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a b s t r a c t

In the this paper, we establish sufficient conditions for the existence and nonexistence of
positive solutions to a general class of integral boundary value problems for a coupled
system of fractional differential equations. The differential operator is taken in the
Riemann–Liouville sense. Our analysis rely on Banach fixed point theorem, nonlinear
differentiation of Leray–Schauder type and the fixed point theorems of cone expansion and
compression of norm type. As applications, some examples are also provided to illustrate
our main results.
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1. Introduction

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modelling of
systems and processes in the fields of physics, chemistry, biology, economics, control theory, signal and image processing,
biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc. involves derivatives of fractional order.
Fractional differential equations also serve as an excellent tool for the description of hereditary properties of various
materials and processes. In consequence, the subject of fractional differential equations is gaining much importance and
attention. There are a large number of papers dealing with the existence or multiplicity of solutions or positive solutions of
initial or boundary value problem for some nonlinear fractional differential equations. For details and examples, see [1–8]
and the references therein. In [9–11], the authors have discussed the existence of positive solutions for boundary value
problem of nonlinear fractional differential equations. In [12], Feng et al. studied the existence and multiplicity of positive
solutions for the following higher-order singular boundary value problem of fractional differential equation:

Dαu(t)+ g(t)f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0
h(t)x(t)dt,

where D is the standard Riemann–Liouville fractional derivative of order n− 1 < α ≤ n, n ≥ 3, g ∈ C((0, 1), [0,+∞)) and
g may be singular at t = 0 or / and at t = 1, h ∈ L1[0, 1] is nonnegative, and f ∈ C([0, 1] × [0,+∞), [0,+∞)).

Recently, many people have established the existence and uniqueness for solutions of some systems of nonlinear
fractional differential equations, readers can see [13–20] and references cited therein. For example, Su [21] established
sufficient conditions for the existence of solutions for a two-point boundary value problem for a coupled system of fractional
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differential equations:
Dαu(t) = f (t, v(t),Dµv(t)),Dβv(t) = f (t, u(t),Dνu(t)), 0 < t < 1,
u(0) = u(1) = v(0) = v(1) = 0,

where 1 < α, β < 2, µ, ν > 0, α − ν ≥ 1, β − µ ≥ 1, f , g: [0, 1] × R × R → R are given functions, and D is the standard
Riemann–Liouville fractional derivative. Ahmad and Nieto [22] extended the results of [21] to a three-point boundary value
problem for the following coupled system of fractional differential equations:

Dαu(t) = f (t, v(t),Dµv(t)),Dβv(t) = f (t, u(t),Dνu(t)), 0 < t < 1,
u(0) = 0, u(1) = γ u(η), v(0) = 0, v(1) = γ v(η),

where 1 < α, β < 2, µ, ν, γ > 0, 0 < η < 1, α − ν ≥ 1, β − µ ≥ 1, γ ηα−1 < 1, γ ηβ−1 < 1, f , g: [0, 1] × R × R → R
are given continuous functions, and D is the standard Riemann–Liouville fractional derivative. Wang et al. [23] obtained
the existence and uniqueness of positive solution to nonzero boundary values problem for a coupled system of nonlinear
fractional differential equations:

Dαu(t) = f (t, v(t)),Dβv(t) = f (t, u(t)), 0 < t < 1,
u(0) = 0, u(1) = au(ξ), v(0) = 0, v(1) = bv(ξ),

where 1 < α, β < 2, 0 ≤ a, b ≤ 1, 0 < ξ < 1, f , g: [0, 1] × R × R → R are given functions, and D is the standard
Riemann–Liouville fractional derivative.

Motivated by the abovementioned works, we consider the existence and nonexistence of positive solutions to boundary
values problem for a coupled system of nonlinear fractional differential equations as follows:Dαu(t)+ a(t)f (t, v(t)) = 0,Dβv(t)+ b(t)g(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0
φ(t)u(t)dt, v(0) = 0, v(1) =

∫ 1

0
ψ(t)v(t)dt,

(1.1)

where 1 < α, β ≤ 2, a, b ∈ C((0, 1), [0,+∞)), φ,ψ ∈ L1[0, 1] are nonnegative and f , g ∈ C([0, 1] ×

[0,+∞), [0,+∞)), andD is the standard Riemann–Liouville fractional derivative. By applying Banach fixed point theorem,
nonlinear differentiation of Leray–Schauder type and the fixed point theorems of cone expansion and compression of norm
type, sufficient conditions for the existence and nonexistence of positive solutions to a general class of integral boundary
value problems for a coupled system of fractional differential equations are obtained. Furthermore, some example are also
provided to illustrate our main results.

