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Summary

Sox2 is an important transcriptional regulator in embryonic

and adult stem cells [1–4]. Recently, Sox2 was identified as
an oncogene in many endodermal cancers, including colon

cancer [5–8]. There is great interest in how Sox2 cooperates
with other transcription factors to regulate stemcell renewal,

differentiation, and reprogramming [9]. However, we still
lack a general understanding of Sox2 transcriptional

action. To determine transcriptional partners of Sox2 in
adult cells, we generated mice where gene expression could

be induced by an externally applied stimulus. We analyzed
the consequences in the intestine where cell turnover is

rapid. Sox2 expression, but not Oct4, specifically increased
the numbers of stem cells and repressed Cdx2, a master

regulator of endodermal identity. In vivo studies demon-
strated that Sox21, another member of the SoxB gene family,

was a specific, immediate, and cell-autonomous target of

Sox2 in intestinal stem cells. In vitro experiments showed
that Sox21 was sufficient to repress Cdx2 in colon cancer

cells and in pluripotent stem cells. Sox21 was also specifi-
cally induced by Sox2 in fibroblasts and inhibition of

Sox21 blocked reprogramming to the pluripotent state.
These results show that transcriptional induction of Sox21

is a rapid and general mediator of the effects of Sox2 on
cell identity in a wide range of cell types.

Results and Discussion

Inducing Sox2 in the Adult Intestine

To study the function of Sox2 in adult tissues, we employed an
inducible overexpression strategy [10]. We focused on the
intestine because the short life-cycle of differentiated cells
allows rapid analysis of tissue homeostasis [11].

Morphological changes were observed in the intestine
following 2-day Sox2 induction (Figure 1A; see Figure S1A
available online). When the bromodeoxyuridine (BrdU) analog
ethynyl-20-deoxyuridine (EdU) was administered for 3 hr on
day 2 of DOX treatment, an increase in the number of prolifer-
ating cells was observed (Figures 1A, 1C0, and 1D). The
majority of EdU labeled cells were Sox2-positive (Figure 1D)
and crypts became morphologically expanded (Figures
1C–1C00; Figure S1A).

When a pulse of EdU labelingwas followedby a 3-day chase,
EdU-positive cells were found throughout the villi (Figures 1F
*Correspondence: ronald.mckay@libd.org
and 1F0). EdU was observed in Villin+ absorptive cells, DBA+

goblet cells, Lysozyme+ Paneth cells, and Serotonin+ enter-
oendocrine cells (Figures S1F–S1I). These data suggest that
Sox2 stimulates the proliferation of precursor cells that subse-
quently differentiate into the major cell types of the intestine.
There are two populations of proliferating cells in the intes-

tine, transit amplifying progenitors (TAP), and intestinal stem
cells (ISCs) [12]. Prominin1 (Prom1) marks both populations
whereas Lgr5 is expressed in ISCs [13, 14]. Upon Sox2 induc-
tion, Prom1 expression was markedly extended toward the
crypt-villus boundary (Figures 1G and G0). Lgr5-GFP positive
cells were also dramatically expanded (Figures 1A, 1H, and
1H0). Neither Lgr5+ nor Prom1+ cells were detected in the villi.
The coexpression of EdU and Sox2 in the nuclei of Lgr5-
GFP+ cells suggests that Sox2 directly affects the number
and location of ISCs (Figure 1D).
Paneth cells provide niche signals for ISCs [15]. Sox2-acti-

vated, proliferating Lgr5-positive cells were seen that had no
direct contact with Lysozyme+ Paneth cells but these ectopic
cells were restricted to the crypt (Figure 1E). These results
show that the induction of Sox2 is associated with a disruption
in the signaling that normally restricts Lgr5 to the base of the
crypt but differentiation in the villi is accompanied by downre-
gulation of Lgr5.
Wnt signaling is important for maintaining stem and progen-

