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Abstract

We examine the problem of assigning n independent jobs to m unrelated parallel machines, so that each job is processed without
interruption on one of the machines, and at any time, every machine processes at most one job. We focus on the case where m is
a fixed constant, and present a new rounding approach that yields approximation schemes for multi-objective minimum makespan
scheduling with a fixed number of linear cost constraints. The same approach gives approximation schemes for covering problems
like maximizing the minimum load on any machine, and for assigning specific or equal loads to the machines.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We examine the problem of assigning n independent jobs to m unrelated parallel machines, so that each job is
processed without interruption on one of the machines, and at any time, every machine processes at most one job. We
focus on the case where m is a fixed constant, and present a new rounding procedure that yields approximation schemes
for the following job assignment problems: multi-objective scheduling with an arbitrary constant number of linear
cost constraints, maximizing the minimum load on any machine, and assigning specific or equal loads to unrelated
machines. More precisely, we present approximation schemes for the following problems:
• MkSCH: Multi-objective scheduling with the makespan objective and an arbitrary constant number of cost constraints.

The makespan of a schedule is the maximum load on any machine. A cost constraint a is defined in the following
way: the assignment of a job j to a machine i has, besides the processing time pij , a cost ca

ij . The objective is to find
a schedule of bounded makespan and costs.
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◦ SCHED (or M0SCH): The special case of MkSCH with no cost constraints. SCHED is the common scheduling
problem with the objective to minimize the makespan.

◦ GAP (or M1SCH): The case of MkSCH with 1 cost constraint. This problem, which is known as the generalized
assignment problem, has the objective to find a schedule of bounded makespan and cost.

◦ M2SCH: Similar to M1SCH but with 2 cost constraints.
• COV : The symmetric problem of SCHED, with the objective to maximize the minimum load of any machine.
• EXACT : The problem of assigning a specific load to every machine.
• EQUAL: The problem of minimizing the makespan when all machines must have equal load.

The approximation algorithms of this work are based on one of the foremost paradigms in the design of approx-
imation algorithms: a problem is first formulated as an integer program (IP), then a fractional solution is found for
the corresponding relaxed linear program (LP), and finally, the fractional solution is rounded to a feasible solution.
The specific algorithmic approach that we present, develops on the following principle, which we consider as the most
important contribution of this work: Before applying randomized rounding we identify the most critical decisions that
must be taken to solve the problem, and then each critical decision is either neutralized or a backup choice is provided
for it. If necessary, we correct after the rounding step any bad choices taken by the randomized procedure. We use
this principle to build rounding procedures, which we call combinatorial randomized rounding (CRR) procedures. The
CRR procedures achieve strong approximation ratios by neutralizing large coefficients that can make the deviation
bounds weaker.

The importance of using randomness not only in a blind but also in an intelligent way has recently been stressed in
the fields of heuristics [5] and approximation algorithms. A characteristic example is the use of randomization with two
or more choices that has been studied in several recent works [21,27]. Even though conventional randomized rounding
cannot be considered a completely blind rounding procedure, since it uses the fractional values of the variables to guide
the rounding process, we show with CRR that, for certain problem classes, improved approximations are achieved by
carefully guiding the rounding process.

The CRR rounding approach combines conventional randomized rounding with combinatorial and algorithmic
techniques. Linear programming techniques and standard combinatorial arguments are used to support the randomized
rounding procedure. Decision procedures are used to achieve tighter LP relaxations. Appropriate Hoeffding–Chernoff
bounds are applied to bound deviations and it is shown how to exploit their properties within a general randomized
rounding procedure. Finally, all CRR-based randomized algorithms of this work are derandomized with the method of
conditional probabilities [23], and yield deterministic algorithms of equivalent time complexity.

We would like to note that our work is reminiscent but different from the related work of Jansen and Porkolab in [17].
The CRR-based algorithms of this work focus on a carefully guided randomized rounding procedure. From [17], which
was the original motivation for this work, we draw some algorithmic machinery and the following critical idea: it is
possible to tolerate a number of corrections to the final approximate solution by applying an appropriate preprocessing
step at the start of the algorithm. While this idea is used in [17] in a deterministic context, we use it here to derive a
new way to amplify the performance of randomized rounding.

1.1. Preliminaries

Given a minimization (respectively, maximization) problem and a constant � > 0, a (1 + �) (respectively, 1 − �)
approximate solution x is a solution such that |OPT − Obj(x)|��OPT, where OPT is the optimal objective value and
Obj(x) is the objective value of x. A polynomial time approximation scheme (PTAS) for a minimization (respectively,
maximization) problem is an algorithm that for each � > 0, finds a (1 + �) (respectively, 1 − �) approximate solution
in time polynomial in the problem size N. A PTAS with running time polynomial on 1/�, is a fully polynomial time
approximation scheme (FPTAS). A relaxed decision procedure (RDP) is a polynomial time algorithm that accepts as
input a minimization (respectively, maximization) problem instance and a value T for the objective function, and either
finds a feasible solution with objective value at most (1 + �)T (respectively, at least (1 − �)T ), or decides that there is
no solution with objective value at most (respectively, at least) T. A RDP that is polynomial on 1/� is fully polynomial.
A randomized RDP (RRDP) is a randomized RDP, such that the probability that it fails to find a relaxed solution for
a feasible problem instance is strictly less than a given value � : 0 < ��1. Detailed definitions of approximation
schemes and a thorough presentation of their application in scheduling problems are given in [24].
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Fig. 1. Results of this work and related results.

1.2. Results and related work

Scheduling is an active, widely studied field [12,1,18,25,20]. Bicriteria scheduling has also been studied for example
in [26] and in more recent works like [2,3,20]. Problem SCHED is known to be NP-hard even for m = 2 [9]. The
proof is based on a reduction from Partition [9, Problem SP12]. Similar reductions can be used to show that GAP,
MkSCH, GOV, EXACT and EQUAL are also NP-hard for m = 2. A FPTAS for SCHED was given in [16], and later,
an interesting PTAS for SCHED was presented in [19]. The best known results for SCHED and GAP, are a linear time
FPTAS for SCHED and a linear time RDP decision procedure for GAP, given by Jansen and Porkolab in [17]. We
present the first, to our knowledge, FPTAS for the general MkSCH problem. While being simpler and more general, the
proposed algorithm matches the best known results for the specific cases of 0 (SCHED) or 1 (GAP) cost constraints.
The main results of this work and related known results are summarized in Fig. 1.

Problem COV or else maximizing the minimum machine completion time is a well known problem with applications
in sequencing of maintenance actions for modular gas turbine aircraft engines [8] and generally in systems that are
alive only when all machines are alive and the systems should be maintained alive as long as possible [4]. PTAS’s for
COV are presented in [28] for identical machines and in [4] for related machines. COV and on-line versions of COV
are studied in [6,14,13] for identical machines. The above algorithms are polynomial on m. We present the first, to
our knowledge, approximation of COV for (a fixed number of) unrelated machines. Scheduling unrelated machines
is a more general version of COV and we consider it interesting since it can handle collections of machines that are
related in an arbitrary, not necessarily linear, way. The complexity of the proposed algorithm is linear for the RDP and
quasi-linear for the FPTAS.