2. Preliminaries

In this section, we introduce definitions and preliminary facts which are used throughout this paper.

Definition 2.1 (See [24,25]). The fractional integral of order qwith the lower limit a for a function f is defined as

Iqa+f (t) =
1

Γ (q)

∫ t

a
(t − s)q−1f (s)ds, t > a, q > 0, (2.1)

provided the right-hand side is pointwise defined on [a,∞), where g ∈ C[a, b] and Γ is the gamma function. For a = 0,
the fractional integral (2.1) can be written as Iα0+h(t) = h(t) ∗ ϕα(t), where ϕα(t) = tα−1/Γ (α) for t > 0 and ϕα(t) = 0 for
t ≤ 0.

Definition 2.2 (See [24,25]). Riemann–Liouville derivative of order q with the lower limit t0 for a function f : [a,∞) → R
can be written as

Dq
a+f (t) =

1
Γ (n − q)

dn

dtn

∫ t

a
(t − s)n−q−1f (s)ds, t > a, n − 1 < q < n.

Lemma 2.3 (Nonlinear Differentiation of Leray–Schauder Type, See [26]). Let E be a Banach space with C ⊆ E closed and convex.
Let U be a relatively open subset of C with 0 ∈ U and let T :U → C be a continuous and compact mapping. Then either

(a) the mapping T has a fixed point in U, or
(b) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λTu.

Lemma 2.4 (Fixed-Point Theorem of Cone Expansion and Compression of Norm Type, See [27]). Let P be a cone of real Banach
space E, and let Ω1 andΩ2 be two bounded open sets in E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Let operator A : P ∩ (Ω2 \Ω1) → P
be completely continuous operator. Suppose that one of the two conditions holds:
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(i) ‖Au‖ ≤ ‖u‖, for all u ∈ P ∩ ∂Ω1; ‖Au‖ ≥ ‖u‖, for all u ∈ P ∩ ∂Ω2;
(ii) ‖Au‖ ≥ ‖u‖, for all u ∈ P ∩ ∂Ω1; ‖Au‖ ≤ ‖u‖, for all u ∈ P ∩ ∂Ω2.
Then A has at least one fixed point in P ∩ (Ω2 \Ω1).

Now we present the Green’s function for system associated with boundary value problem (1.1).

Lemma 2.5 (See [12]).Assume that
 1
0 φ(t)t

α−1dt ≠ 1. Then for anyσ ∈ C[0, 1], the unique solution of boundary value problem
Dαu(t)+ σ(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0
φ(t)u(t)dt

is given by

u(t) =

∫ 1

0
G1α(t, s)σ (s)ds,

where

G1α(t, s) = G2α(t, s)+ G3α(t, s), (2.2)

G2α(t, s) =


tα−1(1 − s)α−1

− (t − s)α−1

Γ (α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1

Γ (α)
, 0 ≤ t ≤ s ≤ 1,

G3α(t, s) =
tα−1

1 −
 1
0 φ(t)t

α−1dt

∫ 1

0
φ(t)G2α(t, s)dt.

We call G(t, s) = (G1α(t, s),G1β(t, s)) the Green’s functions of the boundary value problem (1.1).

Lemma 2.6 (See [12]). If
 1
0 φ(t)t

α−1dt ∈ [0, 1), the function G1α(t, s) defined by (2.2) satisfies
(i) G1α(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G1α(t, s) > 0 for all t, s ∈ (0, 1);
(ii) G1α(t, s) ≤ G1α(s) for each t, s ∈ [0, 1], and mint∈[θ,1−θ ] G1α(t, s) ≥ γαG1α(s), where θ ∈ (0, 1/2) and

G1α(s) = G2α(s, s)+ G3α(1, s), γα = θα−1.

