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A comparison of human and mouse gene
co-expression networks reveals conservation
and divergence at the tissue, pathway and
disease levels
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Abstract

Background: A deeper understanding of differences and similarities in transcriptional regulation between species
can uncover important information about gene functions and the role of genes in disease. Deciphering such
patterns between mice and humans is especially important since mice play an essential role in biomedical research.

Results: Here, in order to characterize evolutionary changes between humans and mice, we compared gene
co-expression maps to evaluate the conservation of co-expression. We show that the conservation of co-expression
connectivity of homologous genes is negatively correlated with molecular evolution rates, as expected. Then we
investigated evolutionary aspects of gene sets related to functions, tissues, pathways and diseases. Genes expressed in
the testis, eye and skin, and those associated with regulation of transcription, olfaction, PI3K signalling, response to
virus and bacteria were more divergent between mice and humans in terms of co-expression connectivity. Surprisingly,
a deeper investigation of the PI3K signalling cascade revealed that its divergence is caused by the most crucial genes
of this pathway, such as mTOR and AKT2. On the other hand, our analysis revealed that genes expressed in the brain
and in the bone, and those associated with cell adhesion, cell cycle, DNA replication and DNA repair are most strongly
conserved in terms of co-expression network connectivity as well as having a lower rate of duplication events. Genes
involved in lipid metabolism and genes specific to blood showed a signature of increased co-expression connectivity
in the mouse. In terms of diseases, co-expression connectivity of genes related to metabolic disorders is the most
strongly conserved between mice and humans and tumor-related genes the most divergent.

Conclusions: This work contributes to discerning evolutionary patterns between mice and humans in terms of gene
interactions. Conservation of co-expression is a powerful approach to identify gene targets and processes with
potential similarity and divergence between mice and humans, which has implications for drug testing and other
studies employing the mouse as a model organism.
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Background
The divergence of mice and humans from a common
ancestor occurred approximately 90 Ma ago [1]. Because
of close evolutionary affinities with the human species
and because of numerous properties that facilitate its
handling, the mouse has been used as an animal model
in biomedical research to study mammalian develop-
ment, diseases and to test drugs for over 50 years [2–4].
Although there has been great progress in understanding
the genetics, anatomy and physiology of the mouse, the at-
trition rate of compounds tested in Phase II clinical trials
is still high [5], evidencing the lack of a comprehensive
knowledge of the molecular differences between mice and
humans that limit the translation of mouse studies to
humans [6].
Nowadays, biological research greatly benefits from

the routine application of high-throughput technolo-
gies, and similarities and differences between mice
and humans have been studied at different levels.
About 90 % of the human and mouse genome regions
have comparable synteny and orthologous genes have
78.5 % of amino acid identity [7]. On the other hand,
both lineages have undergone gene duplications and,
for example, genes related with olfaction, immunity
and reproduction expanded in the rodent lineage,
suggesting an extended functionality [7].
Liao and Zhang performed a large scale microarray

analysis to evaluate the divergence in gene expression
between mice and humans, reporting that only 16 % of
the human-mouse orthologous genes have expression
profiles as divergent as random genes [8]. Zheng-Bradley
et al. conducted a principal component analysis (PCA) on
a merged dataset containing gene expression data from
mouse and human tissues, in order to capture the factors
that mostly account for the variability of the dataset.
Among the great heterogeneity of experimental condi-
tions, the orthologous genes clustered in the top principal
components according to tissue specificity, in particular
liver, muscle and nervous cells, indicating a strong similar-
ity of gene expression profiles between mouse and human
tissues [9]. Nevertheless, whether the gene expression pat-
terns cluster by tissues or by species was recently ques-
tioned and it seemed to be mostly related to the data
available instead of the methodology used [10].
Another powerful approach utilizing transcriptomic

resources consists in the construction of co-expression
maps [11]. For a collection of samples, the gene expres-
sion profiles of a pair of genes is compared using a similar-
ity metric. Subsequently, a threshold on the similarity
measure is selected in order to build a co-expression net-
work where the nodes are the genes and the edges or arcs
are the links between genes that are co-expressed [12].
Numerous approaches have been applied to co-

expression maps to infer gene function information from

single tissues, entire organisms or across species [13, 14],
but they have also been employed to determine the differ-
ences and similarities between species [15, 16]. Tsaparas
et al. compared the mouse and human co-expression net-
works created from 28 shared tissues [17]. They firstly
investigated the topology of the networks showing the
conservation of the scale-free properties at a global level
but high dissimilarity of the co-expression patterns of
orthologous genes. Secondly, the functional similarity of
co-expressed gene pairs resulted to be significant com-
pared to randomized networks and specific genes of the
immune system and sexual reproduction were highly
interconnected, although these two classes are known to
be more prone to positive selection [17].
Other research based on a comparison of co-expression

maps of human and mouse brain tissue showed that gene
interactions were highly conserved in the nervous system
and revealed a cluster of genes specific to humans for
Alzheimer’s disease [18]. Analysis of co-expression maps
can also reveal the preserved interactions in sets of genes
known to be associated with a certain condition or
function [19], and using a method based on conserved co-
expression, the most diverged and conserved GO categor-
ies have been recently listed [20].
The current challenge is to explore and derive bio-