Finally we define problems EXACT and EQUAL, two hard combinatorial problems, which have more strict re-
quirements on the machine loads than MkSCH and COV. We present a RDP for EXACT and use it to build a PTAS
for EQUAL. The complexity of the presented algorithms is a high degree polynomial. However these approximation
schemes are, to our knowledge, the first PTAS’s for these problems.

1.3. Assumptions

We assume that the number of machines m is m�2. For maximization problems the error ratio parameter of the
approximation schemes � > 0 is necessarily always less than 1. We will assume that this also holds in the case
of minimization problems. This assumption is wlog and is done to simplify the calculation of certain error-related
coefficients that are used in the algorithms. Hence, we assume that in all approximation schemes the overall error ratio
parameter � is 0 < � < 1. In the approximation algorithms, the overall approximation ratio � is the aggregation of
several smaller approximation ratios �i . In order to be precise, we distinguish in the analysis each smaller ratio �i with
an index i. Fig. 2 provides a brief explanation of the error ratios �i in the different algorithms.
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Fig. 2. Error ratios.

The rest of this work is organized in the following way. Multi-objective scheduling MkSCH is discussed in Section 2.
The problem of maximizing the minimum load (COV) is discussed in Section 3. Problems EXACT and EQUAL are
discussed in Section 4. We conclude in Section 5 with a discussion.

2. Multi-objective scheduling

In this section, we consider problem MkSCH and show how a CRR-based fully linear time RDP can be built for it.
For simplicity, we illustrate our approach on problem M2SCH, the special case of MkSCH with k = 2 cost constraints,
and present algorithm A-M2SCH, a fully linear time RDP for M2SCH. Adapting A-M2SCH to handle problem SCHED
(M0SCH), GAP (M1SCH) or any other case of MkSCH is straightforward. We shortly discuss these adaptations and
compare the algorithms with the related results of [17] in Section 2.3.

Algorithm A-M2SCH is a fully linear time RRDP decision procedure for M2SCH. Given an instance of M2SCHED,
values � : 0 < ��1 and � : 0 < � < 1

2 and values T, C1, C2 then, if the combination T , C1, C2 is feasible, with
probability of success strictly larger than (1 − �), A-M2SCH produces a schedule of makespan at most (1 + �)T and
costs at most (1 + �)C1 and (1 + �)C2, respectively. The IP formulation of M2SCH is

Find [xij ] s.t. :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑n
j=1

∑m
i=1 ca

ij xij �Ca (a = 1, 2),∑m
j=1 pij xij �T (i = 1, . . . , m),∑m

i=1 xij = 1 (j = 1, . . . , n),

xij ∈ {0, 1} (i = 1, . . . , m; j = 1, . . . , n).

Algorithm A-M2SCH.
Input: An instance of M2SCH and values �, �, T, C1 and C2.
Step 0: Normalization. For i = 1, . . . , 6 let �i = �/9 = �(�). Let � = 3 ln((m + 2)/�)�−2

4 and scale the problem so
that T = C1 = C2 = �.

Step 1: Initializations. Let q = �3 (m+2)2 �−1
5 �� and ∀j, dj = mini{pij + c1

ij + c2
ij }. Check that

∑
j dj �(m+2) �,

else (T,C1,C2) is not feasible.
Step 2: Initial filtering. ∀i, j : if max{pij , c

1
ij , c

2
ij } > � then xij = 0.

Step 3: Large jobs. Let J� be the set of large jobs J� = {j | dj belongs to the q largest dj (ties are resolved arbitrarily)}.
Let � be the set of all possible assignments of the large jobs and let �2 be an appropriate subset �2 ⊆ �.

Step 4: Feasible fractional schedule.
∀ assignment � ∈ �2:
(1) Formulate the integer program IP-M2SCH(�).
(2) Relax IP-M2SCH(�) to the linear program LP-M2SCH(�).
(3) Find a fractional (1 + �3)-approximate solution to LP-M2SCH(�).
(4) If the fractional solution satisfies the relaxed problem, then select it and abandon the loop.
Let [xij ] be the feasible fractional solution that has been selected.
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Step 5: Combinatorial randomized rounding.
(1) If pij > 1 set pij = 1 and mark the coefficient pij . The same is done for large coefficients c1

ij > 1 and c2
ij > 1.

(2) Round the schedule [xij ] with exclusive randomized (XRR).
(3) Filtering: If a job j is randomly assigned to a marked coefficient pij or c1

ij or c2
ij , then call it “unlucky” and

remove it from the rounded schedule.
(4) Assign each unlucky job j to a machine mj = argmini{pij + c1

ij + c2
ij }.

Analysis of algorithm A-M2SCH: Given an instance of M2SCH, the machine load constraints are scaled with the
factor �/T and the two cost constraints are scaled with �/C1 and �/C2, respectively. This is done to simplify the
analysis. Now, the rhs of all constraints is �, and the objective is to find a schedule of makespan and costs at most
�. Note that a necessary condition for the combination of values (T , C1, C2) to be feasible is that in the normalized
problem:∑

j

dj �(m + 2) �. (1)

Step 2: Initial filtering. ∀i, j : if pij > � then xij = 0. This step makes the LP relaxation more tight and has no
impact on the feasibility of the problem.

Step 3: Large jobs. The number of large jobs is q = �3 (m+2)2 � �−1
5 � = O((m+2)2 ln((m+2)/�)�−3). Algorithm

A-M2SCH has to guess the assignment �∗ of the large jobs in an optimal solution. Since �∗ is not known in advance,
the algorithm examines possible assignments of the large jobs.

Approximate enumeration: The cardinality of the set � of all possible assignments of the large jobs to the machines
is mq , a constant that depends exponentially on 1/�. However, it is sufficient to examine only a substantially smaller
subset �2 ⊆ �, with cardinality polynomial on 1/�. We use a combination of two techniques T1 and T2 for approximate
enumeration of job assignments. A grouping technique of [16], which we call T1, is used to generate a number of
representative assignments exactly as it is used in [17]. Technique T1 reduces the maximum number of large job

assignments that have to be examined from mq to ((m + 2)q�−1
1 )m+2 = (m log(m/�)�−1)O(m). The running time for

T1 is (m log(m/�)�−1)O(m). For technique T1, the reader is referred to the enumeration technique in [17].
Technique T2: Technique T2 is a geometric grouping technique that partitions the interval [0, �] into geometrically

increasing sub-intervals: [0, �2�], (�2�, �2(1 + �2)�], (�2(1 + �2)�, �2(1 + �2)
2�], . . . , (�2(1 + �2)

E−1�, �], where

E =
⌈

log(1/�2)

log(1 + �2)
+ 1

⌉
. (2)

Any two assignments �, � ∈ � are considered to be in the same group, if for each machine i, their respective loads �i

and �i on machine i are in the same sub-interval. The outcome of T2 are at most Em+2 different assignments.
Since the quality of the approximations given by the algorithms in this work is measured with multiplicative error

factors, the geometric grouping technique T2 is by definition more effective than technique T1. However, while T1 can
be used to incrementally build assignments of large jobs, it seems that T2 can only be applied on complete assignments
of all large jobs. For this reason we first use T1 to incrementally generate a representative set �1 ⊆ � of large job
assignments, and then we apply T2 to select the final set �2 ⊆ �1. Applying T2 is very simple: for each assignment �
produced by T1, we check if no other assignment of the same T2 group has been produced earlier, and only then we
process �, while else we reject it. This check can be done in O(1) time using constant space O(Em+2). Using T2 on top
of T1, reduces the number of assignments that have to be examined by algorithm A-M2SCH to at most Em+2 without
any additional cost to the running time.

