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a b s t r a c t

Posner’s second theorem states that the existence of a nonzero
centralizing derivation on a prime ring forces the ring to be
commutative. In this paper we extend this result to Jordan ideals
of rings with involution. Moreover, some related results are also
discussed.
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1. Introduction

Throughout this paper, R denotes an associative not necessarily unital ring with center Z(R). We
will write for all x, y ∈ R, [x, y] = xy − yx and x ◦ y = xy + yx for the Lie product and Jordan product,
respectively. R is 2-torsion free if whenever 2x = 0, with x ∈ R, then x = 0. R is prime if aRb = 0
implies a = 0 or b = 0. If R admits an involution ∗, then R is ∗-prime if aRb = aRb∗

= 0 yields
a = 0 or b = 0. Note that every prime ring having an involution ∗ is ∗-prime but the converse is in
general not true. Indeed, if Ro denotes the ring opposite to a prime ring R, then R × Ro equipped with
the exchange involution ∗ex, defined by ∗ex(x, y) = (y, x), is ∗ex-prime but not prime. This example
shows that every prime ring can be injected in a ∗-prime ring and from this point of view ∗-prime
rings constitute a more general class of prime rings.

An additive subgroup J of R is said to be a Jordan ideal of R if u ◦ r ∈ J , for all u ∈ J and r ∈ R.
A Jordan ideal J which satisfies J∗ = J is called a ∗-Jordan ideal. An additive mapping d : R −→ R
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is said to be a derivation if d(xy) = d(x)y + xd(y) for all x, y in R. A mapping F : R −→ R is said
to be centralizing on a subset S of R if [F(s), s] ∈ Z(R) for all s ∈ S. In particular, if [F(s), s] = 0 for
all s ∈ S, then F is commuting on S. The history of commuting and centralizing mappings goes back
to 1955 when Divinsky [2] proved that a simple artinian ring is commutative if it has a commuting
nontrivial automorphism. Two years later, Posner [6] proved that the existence of a nonzero
centralizing derivation on a prime ring forces the ring to be commutative (Posner’s second theorem).
Several authors have proved commutativity theorems for prime rings or semiprime rings admitting
automorphisms or derivations which are centralizing or commuting on an appropriate subset of the
ring. Recently, Oukhtite et al. generalized Posner’s second theorem to rings with involution in the case
of characteristic not 2 as follows. Let R be a 2-torsion free∗-prime ring and let U be a square closed∗-Lie
ideal. If R admits a nonzero derivation d centralizing on U , then U ⊆ Z(R) [5, Theorem 1]. In the present
paperwe shall attempt to generalize Posner’s second theorem to Jordan ideals in ringswith involution.

2. Derivations centralizing on Jordan ideals

Throughout, (R, ∗) will be a 2-torsion free ring with involution and Sa∗(R) := {r ∈ R/r∗
= ±r}

the set of symmetric and skew symmetric elements of R. We shall use without explicit mention the
fact that if J is a nonzero Jordan ideal of a ring R, then 2[R, R]J ⊆ J; and 2J[R, R] ⊆ J [7, Lemma 2.4].

In order to prove our main theorem, we shall need the following lemmas.

Lemma 1 ([4, Lemma 2]). Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If
aJb = a∗Jb = 0, then a = 0 or b = 0.

Lemma 2 ([4, Lemma 4]). Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If d
is a derivation of R such that d(J) = 0, then d = 0 or J ⊆ Z(R).

Lemma 3. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If J ⊆ Z(R), then R
is commutative.

Proof. From J ⊆ Z(R) it follows that 2rj = j ◦ r ∈ J for all r ∈ R and j ∈ J and thus

2rsj = r(2sj) = 2sjr = 2srj for all r, s ∈ R and j ∈ J. (1)

Using 2-torsion freeness, Eq. (1) yields

[r, s]j = 0 for all r, s ∈ R and j ∈ J. (2)

Replacing s by st in (2), where t ∈ R, we get [r, s]tj = 0; thereby,

[r, s]Rj = 0 for all r, s ∈ R and j ∈ J. (3)

Since J is a ∗-ideal, then (3) implies that

[r, s]Rj∗ = 0 for all r, s ∈ R and j ∈ J. (4)

In view of Lemma 1, because of 0 ≠ J , Eq. (3) together with (4) forces [r, s] = 0 for all r, s ∈ R.
Accordingly, R is commutative. �

The main result of the present paper is the following theorem.

Theorem 1. Let (R, ∗) be a 2-torsion free ring with involution. Let J be a nonzero ∗-Jordan ideal of R and
d be a nonzero derivation centralizing on J. If R is ∗-prime, then R is commutative.