itor cells in the intestine [12, 16–18] and Lgr5was recently iden-
tified as a coreceptor for Frizzled/Lrp Wnt receptor [19]. Wnt
targets, including Lgr5, Myc, CD44, Ephb2, and cyclinD1,
were upregulated on day 2 of Sox2 induction (Figure S1B).
CD44, which is normally restricted to the crypt [17], was
present throughout the crypt-villus unit after induction of
Sox2 (Figure S1C). Olfm4, another marker of intestinal stem
cells [20], was also dramatically upregulated (data not shown).
EphB2 and EphB3 receptors are expressed in the crypts,

whereas the ephrin ligands are expressed in the villi [21, 22].
Upon Sox2 induction, EphB2 was upregulated in the villus
and Ephrin B1 staining extended into the crypt (Figures S1D
and S1E). Thus, Sox2 induction disrupts some features of the
crypt-villus organization but maintains the crypt as the main
site of cell proliferation.

Distinct Effects of Sox2 and Oct4 on Intestinal Precursor
Cells

Previous studies with TetON-Oct4 mice showed increased
proliferation in the intestine but did not specifically define the
proliferating cells [10]. Consistent with published data, a clear
proliferative response was seen after 2 days of DOX treatment
in TetON-Oct4mice (Figures S2A–S2C). The presence of many
EdU labeled cells in the neck of the crypt after Oct4 induction
and the elevated expression of Prominin1 (data not shown)
suggest expansion of TAPs. Surprisingly, Lgr5 expression was
not elevated and the Lgr5 cells remained restricted to the base
of the crypt afterOct4 induction (Figure 1A; Figures S2D–S2F).

Transcriptional Consequences of Sox2 and Oct4
Expression

Microarray data on gene expression patterns was used to
define the specific transcriptional effects of Sox2 compared
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Figure 1. Sox2 Overexpression Rapidly Expands

Lgr5+ Intestinal Stem Cells

(A) Quantification of numbers of EdU+ and Lgr5+

cells in 2-day DOX treated (+DOX) and untreated

(2DOX) ileums of TetON-Oct4 X Lgr5-GFP (Oct4)

and TetON-Sox2 X Lgr5-GFP (Sox2) mice. Error

bars represent SD.

(B–C00) EdU and Sox2 staining of TetON-Sox2

ileum; (B), 2DOX, (C), +DOX for 2 days. Note

increased numbers of proliferating Sox2+ cells

in the crypts (brackets in C0, C00), as well as

their spreading into the villi (arrowheads in C0

and C00). (C0 and C00) Single-channel images of

EdU and Sox2, respectively.

(D) EdU, Sox2, and GFP staining of ileum of 2-day

DOX-treated Lgr5-GFP X TetON-Sox2 animal.

Arrowheads indicate Sox2+EdU+Lgr5+ cells.

(E) Lysozyme, Sox2, and GFP staining of ileum of

2-day DOX-treated Lgr5-GFP X Sox2 animal.

Brackets indicate Lgr5+ cells expanded from

crypt base that have lost contact with Paneth

cells. Arrowhead, Sox2+Lgr5+ crypt base cell;

small bracket, adjacent Sox22 Paneth cell.

(F and F0) EdU staining of pulse-chased TetON-

Sox2 ileums: 2DOX pulse (F); +DOX pulse (F0).
(G and G0) Prom1 staining of TetON-Sox2 ileum:

2DOX (G); +DOX (G0). Note expanded apical

Prom1 staining upon Sox2 induction compared

to uninduced conditions (arrowheads).

(H and H0) GFP images of Lrg5-GFP X rtTA (H) and

Lgr5-GFP X Sox2 (H0) ileums (+DOX). Note the

expansion of Lgr5-GFP+ cells upon Sox2 induc-

tion (arrowheads).