Lemma 1. The cardinality of �2 and the running time for generating it are O(Em+2) and (m log(m/�)/�)O(m),
respectively. Using �2 instead of � in algorithm A-M2SCH introduces at most an arbitrary small constant error factor
of (1 + �1) (1 + �2) to the final solution.

Since each assignment � will cost algorithm A-M2SCH linear time to process it, the application of T1 and T2
significantly reduces the coefficient of the linear time term n in the running time of A-M2SCH. With T2 we do not
avoid the cost of running technique T1, however, this cost is not introduced into the coefficient of the linear time term
n in the overall complexity of A-M2SCH.
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Step 4: Fractional schedule. Given an assignment � of the large jobs J�, the problem of assigning the remaining
jobs in an optimal way (to minimize the makespan and the costs) can be formulated as the following integer program
IP-M2SCH(�). Let �i be the load on machine i due to � and �a

c the cost on cost constraint a due to �.

min � s.t. :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�a
c +∑n

j=1
∑m

i=1 ca
ij xij �� (a = 1, 2),

�i +∑
j∈[n]−J�

pij xij �� (i = 1, . . . , m),∑m
i=1 xij = 1 (j ∈ [n] − J�),

xij ∈ {0, 1} (i = 1, . . . , m; j ∈ [n] − J�).

Relaxing the integrality constraints on the binary variables xij to xij �0, gives a corresponding linear program LP-
M2SCH(�). Let �∗ be the optimal objective value of LP-M2SCH(�∗) for the optimal assignment �∗. Assuming that
the combined values T, C1 and C2 are feasible for the problem instance gives that �∗ �OPT��. The linear program
LP-M2SCH has m variables for every job j, a packing constraint for the load of every machine i, and two packing
constraints for the costs. Hence the variables are grouped into n independent m-dimensional simplexes (blocks) and
there is a constant number of positive packing constraints (coupling constraints). As shown in [17], these properties can
be exploited by the logarithmic-potential-based price directive decomposition algorithm (LogPDD) of Grigoriadis and
Khachiyan [10], to efficiently approximate LP-M2SCH(�) within any constant factor (1+ �3). The following Theorem
follows from [10,17]:

Theorem 2. The linear program LP-M2SCH can be approximated with algorithm LogPDD within any constant ratio
(1 + �3) in O(n((m + 2)/�3)

2 ln((m + 2)/�3)) time.

Let [x̂ij ] be the approximate fractional solution found for the optimal assignment �∗ by algorithm LogPDD with
approximation ratio (1 + �3). If �3 is the objective value of [x̂ij ], then:

�∗a
c +

n∑
j=1

m∑
i=1

ca
ij x̂ij ��3 (a = 1, 2),

�∗
i + ∑

j∈[n]−J�

pij x̂ij ��3 (i = 1, . . . , m),

m∑
i=1

x̂ij = 1 (j ∈ [n] − J�),

x̂ij �0 (i = 1, . . . , m; j ∈ [n] − J�).

By the approximation guarantee of LogPDD and since �∗ ��, we get: �3 �(1+�3) �∗ �(1+�3) �. Since the assignment
�∗ is not known, the algorithm starts to calculate fractional schedules for assignments � ∈ � given by the enumeration
techniques of Lemma 1. Given any � ∈ �, the LogPDD algorithm finds an approximate fractional solution for LP-
M2SCH(�). The process continues until a fractional solution [xij ] is found, such that its objective value �3 satisfies:

�3 �(1 + �1) (1 + �2) (1 + �3) �. (3)

If no such fractional solution is found, the combination of input values T, C1 and C2 is infeasible for the problem
instance.

Step 5: Rounding. The fractional solution [xij ] is rounded to an approximate integer schedule [Xij ] with the following
standard RR procedure, which we call exclusive RR (XRR).

Definition 3 (XRR). For each job j independently, exactly one of the corresponding xij ’s is set to 1 and the rest to 0.
The probability of each xij to be rounded to 1 or 0, is determined by its fractional value:

Xij =
{

1 with probability xij ,

0 with probability 1 − xij .
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Let [Xij ] be the rounded schedule and let �4 be the objective value of [Xij ]. Let J be set of all jobs and let Js be
the set of all jobs except the large jobs Js = J\J�. The rounding procedure is equivalent to replacing all variables xij

that correspond to jobs j ∈ Js , with a corresponding Bernoulli trial Xij , such that E[Xij ] = xij . Now we can show
that, since at this step of the CRR-based algorithm all coefficients are equal or less to 1 and the rhs is at least �, the
deviation of the rounded solution can be bounded with a constant factor (1 + �4).

Rounded machine load constraints: For each machine i, the load 	i of i in the rounded schedule is equal to the
sum of a given positive value �i and the weighted sum of independent Bernoulli trials: 	i = �i +∑

j∈Js
pijXij . The

probability that 	i is larger than (1+ �4) �3 can be bounded with the following Hoeffding–Chernoff bounds that follow
from standard deviation bounds given for example in [23, Theorem 1, 11, p. 200, Theorem 2.3], and other references
given in [11].

Proposition 4. Let ��0 be an arbitrary real, and let X1, X2, . . . , Xn be independent random variables, such that, for
each j = 1, . . . , n, 0�Xj �1 and E[Xj ] = pj . Let 	 = � +∑r

j=1 Xj . Then E[	] = � +∑r
j=1 pj = �. Let � > 0,


 ∈ (0, 1), and � > 0. Then:

P [	 > (1 + �)�] < e−�2�/2(1+�/3) and P [	 > (1 + 
)�] < e−(1/3)
2�, (4)

P [	 < (1 − 
)�] < e−(1/2)
2
S. (5)

Proof. For � = 0 the above bounds follow directly from [11, p. 200, Theorem 2.3]. The fact that a part of 	 of size
� is deterministic can make the deviation bounds only stronger and hence we can ignore this fact. For completeness
we provide a proof: we first consider deviations above the mean value, and define B(S, �) = e−�2�/2(1+�/3). Let ��0,
	′ = ∑

j Xj and � = �′ +�. If 	 would contain no deterministic part, then for deviation � the bound would be B(S, �).
Assume a deviation ratio �′ for 	′ = 	 − � such that the absolute deviations for 	′ and 	 (with the assumption that
	 has no deterministic part) are equal �′�′ = ��. Then it is easy to show that B(�′, �′)�B(�, �) by first expanding and

then simplifying the expressions. Similarly, if we define C(�, �) = e−(1/2)
2� for deviations below the mean value, it is
easy to show that C(�′, �′)�C(�, �). �

Proposition 5. The probability that the load on any specific machine in the rounded solution is larger than (1+ �4) �3,
is strictly less than �/(m + 2).