logical meaning from the vast amount of potentially
greatly informative data available. A small number of
genome-wide scale analyses focused on determining dif-
ferences and similarities between mice and humans have
been conducted, often relying on a limited number of
orthologs and on small condition-specific datasets for the
comparison. In addition, only few results were confirmed
in multiple works, such as the gene expression conserva-
tion of the brain [8, 18, 21], the highest divergence rate in
testis [21–23], and the high number of functional dupli-
cated olfaction-related genes in mouse [24, 25].
We believe that the use of co-expression maps built

on an ample number of gene expression datasets would
give a more comprehensive and reliable understanding
of the degree of functional homology between mouse
and human processes. The envisioned outputs include to
1) understand the relationship between different bio-
logical systems, 2) identify the best working models to
dissect specific mechanisms, 3) reducing the attrition
rate in Phase II studies, 4) provide hypothesis in growing
health issues and research fields such as aging, dementia
or metabolic diseases.
Therefore, we compared and contrasted human and

mouse co-expression maps, obtained from GeneFriends
[26], an online tool entailing a co-expression analysis of
over 60,000 microarray samples, using the latest hom-
ology annotation on approximately 16,000 genes. We
explored the co-expression maps on a systems-level
view, primarily using a new parameter of conservation
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based on the number of commonly co-expressed genes
(CCG) between humans and mice. Hence different bio-
logical aspects were considered, such as the association
of the conservation of co-expression connectivity with
selective pressure, patterns of duplications after speci-
ation, functional enrichment in genes with conserved
and diverged co-expression connectivity, and evolutionary
changes in 30 different tissues, 1320 biological path-
ways and 208 diseases. This analysis led to the identi-
fication of gene interactions conserved between the
two species independently of tissue, age, gender, health
status and stimuli.

Results
We obtained and analysed human and mouse co-
expression maps from GeneFriends v. 3.0 [26]. These
maps have been constructed from the expression levels of
19,727 human genes in 4164 datasets and 22,766 mouse
genes in 3571 datasets from the GEO database [27]. The
co-expression maps contain a co-expression value for each
possible gene-pair, a measure of gene expression similarity
given by the frequency a pair of genes is differentially
up- or down-regulated together in all datasets [26].

Homologous relationships and molecular evolution rates
To establish evolutionary differences and similarities be-
tween human and mouse co-expression maps, we per-
formed our analysis using the fraction of genes that have

a homolog in both humans and mice, corresponding to
16,080 unique genes in humans and 16,463 unique genes
in mice. Homologous genes can be one-to-one orthologs
when homologs have an unequivocal relationship, but
also one-to-many or many-to-many orthologs, which
occur when a duplication event, after speciation, leads to
the formation of multiple genes with similar function or
sequence, resulting in homologous genes belonging to
more than one pair [28]. In our dataset, 14,846 genes were
one-to-one orthologs, while the remaining mouse and hu-
man homologs had a one-to-many or many-to-many rela-
tionship (see Methods).
One aspect of species evolution is the magnitude of

natural selection that acts on protein-coding sequences
indicated by the dN/dS ratio [29]. The homologous gene
lists, the dN and the dS values were retrieved from
Biomart Ensembl (see Methods). To evaluate the impact
of duplication events on the coding sequence divergence
of humans and mice, we compared the dN/dS ratios of
homologous genes with different types of homology
(Fig. 1a). As expected, one-to-one orthologs have the
lowest dN/dS ratio, which progressively increases in one-
to-many and many-to-many orthologs. Consequently,
considering the higher likelihood for duplicated genes to
have diverged, the subsequent analyses in this work were
performed using both the entire sets of genes and one-to-
one orthologs only, and we reported relevant differences
when necessary.

Fig. 1 a Comparison of the distribution of dN/dS values of homologs with three different orthologous relationships, accordingly one-to-one,
one-to-many and many-to-many. The Kruskal-Wallis test was used to determine that the three distributions are significantly different (Kluskal-Wallis
chi-squared = 1366, df = 2, p-value = 1.66e-297), and a post hoc analysis (Mann-Whitney test and Bonferroni correction) revealed that all the pairwise
comparisons were significantly different. b Comparison of the values of commonly co-expressed genes between equally sized bins of homologs
generated according to quartiles of the corresponding dN/dS values. The black boxes represent the entire set of homologs, while the grey boxes
represent the subset of homologs with one to one relationship only. The range of dN/dS values on the x-axis are indicative for both sets of data, they
were obtained summing and then averaging corresponding quartiles. The choice of four bins was arbitrary but equal trends were obtained by dividing
the value in 10 bins (data not shown) or from a linear regression line fitted to the data (Additional file 2: Figure S1)
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Commonly co-expressed genes in humans and mice
As a first step in comparing the mouse and human co-
expression maps, the conservation of co-expression con-
nectivity for each gene was determined. For this analysis,
all the orthologous relationships were used. For each
gene, we selected its top 5 % of co-expressed genes from
the human and mouse maps and determined the num-
ber of overlapping homologs, that we called commonly
co-expressed genes (CCG). The list of homologs with the
relative number of CCG is reported in the Additional file
1. The percentage threshold of 5 % was determined to be
the best choice among the tested values from 1 to 10 %,
even though the selection of other thresholds would not
have considerably changed the results (Additional file 2:
Figure S1).
We first tested the hypothesis that non-synonymous

