ-
ent values of R for symmetric stretching parameter y =1, by
increasing Reynolds number the boundary layer flow becomes
more obvious. There is an inviscid core flow in the central part
between the two stretchable disks. It is observed that the velocity
profiles become closer to both the walls and also the maximum
negative velocity decreases in the central region with the increase
of R. From the Figs. 5a and 5b, the profiles shows a creeping flow
behavior with parabolic in nature when the Reynolds number
R=0.

The wall shear stress H"(0) profiles are given in Fig. 6 for differ-
ent values of y as a function of Reynolds number R. It is observed
that the shear stress values increases with the increasing function
of R. For small as well as large Reynolds numbers Eq. (3.32) pro-
vides a good prediction of H"(0). The pressure parameter profiles

24 |- S Lines-> CESS
Ry Symbols-> HAM
20 O\ k=1000 units
s O\
16 < v=0, 0.25, 0.5, 0.75, 1
12—
sl
@
4+
0 \\ R B [
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.
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R

Fig. 7. The pressure parameter f$ for different values of y as a function of R.
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Fig. 8. Comparison of present velocity profiles with literature results [61] for R=1
and y=1.
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are shown in Fig. 7 for different values of y as a function of R. The j
value decreases with the increase of R and finally approaches
towards zero for very large R, when y = 0. But for non-zero values
of 7, the pressure parameter $ falls to a negative value and reaches
a minimum point, then it is little bit increases and lastly
approaches to a negative value depending on y. For the symmetric
stretching case (y = 1), we obtain the value of f — —4.521794,
when R — oo. The pressure parameter f results are compared with
CESS and HAM is a benchmark against numerical solution [61],
thus the results are presented in the form of graphs.

To check the validity of our present (CESS and HAM) velocity
profiles, the comparison is made with the earlier literature work
[61]. The obtained results are in good agreements which are pre-
sented through the graphs as shown in the Fig. 8.

6. Conclusion

In this paper, we analyze the boundary value problem arises in
the axis-symmetric flow between two coaxial infinite stretching
disks by using series methods viz. CESS, Dirichlet series and
HAM. Also, we have given the recurrence relation for generating
the unknown coefficients in terms of polynomial functions in the
series. To analyze the validity of convergence, we identified and
estimated the location and nature of the singularities restrict the
convergence of the series which can be predicted by using
Domb-Sykes plot. The effects of disk stretching parameter y and
wall stretching Reynolds number R were discussed in detail
through graphs. By increasing the Reynolds numbers, the viscous
fluid begins with a creeping flow at R=0 to a typical boundary
layer flow for large Reynolds numbers. The wall shear stress
increases with the increasing function of R for different values of
7. The pressure parameter falls from higher to lower values with
increasing Reynolds number for non-zero ). The validity of the ser-
ies solution is extended to a much larger values of R up to infinity
by using analytic continuation. The comparisons of result are in
excellent agreement between series solution and numerical
solution.
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