See also Figure S1.
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to Oct4. Cluster analysis of the entire data set shows that the
transcriptome of TetON-Oct4 animals was clearly different
from that of the Sox2-induced animals (Figure S2H). Interest-
ingly, when TetON-Sox2 and TetON-Oct4 mice were crossed,
the transcriptome (+DOX) of the double-induced animals
showed marked similarity to the transcriptome of TetON-
Sox2 mice (Figures S2G and S2H). These results show that
induction of Sox2 but not Oct4 increased Lgr5 expression.

Many intestinal genes, including Vil1, Fabp2, intestinal
alkaline phosphatase (ALPI), peptide Y (Pyy), Muc13, Muc3,
Mucdhl, and Tff3, were downregulated by Sox2 and many
anterior genes were upregulated, including keratins (Krt1-15,
Krt1-13, Krt2-4, Krt2-6a, Krt1-23, Krt2-5), Pkp1, and dermo-
kine (1110014F24Rik) (Figures 2A and 2C; Figure S2K). Along-
side Sox2, Foxa2 is required for the differentiation of the
anterior endoderm and is expressed in esophagus, trachea,
lung, pancreas, and liver [23–25]. On Sox2 induction, Foxa2
became upregulated in the adult intestine (Figures 2A and
2C; Figure S2L).

During development, Sox2 is expressed in the anterior
endoderm and this expression is antagonized by the master
regulator of posterior endoderm Cdx2 [26]. Cdx2 expres-
sion was clearly reduced in the intestines of 2-day Sox2-
induced animals (Figure 2B). Transcription factors regulated
byCdx2 including Klf4,HNF1a,Hnf4a, and Isxwere downregu-
lated and anterior transcriptional regulators including Pax9
and Pitx1 were induced (Figure 2C; Figure S2K). Oct4 did not
repress Cdx2 (Figure S2J), the Cdx2 targets Klf4, Hnf1a,
Hnf4a, and Isx, or intestinal markers Vil1, Fabp2, and ALP,
nor did it upregulate anterior markers and keratins (data not
shown). These results suggest that Sox2 induction reprograms
the positional identity of cells in vivo.

Sox21 Induction Is a Specific and Cell-Autonomous Target

of Sox2
Because Sox2 is thought to be a transcriptional activator, we
searched for Sox2 activated repressors by comparing lists of
DOX-induced genes. In TetON-Sox2 intestines, mouse embry-
onic fibroblasts (MEFs), embryonic stem cells (ESCs), and
neural stem cells, we found that Sox21, a SoxB family tran-
scriptional repressor, was strongly upregulated by Sox2
(data not shown). Sox21 induction was confirmed in the intes-
tine as early as 16 hr after Dox treatment (Figures 2C and 2D),
concomitant with repression of Cdx2 and preceding the
increase in cell proliferation, expansion of Lgr5+ cells, or the
induction of Krt13 (data not shown). Oct4 did not induce
Sox21 (Figure S2I).
For Sox21 to act as an endogenous mediator of Sox2 initi-

ated transcriptional change, the two proteins must be
expressed in the same cells. To study whether Sox21 is a
cell-autonomous target of Sox2, we specifically induced Sox2
in Lgr5+ cells using a combination of cre-dependent tTA and
Lgr5-EGFP-IRES-creER alleles (see Supplemental Experimen-
tal Procedures). A low dose of tamoxifen was used to induce



B

-DOX

Sox2
Cdx2
DAPI

+DOX
Foxa2

Sox2

Ihh

-D
O

X

+D
O

X

Tub

Krt13

Krt4

Krt6A

A

C

HNF1a
Isx
Cdx1
Cdx2
Klf4
Hnf4a
Foxa2
Foxa1
Sox21
Pax9

A
nt.

P
ost.

-DOX +DOX

Sox2
Sox21
DAPI

+DOX

Sox2
Sox21
DAPID E Sox21 Sox2

Ileum Figure 2. Sox2 Represses Cdx2 and Induces

Sox21

(A) Western blot analysis of anterior/posterior

markers in 2-day DOX-treated TetON-Sox2 ileum.