substitutions on protein coding genes influence the con-
servation of co-expression connectivity. To do so, we de-
termined the Spearman correlation between the number
of CCG in humans and mice with the dN/dS ratio
values, and empirical p-values were obtained using a
permutation test with 10,000 iterations. As expected, a
negative correlation was found with an almost identical
correlation coefficient both when using the entire set of
homologous pairs (rho = −0.19, p-value <1e-04) and only
one-to-one orthologs (rho = −0.14, p-value <1e-04, Fig. 1b
and Additional file 2: Figure S1). Co-expression connectiv-
ity changes are more likely in genes undergoing faster mo-
lecular evolution changes.
Homologs that have high or low numbers of CCG can

reveal which pathways and molecular functions are more
or less conserved between the two species. To investi-
gate this, genes were then ranked according to the num-
ber of CCG and the top 5 % and the bottom 5 % of the
ranked list were selected for functional enrichment ana-
lysis using DAVID [30]. The results show that genes
with the strongest conserved co-expression connectivity
are mainly operating in the extracellular matrix as they
are involved in functions like signal transmission, cell
adhesion, immune response and chemotaxis (Table 1).
On the other hand, genes with the least conserved co-
expression are associated mainly to sensory systems, in
particular olfaction and gustatory system, and in the nu-
cleus, as supported by the fact that the strongest enrich-
ment is for several zinc finger domains, which are
embedded in transcription factors and allow the establish-
ment of contacts along the DNA (Table 1, Additional file
3: sheets 1–2).
In order to uncover discrepancies due to the inclusion

of one-to-many and many-to-many orthologs, we per-
formed the same DAVID analysis using only one-to-one
orthologs. The main difference in this analysis is the emer-
ging of transcription regulation terms as significantly
enriched for the bottom 5 % genes (Additional file 3:

sheets 3–4). Because the choice of a percentage threshold
of 5 % was arbitrary, we employed GSEA [31] and results
are in Additional file 3 (sheets 5–8), though findings were
similar to the DAVID analysis.

Exploring gene co-expression connectivity using directed
networks
To further explore and compare gene co-expression con-
nectivity between mice and humans, we extracted directed
networks from the co-expression maps. In our directed
networks, each node correspond to a gene and the co-
expression between two genes is indicated by an arc that
connects the nodes corresponding to the two genes. Be-
cause we used a percentage threshold to construct the

Table 1 DAVID analysis of the top and bottom 5 % of
homologous human genes ranked by the number of CCG

Homologs with conserved connectivity

Enrichment score Functional annotation Benjamini

33.66 Signal peptide 1.22E-36

glycoprotein 2.32E-35

disulfide bond 3.56E-27

27.85 Cell adhesion 5.67E-27

19.52 Extracellular matrix 5.75E-18

10.95 Response to wounding 1.84E-12

defense response 4.18E-08

9.40 Basement membrane 7.21E-07

8.78 glycosaminoglycan binding 2.06E-08

polysaccharide binding 2.68E-08

8.27 plasma membrane part 6.18E-13

8.03 topological domain: Extracellular 3.45E-12

6.98 Immunoglobulin domain 1.47E-13

6.75 Cell motion 1.29E-07

6.29 Chemotaxis 7.33E-06

6.27 EGF-like region, conserved site 1.46E-09

4.26 Hydroxylysine 2.82E-09

Collagen triple helix repeat 6.18E-06

4.09 Cytoskeletal protein binding 2.10E-04

Homologs with diverged connectivity

Enrichment score Functional annotation Benjamini

7.09 Zinc finger, C2H2-like 2.30E-10

DNA binding 2.00E-05

Transcription 4.99E-05

6.48 sensory perception of chemical stimulus 4.00E-13

olfactory receptor activity 2.57E-11

4.24 Mammalian taste receptor 2.16E-05

In the table are reported the key components selected from functional clusters
that obtained an enrichment score greater than or equal to 4 (see Additional
file 3 for the full results)
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networks, we were able to give a directionality to the arcs
if one gene of the pair was connected with the other one
but not vice versa (see Methods).

Network topology
The global topology of biological networks has been
shown to have a scale-free behaviour that follows a
power-law distribution, which is expressed mathematic-
ally as P(k) ~ k− y [32–34]. In scale-free networks, nodes
are not randomly connected, but rather they display a
tendency to connect to nodes that have many links.
Therefore the topology of the network is dominated by a
small number of nodes with high connectivity, that are
also called hubs, and a large number of poorly connected
nodes [35]. As previously demonstrated [17], the power
law distribution fits our data; the topology of the networks
was similar in mice and humans and no relevant differ-
ences could be observed (Additional file 2: Figure S1).