Proof. Linearizing [d(x), x] ∈ Z(R), for all x ∈ J , we obtain

[d(x), y] + [d(y), x] ∈ Z(R) for all x ∈ J. (5)

Replacing y by 2x2 in (5), as charR ≠ 2, we find that x[d(x), x] ∈ Z(R). Therefore, [d(x), x[d(x), x]] = 0
which leads to [d(x), x]2 = 0 for all x ∈ J . Since [d(x), x] ∈ Z(R), then

[d(x), x]R[d(x), x][d(x), x]∗ = 0 for all x ∈ J,
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and the ∗-primeness of R assures [d(x), x] = 0 or [d(x), x][d(x), x]∗ = 0. If [d(x), x][d(x), x]∗ = 0,
then [d(x), x]R[d(x), x]∗ = 0. Since [d(x), x]R[d(x), x] = 0, we conclude that

[d(x), x] = 0 for all x ∈ J. (6)

Linearizing (6), we obtain

[d(x), y] + [d(y), x] = 0 for all x, y ∈ J. (7)

Writing 2x[r, s] instead of y in (7), where r, s ∈ R, we find that

x[d(x), [r, s]] + d(x)[[r, s], x] + x[d([r, s]), x] = 0 for all x ∈ J, r, s ∈ R. (8)

Replacing s by 2uv in (8), where u, v ∈ J , since [r, 2uv] = 2u[r, v] + 2[r, u]v ∈ J , then (8) becomes

d(x)[[r, uv], x] = 0 for all u, v, x ∈ J, r ∈ R. (9)

Substituting xt for r in (9) we find that

d(x)x[[t, uv], x] + d(x)[x, uv][t, x] = 0 for all u, v, x ∈ J, t ∈ R. (10)

Since d(x)x = xd(x), then d(x)x[[t, uv], x] = xd(x)[[t, uv], x] = 0 by (9) and (10) assures that

d(x)[x, uv][t, x] = 0 for all u, v, x ∈ J, t ∈ R. (11)

Writing rt instead of t in (11) we get d(x)[x, uv]r[t, x] = 0 and thus

d(x)[x, uv]R[t, x] = 0 for all u, v, x ∈ J, t ∈ R. (12)

Suppose that x0 ∈ J ∩ Sa∗(R); from (12) it follows that d(x0)[x0, uv]R[t, x0]∗ = 0, so either x0 ∈ Z(R)
or d(x0)[x0, uv] = 0 for all u, v ∈ J .

Suppose that

d(x0)[x0, uv] = 0 for all u, v ∈ J. (13)

Replacing v by 2v[r, s] in (13), where r, s ∈ R, we find that

d(x0)uv[x0, [r, s]] = 0 for all u, v ∈ J, r, s ∈ R

and therefore

d(x0)uJ[x0, [r, s]] = 0 for all u ∈ J, r, s ∈ R. (14)

Since x0 ∈ Sa∗(R), then (14) assures that

d(x0)uJ([x0, [r, s]])∗ = 0 for all u ∈ J, r, s ∈ R. (15)

In view of Eqs. (14) and (15), Lemma 1 forces [x0, [r, s]] = 0 for all r, s ∈ R or d(x0)u = 0 for all u ∈ J ,
in which case d(x0)J = 0.

If d(x0)J = 0 then d(x0)Jd(x0) = 0 = d(x0)J(d(x0))∗ and once again using Lemma 1 we arrive at
d(x0) = 0. Now assume that

[x0, [r, s]] = 0 for all r, s ∈ R. (16)

Substituting x0r for r in (16) we obtain

[x0, s][x0, r] = 0 for all r, s ∈ R. (17)

Replacing s by st in (17), where t ∈ R, we find that

[x0, s]t[x0, r] = 0

and thus

[x0, s]R[x0, r] = 0 for all r, s ∈ R. (18)
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Once again using the fact that x0 ∈ Sa∗(R), from (18) it follows that

[x0, s]R[x0, r]∗ = 0 for all r, s ∈ R. (19)

Since R is ∗-prime, then (18) together with (19) assures that x0 ∈ Z(R).
In conclusion,

d(x0) = 0 or x0 ∈ Z(R) for all x0 ∈ J ∩ Sa∗(R). (20)

Suppose that x ∈ J; as x∗
− x ∈ J ∩ Sa∗(R), in view of (20) we obtain d(x∗

− x) = 0 or x∗
− x ∈ Z(R).

(i) Assume that d(x∗
− x) = 0. Similarly, the fact that x∗

+ x ∈ J ∩ Sa∗(R) implies that d(x∗
+ x) = 0

or x∗
+ x ∈ Z(R).