Proof. Assume a specific machine i. For every job j = 1, . . . , n, the load due to job j on machine i, is Xj = pijXij .
The total load of machine i is the sum 	i = ∑n

j=1 Xj . The random variables Xj satisfy the conditions of Proposition
4 and hence we can apply the corresponding bound for deviations above the mean value for �4 < 1:

∀i: Pi = P[	i > (1 + �4)�3] < e−(1/3)�4
23 ln((m+2)/�)�−2

4 = �

m + 2
. � (6)

Rounded cost constraints: We have to address separately the deviation of the rounded cost constraints. The reason
is that the cost constraints are the weighted sum of all variables Xij . However, by definition, the variables Xij of the
XRR procedure that correspond to the same job j are not independent. Hence, the deviation bounds of Proposition 4
cannot be directly applied. We overcome this issue and obtain results equivalent to the results on the deviation of the
machine load constraints.

Proposition 6. The probability that the cost on any specific cost constraint in the rounded solution is larger than
(1 + �4)�3, is strictly less than �/(m + 2).

Proof. For cost constraint a and for every job j, let Xa
j be the cost induced by job j: Xa

j = ∑m
i=1 ca

ijXij on constraint a.

Note that Xa
j ∈ [0, 1] in the rounded schedule. For each constraint a, the variables Xa

j are independent discrete random

variables and the total cost of the random schedule on constraint a is Xa = ∑n
j=1 Xa

j . Hence the cost for each rounded

cost constraint a is the sum of independent discrete random variables satisfying the conditions of Proposition 4.
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We apply the corresponding deviation bound as in Proposition 5:

∀a: P a
c = P[	a

c > (1 + �4)�3] <
�

m + 2
. � (7)

Proposition 7. The probability that the objective value �4 of the rounded solution is �4 > (1 + �4)�3, is strictly less
than �.

Proof. The sum of all probabilities Pi , i = 1, . . . , m, and P a
c , a = 1, 2, is a sufficient bound on the probability that

the load of at least one rounded constraint in the rounded schedule is greater than (1 + �4)�3:

P [�4 > (1 + �4) �3] = P
[∃ i : 	i > (1 + �4) �3 OR ∃ a : 	a

c > (1 + �4) �3
]

�
∑
i

Pi +∑
a

P a
c < m�/(m + 2) + 2�/(m + 2) = �. �

Unlucky jobs: Let Ju be the set of all jobs j ∈ Js that have been randomly assigned to marked coefficients pij . We
call these jobs “unlucky” and remove them from the rounded schedule. To obtain the final schedule we assign every
unlucky job j ∈ Ju to a machine mj = argmini{pij +c1

ij +c2
ij }. Note the following very critical fact, which is exploited

by CRR: The number of unlucky jobs can bounded with a constant and hence their overhead is tolerable.

Proposition 8. If �4 is the objective value of the rounded solution, and �4 �(1 + �4) �3, then reassigning the unlucky
jobs costs at most a factor (1 + �5) to the objective value.

Proof. Since the objective value of the rounded solution is �4 and every unlucky job contributes at least 1 unit to at
least 1 problem constraint, the number |Ju| of unlucky jobs cannot exceed (m + 2) �4.

Each unlucky job is assigned to a machine i = argmini{pij + c1
ij + c2

ij }. We provide a combinatorial argument
similar to an argument used in [17] to show that

∑
j∈Ju

dj ��5 (1 + �1) (1 + �2) (1 + �3) (1 + �4) �. Assume to the
contrary that

∑
j∈Ju

dj > �5 (1 + �1) (1 + �2) (1 + �3) (1 + �4) �. Then, the largest dj of a job j ∈ Ju is at least:

maxj∈Ju{dj } > �5 / (m+2). However, then the sum of the dj ’s of the q largest jobs J� is:
∑

j∈J�
dj �q ·maxj∈Ju{dj } >

q �5 / (m + 2) = 3 (m + 2) �. This is a contradiction with Eq. (1). �

Overall approximation ratio: Let �5 be the objective value after reassigning the unlucky jobs. Then:

�5 ��
5∏

i=1
(1 + �i )�(1 + �) (1 + �6)

−1 �. (8)

Complexity: From Lemma 1, the number of assignments � of large jobs that have to be examined is O(Em+2) for
E = log(1/�)/ log(1+�)+1. The assignments can be generated in constant (m log(m/�)�−1)O(m) time. From Theorem
2, we know that for each �, the corresponding LP can be solved in linear O(nM2 ln M) time, where M = (m+ 2)�−1

3 .
Rounding and corrections can be done in linear O(mn) time. Therefore, the overall complexity of A-M2SCH is:

(m log(m/�)�−1)O(m) + nO(Em+2 M ln(M)), for M = (m + 2)�−1
3 . (9)

Proposition 9. Algorithm A-M2SCH is a linear time RRDP for M2SCH .

2.1. Derandomization

We show that algorithm A-M2SCH can be derandomized by applying the method of conditional probabilities with
the use of a pessimistic estimator. We first give a brief description of the general method and then we present a specific
pessimistic estimator for M2SCH. For a detailed description of the method of conditional probabilities and the use of
pessimistic estimators the reader is referred to [23,22].

In algorithm A-M2SCH the probability that the randomly rounded solution violates the approximation ratio is less
than a given constant �, and therefore less than 1. This fact is an existence proof for at least one rounded solution
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that satisfies the required approximation ratio. The method of conditional probabilities mimics this existence proof
to actually build such a rounded solution in a deterministic manner. More precisely, given a fractional solution for
M2SCH, the method assigns all jobs one by one to the machines. Each job assignment is done in such a way that, after
the assignment, the probability of failure for the remaining jobs, if they were assigned with XRR, does not increase.
The outcome of this procedure is a rounded solution with probability of failure (i.e., a violation of the approximation
ratio) less than 1, and hence it is a rounded solution that satisfies the approximation guarantee.

A pessimistic estimator: Instead of calculating the exact probability of failure at each step of the method of conditional
probabilities, it is sufficient to show that this probability is always strictly less than 1. A function U that is efficiently
computable, and that provides an upper bound on the probability of failure for each node of the decision tree that is visited
during the rounding procedure, is called a pessimistic estimator. Assume that the first j − 1 jobs have been assigned
to the machines m1, m2, . . . , mj−1, respectively. Then, the pessimistic estimator Uj(m1, m2, . . . , mj−1) is an upper
bound on the probability of failure for the subproblem of randomly assigning the remaining jobs. Thus, derandomization
with the method of conditional probabilities is essentially reduced to providing an appropriate pessimistic estimator.

Let [xij ] be a feasible fractional solution for an instance of A-M2SCH (for simplicity, we ignore the fact that, at this
step in algorithm A-M2SCH, a constant number of jobs, the large jobs, are already assigned):

m∑
i=1

n∑
j=1

ca
ij xij �� (a = 1, 2).

n∑
j=1

pij xij �� (i = 1, . . . , m),

m∑
i=1

xij = 1 (j = 1, . . . , n),

xij �0 (i = 1, . . . , m; j = 1, . . . , n).