Relation of network connectivity with the number of
commonly co-expressed genes and dN/dS values
The scale-free behaviour of the human and mouse
networks indicates that the network connectivity among
genes is characterized by an exponential trend line.
Therefore, the diverse connectivity of genes in a network
might have an effect on the number of interactions that
result to be conserved among two species. For this rea-
son, we performed a Spearman correlation, and a per-
mutation test to obtain empirical p-values, between the
number of commonly co-expressed genes and the net-
work connectivity of the genes in mice and humans,
obtaining in both cases a positive association (human,
rho = 0.34, p-value <1e-04; mouse, rho = 0.32, p-value
<1e-04). Moreover, there is also a positive correlation be-
tween connectivity values and dN/dS values with a smaller
but still significant effect size (human: rho = 0.06, p-value
<1e-04; mouse: rho = 0.08, p-value <1e-04). This vanishes
in humans and becomes weaker in mice if using only one-
to-one orthologs (human: rho = −0.003, p-value = 0.67;
mouse: rho = 0.048, p-value <1e-04), but it increases if
using one-to-many and many-to-many only (human:
rho = 0.20, p-value <1e-04; mouse: rho = 0.13, p-value
<1e-04), showing that after duplication events the new
genes may play pivotal roles in establishing new species-
specific co-expression connections. One caveat in our
analysis, however, is that even if the p-values are highly
significant because of the large amount of data used, often
the effect sizes of the correlations are relatively modest.

Loss or gain of co-expression connectivity in mice and humans
From an evolutionary perspective, to evaluate the changes
in network connectivity between mice and humans, for
each gene we calculated a value of differential connectiv-
ity. The values were obtained by dividing the two network

connectivity values of each gene in the mouse and in the
human networks (Methods and Additional file 1). The
range of connectivity values is generally similar across the
different categories of homologs, apart from the non-
homologous genes where we noticed an increased con-
nectivity in mice compared to humans (Additional file 2:
Figure S4). As for the previous analysis, we ranked the ho-
mologs according to the differential connectivity values
and we selected the top and bottom 5 % from the entire
list to perform a functional enrichment analysis. Genes
with higher connectivity in humans are members of
tumor-specific antigens (MAGE) and keratin family, and
enriched functions are involved in signal transmission and
immune response mediated by interferon alpha (IFN-α).
Genes more connected in the mouse are largely related to
olfactory activity, revealing that the divergence of this
pathway, as also shown in the previous analysis, is related
to an increased functionality in mice (Table 2, Additional
file 4).
The DAVID analysis was repeated using only one-to-

one homologs and we noticed the absence of the anno-
tations related to the IFN-α and to the MAGE protein
(Additional file 4).

Conservation and divergence of gene sets related to
tissues, pathways and diseases
During mammalian evolution, the molecular components
of different tissues, pathways and diseases go through

Table 2 DAVID analysis of the top and bottom 5 % homologous
human genes ranked by differential connectivity (top genes are
highly connected in human, bottom genes are highly connected
in mouse)

Higher connectivity in Human

Enrichment score Functional annotation Benjamini

7.95 Signal peptide 4.52E-09

glycoprotein 8.34E-05

Disulfide bond 2.61E-08

3.93 Interferon alpha 9.08E-06

Autoimmune thyroid disease 1.94E-04

Antigen processing and presentation 0.00665

3.87 tumor antigen 0.008748

MAGE protein 0.024607

3.19 region of interest:Coil 2 0.007066

keratin 0.001462

Higher connectivity in Mouse

Enrichment score Functional annotation Benjamini

4.21 sensory perception of chemical stimulus 1.80E-05

olfactory receptor activity 3.67E-06

In the table are reported the key components selected from functional clusters
that obtained an enrichment score greater than or equal to 3 (see Additional
file 4 for the full results)
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different structural and functional changes. The tolerance
of molecular changes largely varies among gene sets with
different functions. In this section, using four parameters
that describe evolutionary changes in co-expression pat-
terns, we examined the conservation and divergence of
curated gene sets that represent tissues, processes and
diseases. Here, the four parameters used to predict the
conservation and divergence of each gene set are: (i) con-
servation of co-expression, based on the median number
of CCG of a gene set, whose metric principle has been
already used in previous works even if with different con-
struction properties [19, 20]; (ii) differential connectivity,
that indicates the overall increase or decrease of connect-
ivity for a gene set in the mouse or in humans; (iii) pro-
portion of duplication events, that detects deviations in
the ratio of one-to-many and many-to-many orthologs of
a gene set compared to the entire set of genes; and (iv) the
proportion of non-homologous genes, that detects devia-
tions in the ratio of non-homologs of a gene set compared
to the entire set of genes (Additional file 2: Figure S5,
Additional file 5 and Methods).
Because of its superior quality, we used only human

gene sets for the analysis. We used gene sets specific
for 30 tissues retrieved from the TIGER database [36],
1320 canonical pathways retrieved from the Molecular
Signature Database (MSigDB v4.0, http://www.broadinsti-
tute.org/gsea/msigdb/index.jsp, [37]), and 216 diseases
from the Genetic Association Database (GAD, [38]) plus
an aging gene set from the GenAge Database [39].
Lastly, for each gene set we also retrieved and reported

novel candidate genes conserved both in humans and in
mice by counting how many times a gene was associated
with the homologs of a gene set and calculating the sig-
nificance using a permutation test (Additional file 6,
Methods).