If d(x∗
+ x) = 0 then 2d(x) = 0 and 2-torsion freeness forces d(x) = 0.

If x∗
+ x ∈ Z(R), then [t, x] = −[t, x∗

] for all t ∈ R. Hence, (12) implies that

d(x)[x, uv]R[t, x∗
] = 0 for all u, v ∈ J, t ∈ R

and therefore

d(x)[x, uv]R[t, x]∗ = 0 for all u, v ∈ J, t ∈ R. (21)

Using (12) together with (21), because of the ∗-primeness of R, we get x ∈ Z(R) or d(x)[x, uv] = 0 for
all u, v ∈ J .

Suppose that

d(x)[x, uv] = 0 for all u, v ∈ J. (22)

Replacing v by 2v[r, s] in (22), where r, s ∈ R, and reasoning as in (13), the fact that [x, [r, s]] =

−[x∗, [r, s]] yields d(x) = 0 or x ∈ Z(R).
(ii) Now assume that x∗

− x ∈ Z(R). Thus [t, x] = [t, x∗
] for all t ∈ R and in view of (12) we get

d(x)[x, uv]R[t, x]∗ = 0 for all u, v ∈ J, t ∈ R. (23)

Since R is ∗-prime, from Eqs. (23) and (12) we obtain x ∈ Z(R) or d(x)[x, uv] = 0 for all u, v ∈ J . Since
[t, x] = [t, x∗

] for all t ∈ R, arguing as above we find that d(x) = 0 or x ∈ Z(R). Accordingly, in all
cases we have

d(x) = 0 or x ∈ Z(R) for all x ∈ J. (24)

From (24) it follows that J is a union of two additive subgroups G1 and G2, where

G1 = {x ∈ J such that d(x) = 0} and G2 = {x ∈ J such that x ∈ Z(R)}.

Since a group cannot be a union of two of its proper subgroups, we are forced to have J = G1 or J = G2.
If J = G1, then d(J) = 0 and Lemma 2 yields J ⊆ Z(R). If J = G2, then J ⊆ Z(R). Hence, in both the
cases we find that J ⊆ Z(R) and Lemma 3 assures that R is commutative. �

The following example proves that the ∗-primeness hypothesis in Theorem 1 is not superfluous.

Example. Suppose that R =


x 0
y z


|x, y, z ∈ Z


where Z is the ring of integers. Let us consider

d

x 0
y z


=


0 0
y 0


and


x 0
y z

∗

=


z 0

−y x


. It is easy to check that R is a non-∗-prime ring and d is a

nonzero derivation of R. Moreover, if we set J =


0 0
y 0


|y ∈ Z


, then J is a nonzero ∗-Jordan ideal

and d is centralizing on J , but R is not commutative.

Corollary 1 ([3, Theorem 2]). Let R be a 2-torsion free prime ring and I a nonzero ideal of R. If R admits
a nonzero derivation centralizing on I, then R is commutative.
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Proof. Assume that d is a nonzero derivation of R centralizing on I . Let D be the additive mapping
defined on R = R × R0 by D(x, y) = (d(x), 0). Clearly, D is a nonzero derivation of R. Moreover,
if we set W = I × I , then W is a ∗ex-Jordan ideal of R. As d is centralizing on I , it is easy to check
that D is centralizing on W . Since R is a ∗ex-prime ring, in view of Theorem 1 we deduce that R is
commutative and a fortiori R is commutative. �

Awtar in [1, Theorem 3] proved that if a 2-torsion free prime ring R admits a nonzero derivation d
centralizing on a nonzero Jordan ideal J , then J ⊂ Z(R). However, the conclusion is less precise and
incomplete. Indeed, arguing as in the proof of Lemma 3, if J ≠ 0 then the condition J ⊂ Z(R) forces
R to be commutative. Application of Theorem 1 yields the following result which can be viewed as a
short proof of [1, Theorem 3].

Theorem 2. Let R be a prime ring of characteristic not equal to 2. Let d be a nonzero derivation of R and
J be a nonzero Jordan ideal of R such that [x, d(x)] ∈ Z(R) for all x ∈ J . Then R is commutative.

Proof. Let us consider the nonzero derivation D defined on R = R× R0 by D(x, y) = (d(x), 0). If we
set J = J × J , then J is a ∗ex-Jordan ideal of R. Moreover, the fact that d is centralizing on J implies
that D is centralizing on J. Since R is a ∗ex-prime ring, application of Theorem 1 assures that R is
commutative. Accordingly, R is commutative. �
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