Let [Xij ] be the randomly rounded solution obtained from [xij ], where the variables Xij are Bernoulli trials. In the
rounded solution, let 	i be the load of machine i, and let 	a

C be the cost for cost constraint a. Now, the probability
that the makespan and the costs of the rounded schedule do not exceed (1 + �)� can be bounded with the following
pessimistic estimator:

U = P

[
2∨

a=1

(
	a

C > (1 + �)�
) ∨

m∨
i=1

(	i > (1 + �)�)

]
�

2∑
a=1

P[	a
C > (1 + �)�] +

m∑
i=1

P[	i > (1 + �)�]. (10)

We first examine the machine load constraints. We will use Eq. (12), an intermediate result of the proof of Chernoff
bounds as it is given in [23, Theorem 1]. For completeness we include the proof of Eq. (12). For any machine i and any
positive real t:

P [	i > (1 + �)�] = P
[
et	i > et (1+�)�

]
< e−t (1+�)�E

[
et	i

]
, (11)

where the inequality follows from the Markov inequality. Now, since the variables are independent

P [	i > (1 + �)�] < e−t (1+�)�
n∏

j=1
(pj et�j + 1 − pj ). (12)

Using Eq. (12) gives for each i = 1, . . . , m and for any positive real t

Pi = P [	i > (1 + �)�] < e−t (1+�)�
n∏

j=1
(xij etpij + 1 − xij ) (13)

and this gives, for example, for machine i = 1

P1 < e−t (1+�)�
n∏

j=1
(x1j etp1j + 1 − x1j ). (14)
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When the procedure examines the first job j = 1

P1 < (x11etpi1 + x21 + · · · + xm1)e
−t (1+�)�

n∏
j=2

(x1j etp1j + 1 − x1j ). (15)

Similarly, we process the cost constraints. Using the arguments of Proposition 6 to obliterate the dependency issue of
the binary random variables xij we get for any cost constraint a and any positive real t:

P a
C = P [	a

C > (1 + �)�] = P
[
et	a

C > et (1+�)�
]

< e−t (1+�)�E
[
et	a

C

]
.

Since the variables Xa
j = ∑m

i=1 cijXij are independent

P a
C = P [	a

C > (1 + �)�] < e−t (1+�)�
n∏

j=1

(
m∑

i=1
xij etca

ij

)
. (16)

When focusing on the first cost constraint and on job j = 1 this gives

P 1
C < (x11etc1

11 + · · · + xm1etc1
m1)e−t (1+�)�

n∏
j=2

(
m∑

i=1
xij etc1

ij

)
. (17)

Hence at the start of the derandomized rounding procedure

U = U(root) = x11B1 + x21B2 + · · · + xm1Bm, (18)

where Bi , for i = 1, . . . , m, are numbers independent from all variables xi1, for i = 1, . . . , m. Since x11 + x21 + · · ·+
xm1 = 1, the pessimistic estimator U(root) is a convex combination of the numbers Bi . Consequently, the minimum of
the numbers Bi must satisfy mini (Bi)�U(root). We assign job j = 1 to a machine mj such that mj = argmini{Bi}.

The rounding procedure continues in the same way, by assigning one by one all unassigned jobs. It examines in turn
each job j (i.e., each set of variables {x1j , x2j , . . . , xmj }) and assigns it to the machine (i.e., it sets the corresponding
xij = 1 and the remaining m− 1 variables xij = 0), with the criterion to minimize, or at least not to increase, the value
of the function U. The outcome is a deterministic rounded schedule that satisfies the approximation guarantees of the
randomized rounding procedure.

Complexity: Assuming infinite precision for the computation of the exponentials, it is easy to show that the rounding
step with the method of conditional probabilities can be implemented in linear time. During the rounding procedure
we use the products:
• ∏n

j=l

(
xij etpij + 1 − xij

)
for i = 1, . . . , m and l = 1, . . . , n, and

• ∏n
j=l

(∑m
i=1 xij etca

ij

)
for l = 1, . . . , n and a = 1, 2.

We can for example calculate and store the values of all the above products. This requires the storage of a linear number
O(mn+kmn) of results, where k is the number of cost constraints. Using the stored results, the value of the pessimistic
estimator at each step of the rounding procedure can be calculated in constant time. Consequently, for M2SCH (and
all other algorithms presented in this work), rounding with a pessimistic estimator costs O(mn + kmn) time. This
time is clearly dominated in algorithm A-M2SCH by the time to calculate the appropriate fractional solution (Steps
0–4). Thus, the overall complexity of the derandomized algorithm is equivalent to the complexity of the corresponding
randomized algorithm.

Proposition 10. The derandomization of algorithm A-M2SCH yields algorithm Adet-M2SCH, a deterministic RDP for
M2SCH with the same asymptotic complexity as A-M2SCH.

2.2. Optimization versions

The RDPs for MkSCH problems can be used to build FPTAS for optimization versions of MkSCH. A common type
of MkSCH optimization problem is to minimize the makespan or one of the cost constraints for given bounds on the
other constraints. Another option is to minimize a linear combination of makespan and costs [26,17]. A recent approach
is to study the tradeoff between the different problem constraints [2,3]. We focus on problem M2SCH and discuss the
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case of minimizing makespan for given bounds on the two cost constraints. We will call this problem M2SCH-T. It is
straightforward to adapt this discussion for other cases of MkSCH optimization problems. We will use the following
property of combinatorial optimization problems:

Definition 11. A combinatorial optimization problem has the poly-bottleneck 2 property, if its optimal objective value
is always within a polynomial factor of one of its input items (weights).

Proposition 12. M2SCH-T has the poly-bottleneck property.

Proof. Let pmax be the maximum processing time that appears in an optimal solution to M2SCH-T. Then the makespan
of the optimal schedule is at least pmax and at most n pmax. There are at most m n different possibilities for pmax, since
pmax has to be one of the specified pij . �

Given a RDP decision procedure for a problem having the poly-bottleneck property, a two-phase binary search
procedure can efficiently solve corresponding optimization problems. In the first phase, a weight of the problem instance
that dominates the objective value is identified, and this weight is then used in the second phase to approximate the
objective value. Assume an instance of problem M2SCH-T and two given values C1 and C2 for the two cost constraints.
Then:
Binary Search Procedure (BS) for M2SCH-T
Weights: Let W be the set of numbers that contains all distinct values pij of the instance description. The cardinality

of W is w = |W |�mn. Sort the items of W in O(mn log(mn)) time and let the sorted list be: w1 < w2 < · · · < ww.
Phase 1: Indexed binary search.

Find the minimum index x : 1�x�w such that (T = nwx, C1, C2) is feasible for M2SCH-T. This requires at most
�log(mn)� search steps.

Phase 2: Standard binary search.
Find the minimum value t : wx � t < n wx such that (T = t, C1, C2) is feasible and t �OPT(1 + �6). This requires
at most �log(mn/�6)� search steps.
The binary search needs O(log(m�−1

6 n)) binary search steps and at each step it calls the RDP algorithm Adet-M2SCH.
Hence:

Corollary 13. Applying algorithm Adet-M2SCH O(log(m�−1
6 n)) times within an appropriate binary search procedure

gives a quasi-linear time FPTAS for M2SCH-T.

2.3. Problems SCHED, GAP and MkSCH

Algorithm A-M2SCH can be adapted for problems SCHED, GAP and generally for any MkSCH problem. We provide
information for these adaptations and compare the results with results of [17]. Let E = O(log(1/�) / log(1+ �) + 1).