3. Existence and nonexistence of positive solutions

In this section, we will discuss the existence of positive solutions for boundary value problem (1.1).
First of all, we define the Banach space X = {u(t)|u(t) ∈ C[0, 1]} endowed with the norm ‖u‖X = maxt∈[0,1] |u(t)|,

Y = {v(t)|v(t) ∈ C[0, 1]} endowed with the norm ‖v‖Y = maxt∈[0,1] |v(t)|. For (u, v) ∈ X × Y , let ‖(u, v)‖X×Y =

max{‖u‖X , ‖v‖Y }. Clearly, (X × Y , ‖(u, v)‖X×Y ) is a Banach space. Define P = {(u, v) ∈ X × Y |u(t) ≥ 0, v(t) ≥ 0}, then
the cone P ⊂ X × Y . Let Jθ = [θ, 1 − θ ] for θ ∈ (0, 1/2) and

K =


(u, v) ∈ P,min

t∈Jθ
u(t) ≥ γα‖u‖,min

t∈Jθ
v(t) ≥ γβ‖v‖


,

Kr = {(u, v) ∈ K : ‖(u, v)‖ ≤ r}, ∂Kr = {(u, v) ∈ K : ‖(u, v)‖ = r}.
From Lemma 2.5 in Section 2, we can obtain the following lemma.

Lemma 3.1. Suppose that f (t, v) and g(t, u) are continuous, then (u, v) ∈ X × Y is a solution of BVP (1.1) if and only if
(u, v) ∈ X × Y is a solution of the integral equations

u(t) =

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds,

v(t) =

∫ 1

0
G1β(t, s)b(s)g(s, u(s))ds.

Let T : X × Y → X × Y be the operator defined as

T (u, v)(t) =

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds,

∫ 1

0
G1β(t, s)b(s)g(s, u(s))ds


=: (T1u(t), T2v(t)), (3.1)

then by Lemma 3.1, the fixed point of operator T coincides with the solution of system (1.1).

Lemma 3.2. Let f (t, v) and g(t, u) be continuous on [0, 1] × [0,+∞) → [0,+∞), then T : P → P and T : K → K defined
by (3.1) are completely continuous.
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Proof. Since Lemma 3.2 is similar to Lemma 3.2 in [22,23], we omit the proof Lemma 3.2. �

Theorem 3.3. Assume that a(t) and b(t) are continuous on (0, 1) → [0,+∞) and f (t, u) and g(t, v) are continuous on
[0, 1] × [0,+∞) → [0,+∞), and there exist two positive functions m(t), n(t) that satisfy

(A1) |f (t, v2)− f (t, v1)| ≤ m(t)|v2 − v1|, for t ∈ [0, 1], v1, v2 ∈ [0,∞),
(A2) |g(t, u2)− f (t, u1)| ≤ n(t)|u2 − u1|, for t ∈ [0, 1], u1, u2 ∈ [0,∞).

Then system (1.1) has a unique positive solution if

ρ =

∫ 1

0
G1α(s)a(s)m(s)ds < 1, θ =

∫ 1

0
G1β(s)b(s)n(s)ds < 1. (3.2)

Proof. For all (u, v) ∈ P , by the nonnegativeness of G(t, s) and a(t), b(t), f (t, v), g(t, u), we have T (u, v)(t) ≥ 0. Hence,
T (P) ⊂ P . From Lemma 2.6, we obtain

‖T1v2 − T1v1‖ = max
t∈[0,1]

|T1v2 − T1v1|

= max
t∈[0,1]

∫ 1

0
G1α(t, s)a(s)[f (s, v2(s))− f (s, v1(s))]ds


≤

∫ 1

0
G1α(s)a(s)m(s)ds‖v2 − v1‖ = ρ‖v2 − v1‖. (3.3)

Similarly,

‖T2u2 − T2u1‖ ≤ θ‖u2 − u1‖. (3.4)

From (3.3) to (3.4), we get

‖T (u2, v2)− T (u1, v1)‖ ≤ max(ρ, θ)‖(u2, v2)− (u1, v1)‖.