Tissues analysis: few cases of divergence
We firstly analysed the evolutionary changes in terms of
gene-connectivity and homology for 30 tissues. At a first
glance, there is an overall tendency of conservation of
the tissue-specific genes sets. In fact, all of them express
a low proportion of non-homologous genes (Fig. 2d) and
20 out of 30 express genes with conserved co-expression
patterns (Fig. 2a). Differential connectivity values seem
to be biased towards human versus mice (Fig. 2b), and a
possible interpretation is that in human the post-
transcriptional processes contribute to a greater variety
of proteins and therefore interactions [40]. Additionally,
mice have a greater amount of total annotated protein-
coding genes [41], and non-homologous genes are
mainly responsible for the formation of new interactions
(Additional file 2: Figure S4).
The conservation of brain and bone is striking, since

they are the top two results among the tissues which

have a higher conservation of co-expression connectivity
(Fig. 2a) as well as having a relatively low ratio of dupli-
cations among their tissue specific genes (Fig. 2c). When
looking for novel associated homologs with tissue gene
sets, we noticed that for the brain, the top 36 genes
significantly establish a connection with 70–90 % of the
homologs of the gene set (Additional file 6: Sheets 1 and
4). Thus, this also suggests a high degree of interconnec-
tivity for brain-specific genes with other related genes
that are not strictly tissue-specific.
On the other hand, testis, eye, skin, pancreas and lung

are the tissues whose co-expression connectivity was
shaped the most by evolution (Fig. 2a). We also noticed
some inconsistencies when comparing the results
obtained using the entire list of homologs and only one-
to-one orthologs. For instance, the divergence of co-
expression and the higher human network connectivity of
genes expressed in the skin dissipated when considering
only homologs with a one-to-one relationship. This be-
haviour can be associated with a higher rate of one-to-
many and many-to many homologs, indicating that the
duplicated genes specific for the skin have a great impact
in determining its conservation (Fig. 2b, Additional file 5).

Pathway analysis: insights into cell duplication,
transcription regulation and immunity
According to the findings obtained using curated path-
way gene sets, the pathway involved in olfactory signal-
ling and regulation is the least conserved since it has
significant features of divergence for three of the param-
eters considered, indicating an increased functionality in
the mouse (Fig. 3, Additional file 5). This confirms our
previous results obtained with the DAVID analysis, and
since the divergence of this sense between mice and
humans is well-known [24, 42], it underpins the reliability
of our approach and confidence in our results.
Processes of the immune system involved in the re-

sponse to viral, bacteria and protozoal infections through
the release of glycoproteins of the IFN family are overall
conserved. Nevertheless, the Interferon alpha/beta signal-
ling, and in particular the induction of the MDA5 path-
way, appears to be divergent with an increased
connectivity in humans, though only when including one-
to-many and many-to-many orthologs in the analysis
(Fig. 3a, b and c).
Cell cycle activities also require a deeper examination.

In fact, the various stages and checkpoints of mitosis are
conserved, including the replication of DNA and exten-
sion of telomeres, on the other hand the genes involved
in the pairing and recombination between homologous
chromosomes during meiosis show a low number of
commonly co-expressed genes. Moreover, when looking
deeper at the telomere maintenance processes, the co-
expression connectivity was significantly conserved for
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the telomere extension mechanism (Fig. 3a), but oppos-
itely, the co-expression connectivity was diverged for the
genes specific for the packaging of telomere ends in con-
junction with other divergence features, such as a higher
proportion of duplicated and non-homologous genes
(Fig. 3a, c and d). From the analysis made to discern
novel candidate associated genes with gene sets, we
observed that a target gene of interest, OIP5, already
associated with centromeres in the G1 phase of cell cycle
[43] and with different types of tumors, such as gastric,
testis [44] and clear cell renal cell carcinoma [45],
was also strongly associated with pathways involved
in transcription and RNA degradation (Additional file 6:
Sheets 3 and 4).
Among the pathways involved in transcriptional regula-

tion, one case of divergence has been noticed regarding a
group of histones with a low number of co-expressed ho-
mologs that are usually involved in the promoter opening
that allows the Pol-I mediated transcription (Fig. 3a).
Other conserved pathways are those involved in focal ad-
hesion, in DNA repair, in metabolism of carbohydrates
and lipids, in the formation and maintenance of the neural
network, and in the regulation of neurotransmitters

such as GABA, Dopamine and Norepinephrine (see
Additional file 5).
Lastly, one pathway that is commonly investigated

for its central role in apoptosis and cancer is the
Phosphoinositide 3-kinase (PI3K) signalling cascade [46],
and despite its low proportion of duplicated genes and
non-homologous genes, it was divergent in terms of co-
expression (Fig. 3a). Given the importance of this pathway
in cancer research and the associated need for more
suitable mouse models [47], we reported a table in the
Additional file 1: Table S1 that includes a list of the com-
monly co-expressed homologs for the genes involved in
the PI3K cascade that are less conserved comprising the
crucial mTOR and AKT2 genes.

Disease analysis: an exhaustive conservation
Since there is some controversy on the reliability of
gene/disease association determined by genetic associ-
ation studies, we used a curated repository of Genetic
Association Database (GAD, [48]), validated by filtering
and retaining only the genes that have a published evi-
dence of being positively disease-associated and MeSH
annotated [38].