(B) Cdx2 and Sox2 staining of TetON-Sox2

ileums: 2DOX (left); +DOX (right).

(C) Microarray analysis of anterior-posterior

transcriptional regulators (labeled Ant and Post)

in ileums of untreated (2DOX) and 2-day DOX-

treated (+DOX) TetON-Sox2 animals.

(D) Sox2 and Sox21 staining of TetON-Sox2

ileums treated with DOX for 16 hr.

(E) Sox2 and Sox21 staining of Sox2+ intestinal

clones 4 days after Tamoxifen injection. Arrow-

heads indicate Sox21+Sox2+ cells.

See also Figure S2.
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Sox2 in single Lgr5-EGFP-expressing cells. Four days after
Tam injection, Sox2 expressing cells were seen in 10% of
crypts. In all Sox2+ crypts trains of Lgr5+,Sox2+ cells were
seen extending into the neck of the crypt (Figure S2M). Aber-
rantly localized Lgr5+ cells were never seen in normal, unin-
duced crypt-villus units (Figure S2N). One hundred percent of
mislocalized Lgr5+,Sox2+ cells upregulated Sox21 (Figure 2E;
Figure S2O), suggesting that Sox2 cell-autonomously induces
Sox21.

To test whether Sox21 can repress Cdx2, we used the
human colon cancer cell line Ls174T that expresses Cdx2
but neither Sox2 nor Sox21 [27]. Cdx2 expression was dimin-
ished in cells stably transfected with Sox21 (Figure 3A). In
these cells, chromatin immunoprecipitation (ChIP) demon-
strated that Sox21was present on theCdx2 enhancer [28] (Fig-
ure 3B). We compared the ability of Sox2, Sox21, and Oct4 to
repress Cdx2 directly. As seen from Figure 3C, Sox21, but
not Sox2 or Oct4, strongly reduced the number of Cdx2+

cells. These data show that Sox21 induction is sufficient to
repress Cdx2.

Sox21 Regulates the Expression of Cdx2 in Pluripotent

Cells
Sox2 and Cdx2 also play important roles in the process of
early embryonic lineage segregation [3, 29] and Cdx2 has
been shown to repress Sox2 [26]. Our data show that Sox2
can repress Cdx2 and suggest that this effect requires induc-
tion of Sox21. To ask whether Sox21 is required for Sox2 to
repress Cdx2 in pluripotent cells, we analyzed mouse ESCs
containing theTetON-Sox2 transgene.Sox21proteinwasupre-
gulatedwhenSox2 levels increased (Figure3D; Figures 3A, and
S3B), suggesting that Sox2 induces Sox21 in pluripotent cells.

BMP4 causes mouse ESCs to differentiate into Cdx2+ cells
[30, 31]. When mouse TetON-Sox2 ESCs were treated with
BMP4 for 4 days, Cdx2 expression was upregulated, but
maintaining Sox2 expression by treatment with DOX blocked
Cdx2 induction (Figure 3E, left panel). Transfection of Sox21
siRNA rescued Cdx2 expression (Figure 3E, right panel;
Figures 3E, and S3F). Sox21 knock-
down was efficient and did not affect
levels of Sox2 (Figures S3C and S3D).
These results show that Sox21 is
required for Sox2 to repress Cdx2
expression.

To confirm Cdx2 repression by Sox21
in physiological conditions, we
performed Sox21 ChIP in human ESC-derived neurectodermal
progenitors (Figure 3F). Sox21 was enriched at the Cdx2
enhancer in neuroectodermal cells obtained by Noggin-
SB431542 treatment, but not in BMP4-treated cells. Recently,
Sox2 was found to bind the Sox21 enhancer in ES cells under-
going neural differentiation [32]. We confirmed this result (Fig-
ure 3G), further strengthening our argument that Sox2 directly
induces Sox21.