From Lemma 3.2, T is completely continuous, by Banach fixed point theorem, the operator T has a unique fixed point in P ,
which is the unique positive solution of system (1.1). This completes the proof. �

Theorem 3.4. Assume that a(t) and b(t) are continuous on (0, 1) → [0,+∞) and f (t, v) and g(t, u) are continuous on
[0, 1] × [0,+∞) → [0,+∞), and satisfy

(A3) |f (t, v(t))| ≤ c1(t)+ c2(t)|v(t)|,
(A4) |g(t, u(t))| ≤ d1(t)+ d2(t)|u(t)|,
(A5) C1 =

 1
0 G1α(s)a(s)c2(s)ds < 1, D1 =

 1
0 G1α(s)a(s)c1(s)ds < ∞,

(A6) C2 =
 1
0 G1β(s)b(s)d2(s)ds < 1, D2 =

 1
0 G1β(s)b(s)d1(s)ds < ∞.

Then the system (1.1) has at least one positive solution (u, v) in

Q =


(u, v) ∈ P|‖(u, v)‖ < min


D1

1 − C1
,

D2

1 − C2


.

Proof. Let Q = {(u, v) ∈ P|‖(u, v)‖ < r} with r = min(D1/(1 − C1),D2/(1 − C2)), define the operator T :Q → P as (3.1).
Let (u, v) ∈ Q , that is, ‖(u, v)‖ < r . Then

‖T1v‖ = max
t∈[0,1]

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds


≤

∫ 1

0
G1α(s)a(s)(c1(t)+ c2(t)|v(t)|)ds

≤

∫ 1

0
G1α(s)a(s)c1(t)ds +

∫ 1

0
G1(s)a(s)c2(t)ds‖v‖

= D1 + C1‖v‖ ≤ r.

Similarly, ‖T2u‖ ≤ r , so ‖T (u, v)‖ ≤ r , T (u, v) ⊆ Q . From Lemma 3.2, we have T :Q → Q is completely continuous.
Consider the eigenvalue problem

(u, v) = λT (u, v), λ ∈ (0, 1). (3.5)
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Under the assumption that (u, v) is a solution of (3.5) for a λ ∈ (0, 1), we have

‖u‖ = ‖λT1v‖ = λ max
t∈[0,1]

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds


<

∫ 1

0
G1α(s)a(s)(c1(t)+ c2(t)|v(t)|)ds

≤

∫ 1

0
G1α(s)a(s)c1(t)ds +

∫ 1

0
G1α(s)a(s)c2(t)ds‖v‖

= D1 + C1‖v‖ ≤ r.

Similarly, ‖v‖ = ‖λT2u‖ < r , so ‖(u, v)‖ < r , which shows that (u, v) ∉ ∂Q . By Lemma 2.3, T has a fixed point in Q . We
complete the proof of Theorem 3.4. �

In the following we need the following assumptions and some notations:

(B1) a, b ∈ C((0, 1), [0,+∞)), a(t) ≢ 0 and b(t) ≢ 0 on any subinterval of (0, 1), and 0 <
 1
0 G1α(s)a(s)ds < ∞ and

0 <
 1
0 G1β(s)b(s)ds < ∞, where G1α(s) and G1β(s) are defined in Lemma 2.6;

(B2) f , g ∈ C([0, 1] × [0,+∞), [0,+∞)), and f (t, 0) = 0 and g(t, 0) = 0 uniformly with respect to t on [0, 1];
(B3) µ, ν ∈ [0, 1), where µ, ν is defined as follows:

µ =

∫ 1

0
φ(t)tα−1dt and ν =

∫ 1

0
ψ(t)tβ−1dt.

Let

f δ = lim sup
u→δ

max
t∈[0,1]

f (t, u)
u

, fδ = lim inf
u→δ

min
t∈[0,1]

f (t, u)
u

,

where δ denotes 0 or ∞, and

σ1 =

∫ 1

0
G1α(s)a(s)ds, σ2 =

∫ 1

0
G1β(s)b(s)ds.

Theorem 3.5. Assume that (B1) –(B3) hold. And supposes that one of the following conditions is satisfied:

(H1) f0 > 1/

γ 2
α

 1−θ
θ

G1α(s)a(s)ds

and f ∞ < 1/σ1 (particularly, f0 = ∞ and f ∞

= 0);

g0 > 1/

γ 2
β

 1−θ
θ

G1β(s)b(s)ds

and g∞ < 1/σ2 (particularly, g0 = ∞ and g∞

= 0).
(H2) there exist two constants r2, R2 with 0 < r2 ≤ R2 such that f (t, ·) and g(t, ·) are nondecreasing on [0, R2] for all

t ∈ [0, 1], f (t, γαr2) ≥ r2/

γα

 1−θ
θ

G1α(s)a(s)ds

, g(t, γβr2) ≥ r2/


γβ

 1−θ
θ

G1β(s)b(s)ds

, and f (t, R2) ≤ R2/σ1,

g(t, R2) ≤ R2/σ2 for all t ∈ [0, 1].

Then boundary value problem (1.1) has at least one positive solution.

Proof. Let T be cone preserving completely continuous that is defined by (3.1).
Case 1. The condition (H1) holds. Considering f0 > 1/


γ 2
α

 1−θ
θ

G1α(s)a(s)ds

, there exists r1 > 0 such that f (t, v) ≥

(f0 − ε1)v, for all t ∈ [0, 1], v ∈ [0, r1], where ε1 > 0, satisfies (f0 − ε1)γ
2
α

 1−θ
θ

G1α(s)a(s)ds ≥ 1. Then, for t ∈ [0, 1],
(u, v) ∈ ∂Kr1 , we get

T1v(t) =

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds

≥ γα

∫ 1

0
G1α(s)a(s)f (s, v(s))ds

≥ γα

∫ 1

0
G1α(s)a(s)(f0 − ε1)v(s)ds

≥ (f0 − ε1)γ
2
α

∫ 1

0
G1α(s)a(s)ds‖v‖ ≥ ‖v‖.

Similarly, we have T2u(t) ≥ ‖u‖, that is (u, v) ∈ ∂Kr1 implies that

‖T (u, v)‖ ≥ ‖(u, v)‖. (3.6)
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On the other hand, for f ∞ < 1/σ1, there exists R1 > 0 such that f (t, v) ≤ (f ∞
+ ε2)v, for t ∈ [0, 1], v ∈ (R1,+∞),

where ε2 > 0 satisfies σ1(f ∞
+ ε2) ≤ 1. Set M = maxt∈[0,1],v∈[0,R1] f (t, v), then f (t, v) ≤ M + (f ∞

+ ε2)v.
Choose R1 > max{r1, R1,Mσ1(1 − σ1(f ∞

+ ε2))
−1

}. Then, for t ∈ [0, 1], (u, v) ∈ ∂KR1 , we get

T1v(t) =

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds

≤

∫ 1

0
G1α(s)a(s)f (s, v(s))ds

≤

∫ 1

0
G1α(s)a(s)(M + (f ∞

+ ε2)v(s))ds

≤ M
∫ 1

0
G1α(s)a(s)ds + (f ∞

+ ε2)

∫ 1

0
G1α(s)a(s)ds‖v‖

< R1 − σ1(f ∞
+ ε2)R1 + (f ∞

+ ε2)σ1‖v‖ ≤ R1.

Similarly, we have T2u(t) < R1, that is (u, v) ∈ ∂KR1 implies that

‖T (u, v)‖ < ‖(u, v)‖. (3.7)

Case 2. The condition (H2) holds. For (u, v) ∈ K , from the definition of K , we obtain that mint∈Jθ u(t) ≥ γα‖u‖,
mint∈Jθ v(t) ≥ γβ‖v‖. Therefore, for (u, v) ∈ ∂Kr2 , we have ‖(u, v)‖ = r2 for t ∈ Jθ . From (H2), we have

T1v(t) =

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds

≥ γα

∫ 1−θ

θ

G1α(s)a(s)f (s, v(s))ds

≥ γα
r2

γα
 1−θ
θ

G1α(s)a(s)ds

∫ 1−θ

θ

G1α(s)a(s)ds = r2.