Fig. 2 Evaluation of conservation of 30 tissue-specific gene sets. The statistical procedure to obtain the results for panels a and b is identical and
based on a Mann-Whitney test between the values of a gene set and the values of the remaining genes. For a we used the number of CCG and
for b we used the values of differential connectivity. The analysis has been performed both on the entire set of homologs (bars in black) and on
one-to-one orthologs only (bars in grey) with asterisks indicating the significant results (FDR <0.05). For the panels c and d we used the Fisher’s
exact test. In c we reported the odd ratio of homologous genes that underwent duplication (one-to-many and many-to-many homologs), and in
d we reported the odd ratio of non-homologous genes (for further details refer to Additional file 2: Figure S5 and Methods). The tissues are
ranked according to the level of conservation in terms of common co-expression and 20 out of 30 resulted to have conserved patterns (a). The
differential connectivity is biased towards the human species (b) that can be partially explained by the fact that the mouse species has a greater
annotated number of non-homologous genes than humans that in addition have a higher connectivity compared to the human counterpart
(Additional file 2: Figure S4). In panel c the brain and bone tissues have the lowest proportion of duplicated genes, opposite to blood, liver, bone
marrow, mammary gland, placenta and skin. Lastly, panel d shows that there is a global preservation of the usage of homologs for tissue-
specificity gene expression
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The analysis performed on 208 gene sets revealed
more modest p-values and statistics when compared to
the results obtained on tissues and pathway gene sets
(Additional file 5). Concerning the conservation of co-
expression, the median value of commonly co-expressed
genes of 80 disease related gene sets is significantly
higher compared to the remaining genes. Among the 80
gene sets, the top most conserved gene sets are related
to cardiovascular diseases, Diabetes Mellitus type 2 and
Aging; moreover, the MeSH classes, used to catalogue
the diseases [49], that occur more recurrently are Ner-
vous System Diseases and Cardiovascular Diseases (re-
spectively the 61 and 50 % of the totality of the terms).
Aging, diabetes mellitus type 2 and hypertension are the
top 3 significant gene sets with a relative low proportion
of non-homologous genes, displaying consistency in terms
of conservation with the results obtained for the conserva-
tion of co-expression parameter (Additional file 5).
Among the diverged diseases, hypercholesterolemia, a

nutritional and metabolic disease, is the only pathology
whose associated genes have an increased connectivity in
mouse. On the other hand, 13 diseases have significantly
increased connectivity in humans, with eight of them be-
ing classified among the Neoplasm MeSH category, that
do not reach a significant threshold anymore after the
analysis was performed with one-to-one homologs only.

Discussion
Our study presents a comprehensive analysis of mouse and
human transcriptional evolutionary changes exploiting co-

expression maps. It is well known that the variability
of gene expression not only depends on conditions
and tissues, but is also influenced by numerous other
sources of biological and technical factors that are
hardly controllable [50]. The utilization of larger collec-
tions of microarrays can help eliminate the noise created
by single factors and conditions, highlighting the canon-
ical interactions that occur in an organism. In fact, the
choice of using only mice and humans was driven by the
fact that these are the two mammalian species with the
most abundant data. Co-expression tools are usually
employed to verify interactions in a single organism, but
they can be used also to verify if interactions are preserved
among different species. The human-mouse maps com-
parison conducted here aims to make researchers aware
of the components that warrant further investigation
based on their evolutionary changes, including in the con-
text of biomedical research and drug testing.
In agreement with the hypothesis that the two species

did not undergo notable changes [17], we verified that
the overall structure of both co-expression networks are
scale-free and have comparable properties. However, in
previous works, issues have been reported when con-
structing and comparing co-expression networks [51].
As a result of these problems, inconsistent results were
drawn from different cross-species comparisons on
transcriptomic data [9, 18, 21]. To partially overcome
such problems, our methodology utilizes a percentage
based thresholds as cut-off for network interactions
instead of coefficient values based on correlation.

Fig. 3 Evaluation of conservation of 22 pathway-specific gene sets selected from the Reactome database. For the explanation of the statistical
tests and plots refer to Fig. 2, Additional file 2: Figure S5 and Methods. The pathways have been manually selected for their relevance in the context
of this manuscript. For the complete result table refer to the Additional file 5 that includes the analysis on gene sets retrieved from eight databases.
The pathways are ranked according to the level of conservation in terms of common co-expression (a). The olfactory pathway is the most diverged in
mice when looking at the differential connectivity plot (b). Even though the cell cycle process and DNA replication are generally conserved,
there are related processes, such as packaging of telomere ends and RNA Polymerase I promoter opening, that are systematically diverged for
different aspects (a, c and d). Although the lipoprotein metabolism is conserved in terms of the co-expression patterns (a), it has an
increased connectivity in mouse that does not reach the required significance (b); nevertheless, one of its descending pathways, HDL-mediated lipid
transport produced highly significant results (Additional file 5) that defined the genes that mostly contribute to this divergence
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Additionally, even though the use of the same percent-
age threshold for the two networks might still not pro-
vide an absolute value of conservation when comparing
lists of gene homologs, it does not affect the way the
gene sets are ranked in terms of conservation, assuring
that they are comparable to each other.
We firstly focused our attention on the conservation of