Problem SCHED: For SCHED, the appropriate parameters are dj = mini pij , � = 3 ln(m/�)�−2
4 , and the number

of large jobs is q = �m2 �−1
5 ��. The complexity of the RDP A-SCHED is n · O(Em M ln(M)) for M = m�−1. The

optimization version of SCHED appears to be easier than the optimization versions of other MkSCH problems, because
the optimal makespan OPT can be bounded within the constant factor m. More precisely, it is easy to show that for
D = ∑

j dj , the optimal objective value OPT satisfies: D/m�OPT �D. Hence a binary search procedure using
A-SCHED can find an approximate solution after a constant number O(log(m/�6)) of binary search steps.

Problem GAP: The parameters are dj = mini{pij + cij }, � = 3 ln((m + 1)/�)�−2
4 and q = �2 (m + 1)2 �−1

5 ��. The
complexity of the RDP A-GAP is n · O(Em+1 M ln(M)), for M = (m + 1)�−1. Optimization versions can be handled
similarly to optimization versions of problem M2SCH.

Problem MkSCH: Let k be the number of cost constraints. Then the parameters are dj = mini{pij +∑
a ca

ij }, � =
3 ln((m+k)/�)�−2

4 and q = �(k+1) (m+1)2�−1
5 ��. The complexity of the RDP A-MkSCH is n ·O(Em+k M ln(M)),

for M = (m + k)�−1. Optimization versions can be handled similarly to optimization versions of problem M2SCH.

2 The term “bottleneck” has been used by Hochbaum and Schmoys in [15] for a class of graph optimization problems, where the value of the
optimal solution is always one of the (edge) weights in the original specification of the instance of the problem.
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Discussion: The CRR approach provides uniform FPTAS’s for the whole class of MkSCH problems. Fig. 1 shows
that the asymptotic complexity of SCHED and GAP is better than the corresponding results of [17], because the CRR-
based algorithms have to examine a smaller number of large job assignments. This holds, even though for problem
SCHED, the CRR-approach has to enumerate a greater number of large jobs than the corresponding algorithm in [17].
However, this superiority of the CRR approach is achieved with technique T2 which can also be applied to the results
of [17]. The most important advantage of the CRR approach is the rounding step, which
• is simple, since it is a standard randomized rounding procedure or the corresponding pessimistic estimator method,

and which
• is general, since it applies to the whole class of MkSCH problems.
Hence, the rounding step is simpler and more general then the rounding steps of the algorithms in [17], and this is
especially evident for the involved linear time rounding scheme for GAP in [17].

3. The covering (COV) problem

Given an instance of COV and a value T for the minimum makespan, the IP formulation of the decision version of
COV is:

Find x, s.t.:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
j=1 pij xij �T (i = 1, . . . , m),∑m
i=1 xij = 1 (j = 1, . . . , n),

xij ∈ {0, 1} (i = 1, . . . , m; j = 1, . . . , n).

We first present algorithm A-COV, a RRDP for COV, and then show how to build a FPTAS for COV. Algorithm A-COV
accepts an instance of COV, a value T and constants � : 0 < � < 1 and � : 0 < ��1, and if the value T is feasible,
then with probability of success strictly larger than (1 − �), it generates a schedule of minimum machine load at
least (1 − �)T .
Algorithm A-COV
Input: An instance of COV and values �, � and T.
Step 0: Normalization. For i = 1, . . . , 6, let �i = �/9 = �(�). Let � = 2 ln(m/�)�−2

4 and scale the problem with the
factor �/T .

Step 1: Initializations. Let q = �2m2�−1
5 ��.

Step 2: Initial filtering. For each pij > � set pij = �.
Step 3: Large coefficients and large jobs. Define an appropriate set J I

� of large jobs and let �2 be an appropriate set of
assignments of the large jobs.

Step 4: Feasible fractional assignment.
∀ assignment � ∈ �2:
(1) Formulate the corresponding covering problem as IP-COV(�).
(2) Relax IP-COV(�) to a linear program LP-COV(�).
(3) Find an approximate fractional schedule with algorithm A-Young.
(4) If the fractional schedule is feasible, then select it and abandon the loop.
Let [xij ] be the feasible fractional solution that has been selected.

Step 5: Combinatorial randomized rounding.
(1) Round [xij ] with XRR.
(2) With probability strictly larger than 1 − �, no constraint of type I is violated by a factor less than (1 − �4).
(3) Correct any constraint of type II that is violated, by moving at most � large jobs to the corresponding machine.
Analysis of algorithm A-COV : For � = 2 ln(m/�)�4

−2, the problem is normalized by multiplying it with the factor
�/T . The next step is to handle the very large coefficients pij > �. While in packing problems these coefficients are
wiped out, in covering problems we set them equal to pij = �. This has no impact on the feasibility of the covering
problem for objective value �. After this step, all coefficients pij > 1 are considered large. Let q = �2m2�−1

5 ��, let J
be the set of all jobs, and for each constraint i, let J i

� be the set of jobs that correspond to the large coefficients pij > 1
of the constraint. We distinguish two types of constraints:
• Type I: Constraints that have strictly less than q large coefficients.
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• Type II: Constraints with at least q large coefficients.
Step 3: Let J I

� be the union of all sets J i
� that correspond to constraints of type I. Hence J I

� is the set of all jobs that
correspond to large coefficients in constraints of type I. The cardinality of J I

� is |J I
� |�m q, a constant. Let � be the

set of all possible assignments � of the jobs in J I
� . Like in algorithm A-M2SCH, we examine only the assignments

� ∈ �2, a subset of �. The set �2 can be generated with adapted versions of techniques T1 and T2 of Section 2. Using
�2 instead of �1 introduces at most a factor (1 − �1)(1 − �2) to the objective function.

Step 4: Let �i be the load on machine i due to assignment � ∈ �2. Given any �, the problem of assigning the
remaining jobs is formulated as an integer program IP-COV(�):

Find x, s.t.:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈J\J I

�
pij xij �� − �i (i = 1, . . . , m),∑m

i=1 xij = 1 (j ∈ J\J I
� ),

xij ∈ {0, 1} (i = 1, . . . , m; j ∈ J\J I
� ).

Relaxing the integrality constraints on the variables xij and replacing every equality constraint with a pair of a
packing and a covering constraint gives the following linear program LP-COV(�):

Find x, s.t.:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈J\J I

�
pij xij �� − �i (i = 1, . . . , m),

1�
∑m

i=1 xij �1 (j ∈ J\J I
� ),

xij �0 (i = 1, . . . , m; j ∈ J\J I
� ).

The linear program LP-COV(�) has only positive coefficients and all its constraints are either packing or covering
constraints. This LP can be approximately solved with the RDP decision procedure for mixed packing and covering
problems given in [29] (we call it algorithm A-Young):

Corollary 14. Follows from Corollary 1 of [29]. The linear program LP-COV(�) (and LP-EXACT(�) in algorithm
A-EXACT of Section 4) can be approximated with algorithm A-Young within any constant ratio � in O(�−2mn) time.

If the input value T is feasible, then algorithm A-Young returns an approximately feasible fractional solution x̃ij :

[x̃ij ] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈J\J I

�
pij xij �� − �i (i = 1, . . . , m),

1�
∑m

i=1 xij �1 + �3 (j ∈ J\J I
� ),

xij �0 (i = 1, . . . , m; j ∈ J\J I
� ).