Similarly, we have T2u(t) ≥ r2, that is (u, v) ∈ ∂Kr2 implies that

‖T (u, v)‖ ≥ ‖(u, v)‖. (3.8)

On the other hand, for (u, v) ∈ ∂KR2 , we have that (u, v) = R2 for t ∈ [0, 1], from (H2), we obtain

T1v(t) =

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds

≤

∫ 1

0
G1α(s)a(s)f (s, v(s))ds

≤
R2

σ1

∫ 1

0
G1α(s)a(s)ds = R2.

Similarly, we have T2u(t) ≤ R2, that is (u, v) ∈ ∂KR2 implies that

‖T (u, v)‖ ≤ ‖(u, v)‖. (3.9)

Applying Lemma 2.4 to (3.6) and (3.7), or (3.8) and (3.9), yields that T has a fixed point (u, v) ∈ K r,R or (u, v) ∈ K ri,Ri(i =

1, 2) with u(t) ≥ γα‖u‖ > 0 and v(t) ≥ γβ‖v‖ > 0, t ∈ [0, 1]. Thus it follows that boundary value problems (1.1) has a
positive solution (u, v). We complete the proof of Theorem 3.5. �

Similarly, we have the following result.

Theorem 3.6. Assume that (B1) –(B3) hold. And supposes that the following conditions is satisfied:

(H3) f 0 < 1/σ1 and f∞ > 1/

γ 2
α

 1−θ
θ

G1α(s)a(s)ds

(particularly, f 0 = 0 and f∞ = ∞);

g0 < 1/σ2 and g∞ > 1/

γ 2
β

 1−θ
θ

G1β(s)b(s)ds

(particularly, g0

= 0 and g∞ = ∞).

Then boundary value problem (1.1) has at least one positive solution.
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Theorem 3.7. Assume that (B1) –(B3) hold. And supposes that the following two conditions are satisfied:

(H4) f0 > 1/

γ 2
α

 1−θ
θ

G1α(s)a(s)ds

and f∞ > 1/


γ 2
α

 1−θ
θ

G1α(s)a(s)ds

(particularly, f0 = f∞ = ∞);

g0 > 1/

γ 2
β

 1−θ
θ

G1β(s)b(s)ds

and g∞ > 1/


γ 2
β

 1−θ
θ

G1β(s)b(s)ds

(particularly, g0 = g∞ = ∞).

(H5) there exists b > 0 such that maxt∈[0,1],(u,v)∈∂Kb f (t, v) < b/σ1 and maxt∈[0,1],(u,v)∈∂Kb f (t, u) < b/σ2.

Then boundary value problem (1.1) has at least two positive solutions (u1, v1), (u2, v2), which satisfy

0 < ‖(u1, v1)‖ < b < ‖(u2, v2)‖. (3.10)

Proof. We consider condition (H4). Choose r, R with 0 < r < b < R. If f0 > 1/

γ 2
α

 1−θ
θ

G1α(s)a(s)ds


and g0 >

1/

γ 2
β

 1−θ
θ

G1β(s)b(s)ds

, then similar to the proof of (3.6), we have

‖T (u, v)‖ ≥ ‖(u, v)‖, for (u, v) ∈ ∂Kr . (3.11)

If f∞ > 1/

γ 2
α

 1−θ
θ

G1α(s)a(s)ds

and g∞ > 1/


γ 2
β

 1−θ
θ

G1β(s)b(s)ds

, then similar to the proof of (3.6), we have

‖T (u, v)‖ ≥ ‖(u, v)‖, for (u, v) ∈ ∂KR. (3.12)

On the other hand, together with (H5), (u, v) ∈ ∂Kb, we have

T1v(t) =

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds

≤

∫ 1

0
G1α(s)a(s)f (s, v(s))ds

<
b
σ1

∫ 1

0
G1α(s)a(s)ds = b.

Similarly, we have T2u(t) < b, that is (u, v) ∈ ∂Kb implies that

‖T (u, v)‖ < ‖(u, v)‖. (3.13)

Applying Lemma 2.4 to (3.11)–(3.13) yields that T has a fixed point (u1, v1) ∈ ∂K r,b, and a fixed point (u2, v2) ∈ ∂K b,R.
Thus it follows that boundary value problem (1.1) has at least two positive solutions (u1, v1) and (u2, v2). Noticing (3.13),
we have ‖(u1, v1)‖ ≠ b and ‖(u2, v2)‖ ≠ b. Therefore (3.10) holds, and the proof is complete. �

Similarly, we have the following results.