connectivity based on the number of commonly co-
expressed genes between humans and mice; although the
principle has already been used in other works, its con-
struction was innovative. Its role in the understanding of
evolutionary changes was validated by determining the as-
sociation between the commonly co-expressed genes and
the dN/dS value, which is a well-known parameter of mo-
lecular evolution rate. In our analysis, we also integrated
information on differences in network connectivity, recur-
rence of duplications and non-homology, highlighting in
particular the sets of genes that were influenced by mul-
tiple criteria simultaneously.
Our findings are largely consistent with associations

previously reported in the literature. We found an over-
all high grade of conservation on molecular and cellular
mechanisms associated with tissues, diseases and aging
that is consistent with previous results [8, 52, 53]. The
pattern of expression and interaction of the central ner-
vous system is highly preserved across species [18, 21].
Indeed, we found that genes expressed in the brain have
the strongest conserved connectivity, as well as retaining
a significantly low proportion of duplicated genes. A tis-
sue with similar behaviour, but not reported in previous
studies, is bone.
Reproductive organs have been reported as amongst

the most divergent tissues [54, 55], in agreement with
our observation that they have the least conserved co-
expression patterns. Nevertheless, even though the
hypothesis of strong adaptive forces for this tissue was
reinforced by a recent study reporting that duplications
occur with a higher rate in genes associated with repro-
ductive functions [41], we failed to observe a significant
difference in the rate of duplications among testis-
related genes. In a previous work, the eye was included
among the tissues with relatively higher conservation of
gene expression [21], but in our analysis it proved to
have a low number of commonly co-expressed genes,
which warrants further analyses. The divergence of the
skin in terms of conserved connectivity depends partially
on the inclusion of a group of genes of the keratin and
MAGE family having a one-to-many and many-to-many
homologous relationship. We found that both families
also showed a significant increase of connectivity in
human as revealed by the functional annotation analysis
on differentially connected genes. MAGE genes are
tumour-specific proteins mainly associated with melan-
oma, and it has already been suggested their aspect of

positive selection among species [56]. The keratin family
is composed of genes that are expressed either in epithelial
cells or in keratinized tissues such as hair and nails. The
keratin genes enriched in our DAVID analysis belong to
the epithelial group [57] and it may be a possible explan-
ation for the thickness of human dermis and epidermis
compared to the mouse skin [58].
The strong divergence of the olfactory system as

well as an increased connectivity in mice observed in
all the conservation parameters is in agreement with
both the relaxed constraints displayed in humans [60]
and the fact that mice do not usually rely on sight to
chase food and therefore they need a highly evolved sense
of smell [25, 59]. The regulation of cell division, DNA rep-
lication and DNA repair are very well conserved func-
tions, while some elements involved in the transcriptional
regulation are diverged, in particular transcription factors
of the C2H2 family and histone interactions involved in
the promoter opening. Based on this observation, we pos-
tulate that transcriptional regulation has a major role in
determining evolutionary divergence among the two spe-
cies. For example, it is well known that one of the causes
of this divergence is the gain of complexity of the splicing
system in humans [40]. Consequently it needs further in-
vestigation and high expectations are pinned on RNA-seq
technology.
Genes involved in cardiovascular diseases were overall

conserved both in terms of co-expressed genes and pro-
portion of homologous genes, but their network con-
nectivity was increased in the mouse. This fits our
findings showing that the genes specific for the pathway
“HDL-mediated lipid transport” and the blood are highly
connected in mice and the pathway “lipoprotein metab-
olism” shows the same behaviour even though it is no
longer significant after multiple test correction. Accord-
ingly, it has already been shown that no inbred strain of
mouse fed with a chow diet can develop atherosclerosis
[61, 62], therefore a deeper understanding of molecular
interactions involved in lipid metabolism in the mouse is
warranted.
As suggested in a recent work, there is a lack of mouse

models where the functionality of main effector genes of
the PI3K cascade is altered by the manipulation of their
regulators [47]. This can be explained by the presence of
essential genes of the PI3K pathway that have a remark-
ably poor conservation in terms of co-expression, and
even more strikingly we found that the first top four
diverged genes of this pathway are the crucial mTOR,
PIK3R4, AKT2, FGF23. Therefore, the knowledge of the
relatively few homologs that are commonly co-expressed
with these genes, as reported in Additional file 2, pin-
point mouse targets to test processes such as cancer
progression and glucose metabolism defects caused by
the de-regulation of PI3K/Akt signalling.
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Conclusions
Our study reports a large-scale analysis on the transcrip-
tional evolution of homologous genes between mice and
humans, considering numerous matches with previous
results. We also delineate a new parameter that defines
the conservation of gene interactions based on the num-
ber of commonly co-expressed genes of a homologous
pair. In association with information on changes in net-
work connectivity, duplication rate and proportion of
non-homologs of genes sets, we were able to define
tissues, pathways and diseases that were more or less
conserved at the co-expression level between mice and
humans. We showed numerous novel findings, and in
particular we noticed the strong conservation of bone
specific genes both in terms of gene homology and co-
expression, the increased network connectivity of genes
involved in epidermis formation in humans and of genes
involved in cholesterol metabolism in mice, and the poor
conservation of co-expression of crucial genes involved
in the PI3K pathway. In light of these findings, a dee-
per investigation of gene co-expression conservation
and divergence should be used for prioritiation, in
order to avoid testing in mouse genes and pathways
that are less likely to be relevant to humans. The
knowledge of conserved and divergent co-expression in-
teractions could not only help exploit the use of mouse
models in the understanding of human biology, genetics
and diseases but also lineage-specific evolution.