Algorithm A-COV starts to calculate fractional solutions for each assignment � ∈ �2 of the large jobs, until the first
approximately feasible fractional solution [x̃ij ] is found. If no such solution is found, then the input value T is infeasible
for the instance of COV. Let [x̃ij ] be an approximately feasible fractional solution. For each job j, the variables [x̃ij ]
are scaled appropriately so that

∑m
i=1 xij = 1. The outcome is a feasible fractional job assignment [xij ] of all jobs,

large and not-large, that satisfies:

[xij ] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
j=1 pij xij �� (1 + �3)

−1 (i = 1, . . . , m),∑m
i=1 xij = 1 (j = 1, . . . , n),

xij ∈ [0, 1] (i = 1, . . . , m; j = 1, . . . , n).

Step 5: Rounding with corrections. The solution [xij ] is rounded with standard XRR of Definition 3 to an integer
solution [Xij ].

Type I: Applying the deviation bound of Proposition 4 for deviations below the mean value gives that, with probability
strictly larger than 1 − �, none of the constraints of type I in [Xij ] is violated by a factor larger than (1 − �4).
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Type II: Given a rounded solution [Xij ], let i be a constraint of type II that is not satisfied, i.e.,
∑n

j=1 pij xij < �.
Then we call machine i an “unlucky” machine. By definition a constraint of type II has at least q large coefficients.
From all jobs j ∈ J i

� that are not assigned to i we select the jobs that have the smallest load in their current placement
in the rounded solution. These jobs are sufficient to cover the violated constraint. The parameters � and q are defined
so that for every such correction of a constraint of type II, the possible cost to any other constraint, due to removing
jobs from it, does not exceed �5 � / m.

In particular, for any violated constraint i of type II, let Zi
� be the minimum total cost to the rounded solution due to

moving jobs to machine i. We distinguish two cases:
Zi

� ��5 � / m ⇒ In this case we move the jobs to constraint i. The total cost for correcting all constraints of type II
that are violated is ��5 �.

Zi
� > �5 � / m ⇒ In this case the total load due to the initial assignment of all jobs in J i

� is larger then 2m� and hence
we can move a sufficient number of (at most �) jobs to the violated constraint i without causing any violation to
other constraints.
Hence, the cost for correcting all constraints of type II cannot not exceed �5�.
Approximation ratio: From the above discussion, if the input value T is feasible, the final objective value � satisfies:

��T (1 − �1) (1 − �2) (1 + �3)
−1 (1 − �4) (1 − �5) T �(1 − �) (1 − �6)

−1 T .
Complexity: The number of assignments � of large jobs that have to be examined is O(Em), for E = O(log(1/�)/

log(1 + �) + 1). The assignments can be generated in constant O((m log(m/�)�−1)O(m)) time. For each assignment �
the corresponding LP can be approximated in O(�−2

3 mn) time. Rounding and corrections can be done in linear O(mn)

time. Hence the overall complexity of A-COV is: O((m log(m/�)�−1)O(m)) + nO(Em �−2
3 m).

Proposition 15. Algorithm A-COV is a linear time RRDP for COV.

Similar to algorithm A-M2SCH in Section 2, algorithm A-COV can be derandomized with use of a pessimistic
estimator to reveal a corresponding deterministic linear time algorithm Adet-COV. Furthermore, it is easy to show that
COV has the poly-bottleneck property and hence algorithm Adet-COV can be used to build a quasi-linear time FPTAS
for COV.

Corollary 16. Applying algorithm Adet-COV O(log(m�−1
6 n)) times within a binary search procedure gives a quasi-

linear time FPTAS for COV.

4. Problems EQUAL and EXACT

In this section we present approximation schemes for problems EQUAL and EXACT. First we present algorithm
A-EXACT, a PTAS for problem EXACT, and then we use A-EXACT as a RDP to build a PTAS for EQUAL. The
algorithms apply brute-force processing for enumerating possible assignments to large coefficients and hence their
complexity is a high degree polynomial on n. Given an instance of EXACT and a vector [ti] for the machine loads, the
IP formulation of EXACT is:

Find x, s.t.:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
j=1 pij xij = ti (i = 1, . . . , m),∑m
i=1 xij = 1 (j = 1, . . . , n),

xij ∈ {0, 1} (i = 1, . . . , m; j = 1, . . . , n).

We consider the relaxed version of EXACT where the equality constraints can be violated by at most a given constant
factor. More precisely, algorithm A-EXACT accepts as input an instance of EXACT, constants � : 0 < ��1 and
� : 0 < ��1, and a vector [ti]. If the values [ti] are feasible, then with probability of success larger than (1 − �),
A-EXACT generates a schedule with load 	i on machine i: (1 − �/2)ti �	i �(1 + �/2)ti , for i = 1, . . . , m.
Algorithm A-EXACT
Input: An instance of EXACT, values �, � and a vector [ti].
Step 0: Normalization. Let �1 = �2 = �3 = �/8 = �(�). Let � = 2 ln(m/�)�−2

2 and scale each machine load constraint
of the problem with the factor �/ti .
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Step 1: Filtering. For each pij > �, set xij = 0.
Step 2: Large coefficients. Enumerate the feasible assignments (L1, L0) of jobs to large coefficients.
Step 3: Feasible fractional schedule. For every assignment (L1, L0):
(1) Formulate the integer program IP-EXACT(L1, L0) for assigning the remaining variables xij : (i, j) /∈ L.
(2) Relax IP-EXACT(L1, L0) to the linear program LP-EXACT(L1, L0).
(3) Calculate an approximate fractional solution with algorithm A-Young.
(4) If the solution [x̃ij ] is feasible, then select it and abandon the loop.
Step 4: Scaling. Scale the fractional solution [x̃ij ], so that for each j = 1, . . . , n, the corresponding constraint∑m

i=1 xij = 1 is satisfied.
Step 5: Randomized rounding. Round [xij ] with XRR.

Analysis of algorithm A-EXACT : The problem is first normalized with the factors �/ti , i = 1, . . . , m, so that the
objective is to find a schedule with load (approximately) � on all machines. In the initial filtering step, all very large
coefficients pij > � are excluded from the solution by setting the corresponding xij equal to 0. This has obviously no
impact on any solution of objective value �.