Theorem 3.8. Assume that (B1) –(B3) hold. And supposes that the following conditions is satisfied:
(H6) f 0 < 1/σ1 and f ∞ < 1/σ1; g0 < 1/σ2 and g∞ < 1/σ2.
(H7) there exists B > 0 such that

max
t∈Jθ ,(u,v)∈∂KB

f (t, v) > B/

γα

∫ 1−θ

θ

G1α(s)a(s)ds


and max
t∈Jθ ,(u,v)∈∂KB

g(t, u) > B/

γβ

∫ 1−θ

θ

G1β(s)b(s)ds

.

Then boundary value problem (1.1) has at least two positive solutions (u1, v1), (u2, v2), which satisfy

0 < ‖(u1, v1)‖ < B < ‖(u2, v2)‖.

Theorem 3.9. Assume that (B1) –(B3) hold. If there exist 2l positive numbers dk,Dk, k = 1, 2, . . . , l with d1 < γαD1 < D1 <
d2 < γαD2 < D2 < · · · < dl < γαDl < Dl and d1 < γβD1 < D1 < d2 < γβD2 < D2 < · · · < dl < γβDl < Dl such that

(H8) f (t, v) ≥ dk/

γα

 1
0 G1α(s)a(s)ds


for (t, v) ∈ [0, 1] × [γαdk, dk] and f (t, v) ≤ σ−1

1 Dk for (t, v) ∈ [0, 1] × [γαDk,Dk],
k = 1, 2, . . . , l;
g(t, u) ≥ dk/


γβ

 1
0 G1β(s)b(s)ds


for (t, u) ∈ [0, 1]× [γβdk, dk] and g(t, u) ≤ σ−1

2 Dk for (t, u) ∈ [0, 1]× [γβDk,Dk],
k = 1, 2, . . . , l.

Then boundary value problem (1.1) has at least l positive solutions (uk, vk) satisfying dk ≤ ‖(uk, vk)‖ ≤ Dk, k = 1, 2, . . . , l.

Theorem 3.10. Assume that (B1) –(B3) hold. If there exist 2l positive numbers dk,Dk, k = 1, 2, . . . , l with d1 < D1 < d2 <
D2 < · · · < dl < Dl such that
(H9) f (t, ·) and g(t, ·) are nondecreasing on [0,Dl] for all t ∈ [0, 1].
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(H10) f (t, γαdk) ≥ dk/

γα

 1−θ
θ

G1α(s)a(s)ds

, and f (t,Dk) ≤ σ−1

1 Dk, k = 1, 2, . . . , l;

g(t, γβdk) ≥ dk/

γβ

 1−θ
θ

G1β(s)b(s)ds

, and g(t,Dk) ≤ σ−1

2 Dk, k = 1, 2, . . . , l.

Then boundary value problem (1.1) has at least l positive solutions (uk, vk) satisfying dk ≤ ‖(uk, vk)‖ ≤ Dk, k = 1, 2, . . . , l.

Now the nonexistence of positive solutions for boundary value problem (1.1).

Theorem 3.11. Assume that (B1) –(B3) hold, and f (t, v) < σ−1
1 v and g(t, u) < σ−1

2 u for all t ∈ [0, 1], u > 0, v > 0, then
boundary value problem (1.1) has no positive solution.

Proof. Assume to the contrary that (u, v) is a positive solution of the boundary value problem (1.1). Then (u, v) ∈ K ,
u(t) > 0 and v(t) > 0 for t ∈ (0, 1), and

‖u‖ = max
t∈[0,1]

|u(t)| = max
t∈[0,1]

∫ 1

0
G1α(t, s)a(s)f (s, v(s))ds

≤

∫ 1

0
G1α(s)a(s)f (s, v(s))ds

<

∫ 1

0
G1α(s)a(s)

‖v‖

σ1
ds =

1
σ1

∫ 1

0
G1α(s)a(s)ds‖v‖ = ‖v‖.

Similarly, ‖v‖ < ‖u‖, which is a contradiction, and Theorem is received. �

Similarly, we have the following result.