Sox21 Induction by Sox2 Is Required to Reprogram Cells

Sox2 is a critical factor that is required for cellular reprogram-
ming so we asked whether Sox21 induction is required for
induced pluripotent stem cell (iPSC) generation from fibro-
blasts. Doxycycline treatment of TetON-Sox2 MEFs rapidly
upregulated Sox21 (Figure 4A). Similar to intestine, Oct4 did
not induce Sox21 (Figure 4B). Sox21 induction by Sox2 was
unaffected by coexpression of Oct4, or the combination of
Oct4, Klf4, and c-Myc (Figure 4C). During the reprogramming
process we transfected Tet-OSMK MEFs [33] with Sox21
siRNA or control siRNA. Sox21 knockdown resulted in signifi-
cantly reduced numbers of SSEA1+ colonies compared to
the control siRNA (Figure 4D). SSEA1+ colonies established
in the presence ofSox21 and control siRNAbecamephenotyp-
ically normal iPSCs (Figures S4A–S4D). Therefore, induction of
Sox21 by Sox2 is required to induce the pluripotent stem cell
state.
Sox21 is widely expressed in the developing nervous system

where it is often coexpressed with Sox2 and these two genes
are thought to have opposing roles in neurogenesis [34–39].
Our data suggest that the interaction of Sox2 and Sox21
should be assessed in the many studies analyzing the mecha-
nisms of reprogramming and neuronal transdifferentiation
[40–42].
In addition to endoderm, Sox2 and Sox21 intersect with

Cdx2 in other systems, such as trophectoderm [43] and
caudal neuroectoderm [44]. Our preliminary results show
that expression of Sox21 and Cdx2 is mutually exclusive
in human ESC-derived hindbrain cultures. There is also
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Figure 3. Sox21 Represses Cdx2

(A) Western blot analysis of Ls174T cells stably

transfected with Sox21 cDNA (+) and untrans-

fected Ls174T cells (2). Quantification of Cdx2

signal relative to Tubulin signal is shown below.

(B) Chromatin immunoprecipitation analysis of

Sox21 binding to the Cdx2 intestinal enhancer in

Ls174T-Sox21 cells.

(C) Transfection of Sox21 but not Sox2 or Oct4

reduces numbers of Cdx2+ Ls174T cells. Error

bars represent SD.

(D) Western blot analysis of Sox21 induction in

ESCs containing an inducible Sox2 transgene

(TetON-Sox2), treated with DOX for indicated

periods of time. Quantification of Sox21 signal

relative to Tubulin signal is shown below.

(E) Repression of Cdx2 by Sox2 requires Sox21.

Left panel shows that TetON-Sox2 mouse ESCs

were treated with BMP4 for 4 days in the pres-

ence or absence of DOX and Cdx2+ cells were

counted. Right panel shows that prior to BMP4

treatment, TetON-Sox2 ESCs were transfected

with Sox21 or control siRNA. Error bars repre-

sent SD.

(F) Quantitative PCR analysis of Sox21 and Sox2

chromatin immunoprecipitation of the Cdx2

enhancer and control regions [45] in undifferenti-

ated (Control), Noggin/SB431542-treated (N-SB),

and in BMP4-treated hES cells. Error bars repre-

sent SD in three independant ChIP experiments

per condition.

(G) Quantitative PCR analysis of Sox21 and Sox2

chromatin immunoprecipitation of the Sox21 en-

hancer region [32] in undifferentiated (Control),

Noggin/SB431542-treated (N-SB), and BMP4-

treated human embryonic stem cells (hESCs).

Error bars represent SD in three independent

ChIP experiments per condition.

See also Figure S3.
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increasing evidence that Sox2 acts as an oncogene [5, 6, 8].
The data presented here suggest that it will be important to
determine whether the oncogenic function of Sox2 requires
genetic or epigenetic silencing of the tumor suppressor
Sox21.
Supplemental Information

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.cub.2012.07.013.
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