Step 2: Large coefficients Li . We focus on individual coefficients pij that are considered large, and enumerate the
possible assignments of values to the variables xij that correspond to these coefficients. The goal is that the rounding
step (Step 5 of A-EXACT) must concern only variables xij with coefficients pij �1. For each machine i, let Li be the
set of all pairs (i, j) that correspond to large coefficients pij : 1 < pij ��. Assume an assignment of binary values
{0, 1} to the variables xij that correspond to large coefficients Li , and let L1

i ⊆ Li be the set of pairs (i, j), such that
xij = 1, and L0

i ⊆ Li be the set of pairs (i, j), such that xij = 0. At most � jobs can be assigned to large coefficients
of machine i in a feasible solution. For each machine i, even if all its coefficients are large, there are not more than

(
n

r

)
�
(

nr

r!
)

= pi,r (n) = O(nr) (19)

sets L1
i ⊆ Li , when the cardinality of L1

i is |L1
i | = r for 0�r ��. The total number of sets L1

i ⊆ Li that correspond

to all feasible assignments to large coefficients for a specific machine, cannot be larger than the number of all possible
sets L1

i with cardinality 0� |L1
i |��:

�∑
r=0

(
n

r

)
�(� + 1)

(
nr

r!
)

= pi(n) = O(� n�). (20)

The total number p(n), of all feasible assignments of jobs to large coefficients for all machines, can be bounded with
a high degree polynomial on n:

p(n) =
m∏

i=1
pi(n) = O(�mnm�). (21)

Step 3: Fractional solution: For every possible assignment (L1, L0) of jobs to large coefficients, the problem of
assigning values to the remaining variables xij : (i, j) /∈ L is formulated as an integer program IP-EXACT(L1, L0):

Find x, s.t.:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑n
j=1 pij xij = � (i = 1, . . . , m),∑m
i=1 xij = 1 (j = 1, . . . , n),

xij ∈ {0, 1} (i = 1, . . . , m; j = 1, . . . , n),

xij = 1, (i, j) ∈ L1
i xij = 0, (i, j) ∈ L0

i .

The integer program IP-EXACT(L1, L0) is relaxed to a mixed packing and covering program LP-EXACT(L1, L0).
Like in Section 3, an approximately feasible fractional solution is found for the linear program LP-EXACT(L1, L0)
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with algorithm A-Young of [29]. Let �i be the load on machine i due to the assignment (L1, L0). If the value � is
feasible for the problem, then for at least one of the assignments (L1, L0) the corresponding fractional solution [x̃ij ]
satisfies:

[x̃ij ] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

���i +∑n
j=1 pij x̃ij �(1 + �1)� (i = 1, . . . , m),

1�
∑m

i=1 x̃ij �(1 + �1) (j = 1, . . . , n),

x̃ij ∈ [0, 1] (i = 1, . . . , m; j = 1, . . . , n).

Algorithm A-EXACT iteratively examines each possible assignment of jobs to large coefficients L1 and calculates
the corresponding fractional solution. The iteration continues, until the first fractional solution that satisfies the same
constraints as [x̃ij ] is found.

Step 4: Scaling. The solution [x̃ij ] is scaled so that all jobs are completely assigned. This introduces at most a factor
(1 + �1)

−1 to the approximation ratio. Let [xij ] be the scaled fractional solution. Then:

[xij ] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + �1)
−1�� ti +∑n

j=1 pij xij �(1 + �1)� (i = 1, . . . , m),∑m
i=1 xij = 1 (j = 1, . . . , n),

xij ∈ [0, 1] (i = 1, . . . , m; j = 1, . . . , n).

Step 5: Rounding. The fractional solution [xij ] is rounded with XRR to an integer schedule [Xij ]. Since the rounding
concerns only small coefficients pij �1, applying the deviation bounds of Proposition 4 gives that with probability
strictly larger than 1 − �, XRR does not introduce deviations by factors larger than (1 − �2) and (1 + �2), below and
above the fractional load, respectively. Consequently, if � is feasible, then, with probability strictly larger than 1 − �,
the final solution [Xij ] satisfies:

[Xij ] :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j=1 pijXij �(1 + �1)(1 + �2)� (i = 1, . . . , m),∑n
j=1 pijXij �(1 + �1)

−1(1 − �2)� (i = 1, . . . , m),∑m
i=1 Xij = 1 (j = 1, . . . , n),

Xij ∈ {0, 1} (i = 1, . . . , m; j = 1, . . . , n).

Complexity: Algorithm A-EXACT examines O(�mnm�) assignments. The time to process each assignment
is dominated by algorithm A-Young for the LP, which is O(m�−2

1 n). The overall complexity is O(m �m �−2

nm�+1).

Proposition 17. Algorithm A-EXACT is a RRDP for EXACT.

Algorithm A-EXACT can be derandomized with the use of a pessimistic estimator to produce a corresponding
deterministic polynomial time algorithm Adet-EXACT. The derandomization is similar to the approach used in Section
2.1 for algorithm A-M2SCH.

Problem EQUAL: It is easy to show that problem EQUAL has the poly-bottleneck property. Using this fact it should be
possible to apply a two-phase binary search procedure like the procedure in Section 2.2 to find an approximately feasible
solution with approximately minimum makespan. However, there is an important issue that needs to be addressed: the
range of objective values for which (the decision version of) EQUAL is feasible, might not be continuous or it might
even be empty.

Feasibility: Assume an instance of EQUAL and a specific objective value T that is examined during binary search. If
the objective value T is found to be not feasible, then this fact alone is not sufficient for the binary search procedure to
decide that the optimal objective value must be larger than T. We overcome this issue by adding a positive slack variable
s to all machine load constraints in the relaxed LP formulation of the decision version of EQUAL. The modified linear
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program LPs-EQUAL is:

Find x, s.t.:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

��
∑n

j=1 pij xij + s�� (i = 1, . . . , m),

1�
∑m

i=1 xij �1 (j = 1, . . . , n),

xij ∈ {0, 1} (i = 1, . . . , m; j = 1, . . . , n),

xij = 1, (i, j) ∈ L1
i xij = 0, (i, j) ∈ L0

i .

If there is an optimal objective value for the instance of EQUAL, let OPT be this value. The binary search procedure
searches for the smallest feasible makespan value T. The introduction of the slack parameter s to the LP formulation
causes any input value T, such that T �OPT , to be feasible for the above LP. More precisely, assume an objective
value T < OPT . Even if T is not feasible for the decision version of EQUAL, the linear program LPs-EQUAL is
feasible, since the positive slack variable s can take the value s = OPT −T . Consequently, the binary search procedure
can approximately converge to the optimal objective value. During binary search, the RDP procedure Adet-EXACT is
executed O(log(mn/�3)) times. If after O(log(mn/�3)) steps the binary procedure finds no feasible value T for problem
EQUAL, or if LPs-EQUAL is infeasible for a large enough value T = n maxi,j pij , then the specific instance of
EQUAL is infeasible.

Corollary 18. Applying algorithm Adet-EXACT within an appropriate binary search procedure gives a PTAS
for EQUAL.

5. Discussion

We present a framework for approximation schemes for a class of job assignment problems. 3 The key ingredient of
our approach is the combinatorial randomized rounding (CRR) technique, i.e., a class of carefully guided randomized
rounding procedures. The CRR approach does not depend on any particular problem structure and can find further
applications in:
• Problems with a constant number of constraints, where it is tractable to enumerate possible value assignments to

variables with large coefficients.
• Problems that admit fractional values for the variables with the largest coefficients. In this case, we can omit the costly

enumeration step and apply the remaining part of the rounding procedures. If, for example, it would be acceptable
for the largest jobs in MkSCH to be fractionally assigned in the final solution, then a CRR-based algorithm could
handle efficiently MkSCH for any, not necessarily fixed, number of machines m.

We would also like to note, that the randomized algorithms of this work can be efficiently implemented in parallel and
distributed settings.

The success of the CRR-based algorithmic techniques provides theoretical evidence for the following sound approach
for heuristics: given a hard problem, we can first identify a small number of critical decisions, and then solve for each
possible combination of these decisions, a corresponding, much easier, subproblem.
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