Theorem 3.12. Assume that (B1) –(B3) hold, and

f (t, v) > v/


γ 2
α

∫ 1−θ

θ

G1α(s)a(s)ds


and g(t, u) > u/

γ 2
β

∫ 1−θ

θ

G1β(s)b(s)ds


for all t ∈ [0, 1], u > 0, v > 0, then boundary value problem (1.1) has no positive solution.

4. Some examples

Example 4.1. Consider the system of nonlinear fractional differential equations:
D

7
4 u(t)+

t
1 + t

| sin v(t)| = 0,D
7
4 v(t)+

t
1 + t

| sin u(t)| = 0, 0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0
tu(t)dt, v(0) = 0, v(1) =

∫ 1

0
tv(t)dt.

(4.1)

Set x(t), y(t) ∈ [0,+∞) and t ∈ [0, 1], then we have t
1 + t

| sin x(t)| −
t

1 + t
| sin y(t)|

 ≤
t

1 + t
|x(t)− y(t)|.

Therefore,

ρ =

∫ 1

0
G1α(s)a(s)m(s)ds ≤

∫ 1

0
G1α(s)ds ≈ 0.892377 < 1,

θ =

∫ 1

0
G1β(s)b(s)n(s)ds ≤

∫ 1

0
G1β(s)ds ≈ 0.892377 < 1.

With the use of Theorem 3.3, BVP (4.1) has a unique positive solution.

Example 4.2. Consider the system of nonlinear fractional differential equations:D
7
4 u(t)+ [v(t)]a = 0,D

7
4 v(t)+ [u(t)]b = 0, 0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0
tu(t)dt, v(0) = 0, v(1) =

∫ 1

0
tv(t)dt.

(4.2)

Let f (t, v) = va and g(t, u) = ub, 0 < a, b < 1. It is easy to see that (B1)–(B3) hold. By simple computation, we have
f0 = g0 = ∞ and f ∞

= g∞
= 0. Thus it follows that problem (4.2) has a positive solution by (H1).



296 W. Yang / Computers and Mathematics with Applications 63 (2012) 288–297

Example 4.3. Consider the system of nonlinear fractional differential equations:D
7
4 u(t)+ [v(t)]c = 0,D

7
4 v(t)+ [u(t)]d = 0, 0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0
tu(t)dt, v(0) = 0, v(1) =

∫ 1

0
tv(t)dt.

(4.3)

Let f (t, v) = vc and g(t, u) = ud, 1 < c, d < ∞. It is easy to see that (B1)–(B3) hold. By simple computation, we have
f 0 = g0

= 0 and f∞ = g∞ = ∞. Thus it follows that problem (4.3) has a positive solution by (H3).

Example 4.4. Consider the system of nonlinear fractional differential equations:
D

7
4 u(t)+ a(t)

(2[v(t)]2 + v(t))(20 + sin v(t))
v(t)+ 1

= 0,D
7
4 v(t)+ b(t)

(2[u(t)]2 + u(t))(20 + sin u(t))
u(t)+ 1

= 0,

0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0
tu(t)dt, v(0) = 0, v(1) =

∫ 1

0
tv(t)dt.

(4.4)

Let f (t, v) = (2v2 + v)(20 + sin v)/(v + 1) and g(t, u) = (2u2
+ u)(20 + sin u)/(u + 1). It is easy to see that (B1)–(B3)

hold. By simple computation, we have f 0 = g0
= f0 = g0 = 20, f ∞

= g∞
= 43, f∞ = g∞ = 38, and 20v < f (t, v) < 43v,

20u < g(t, u) < 43u.

(i) Let a(t) = b(t) = 1/40, from Example 4.1, we have σ1 = σ2 ≈ 0.0223094, f (t, v) < 43v < σ−1
1 v ≈ 44.8241v and

g(t, u) < 43uσ−1
2 u ≈ 44.8241u Thus, by Theorem 3.11, the boundary value problem (4.4) has no positive solution.

(ii) Choose θ = 1/3 and a(t) = b(t) = 1, then f (t, v) > 20v > v/

γ 2
α

 1−θ
θ

G1α(s)a(s)ds


≈ 15.8688v and

g(t, u) > 20u > u/

γ 2
β

 1−θ
θ

G1β(s)b(s)ds


≈ 15.8688u. Thus, by Theorem 3.12, the boundary value problem (4.4)
has no positive solution.
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