Methods
Data collection
Co-expression networks of humans and mice were ob-
tained from GeneFriends version 3.0 [26]. They were built
using microarray data from 3571 sets for the human map
and 4164 sets for the mouse map (http://genefriends.org/
about/), that in both cases they correspond to approxi-
mately 60,000 microarray chips and 20,000 experimental
conditions. The raw data of the co-expression maps are
made publicly available in the Zenodo Repository, http://
dx.doi.org/10.5281/zenodo.32579.
The human and mouse co-expression maps contain in-

formation of interaction among 19,727 and 22,766 genes,
respectively, labelled with Entrez Gene identifiers
(Genome assemblies: GRCh38 for human and GRCm38
for mouse). Biomart Ensembl was used to retrieve the
homologous gene pairs and the dN and dS values. Among
the list of homologous pairs, 14,846 had a one-to-one
orthologous relationship, 1211 had a one-to-many ortholo-
gous relationship and 1016 had a many-to-many ortholo-
gous relationship, adding up to 17,074 pairs of genes with
sequence homology.
The gene sets used to decipher the evolutionary pat-

tern of tissues, pathways and diseases were retrieved

from four different publicly available online sources, as
follows.
Lists of RefSeq IDs specific for 30 human tissues were

retrieved from the TIGER database [36], and Biomart
Ensembl was used to convert Refseq IDs in Entrez IDs.
The genes were specifically expressed in at least one of
30 different tissues catalogued by TIGER: Bladder, Blood,
Bone, Bone Marrow, Brain, Cervix, Colon, Eye, Heart,
Kidney, Larynx, Liver, Lung, Lymph node, Mammary
gland, Muscle, Ovary, Pancreas, Peripheral nervous sys-
tem, Placenta, Prostate, Skin, Small intestine, Soft tissue,
Spleen, Stomach, Testis, Thymus, Tongue, Uterus [36].
Pathway gene lists were retrieved from the Molecular

Signature Database formerly made for the GSEA tool
[31, 37]. From the several datasets present in the data-
base we downloaded the Canonical pathways (MsigDB
C2-CP) collection that has been assembled from various
curated sources such as KEGG [63], Reactome [64] and
BioCarta [65]. The collection contains in total 1320 gene
sets designated with Entrez IDs.
The disease gene sets derive from an accurate selec-

tion [38] of gene related diseases formerly made for the
Genetic Association Database (GAD, [48]). GAD con-
tains gene records collected from the survey of publica-
tions on candidate gene studies and genome wide
association studies, but Zhang et al. selected only the
genes positively associated with a disease and that were
annotated with a MeSH term were included in the
collection. In order to increase the statistical power of
our results, from the 1317 diseases contained in the
downloaded file, we removed the diseases reporting less
than 10 genes, having in total 208 disease gene sets, in-
cluding an aging gene set retrieved from the GenAge
database (build 17, human dataset with 298 genes), was
also included in the disease dataset [39].

Statistical analysis and data distributions
The R software was used to perform statistical analysis on
the data. The Kruskal-Wallis rank sum test, Spearman
correlation, the Mann Whitney U test, F-test, the Fisher’s
exact test and multiple test corrections have been
performed using pre-built packages. The sets of data used
were tested for normality with the Shapiro test and for
skewness using the R package moments. For all the distri-
butions we rejected the null hypothesis of normality and
we depicted a right-skewness (dN/dS values: Shapiro
test W = 0.82 with p-value <2.2e-16, skewness = 1.78,
number of commonly co-expressed genes: Shapiro
test W = 0.96 with p-value <2.2e-16, skewness = 0.57;
network connectivity in human: Shapiro test W = 0.65
with p-value <2.2e-16, skewness = 3.57; network connectiv-
ity in mouse: Shapiro test W= 0.57 with p values <2.2e-16,
skewness = 3.93).
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Number of commonly co-expressed genes and functional
annotation analysis
Using a custom script in R, the 5 % genes with the high-
est co-expression values have been selected for each
homologous gene pair, corresponding to 968 and 1138
for humans and mice respectively including non-
homologous genes. Therefore we counted how many ho-
mologs simultaneously appear in both the human and
the mouse top 5 % of co-expressed genes and we refered
to it as number of commonly co-expressed genes (CCG).
DAVID was used to perform the enrichment analysis
[30] on the two gene lists derived from the human coun-
terpart of the top 5 % and bottom 5 % of homologous
pairs ranked by the number of CCG. The clustering tool
of DAVID was used to report the results considering the
entire set of homologous genes as background. The
GSEA analysis was performed in the pre-ranked mode
using the “classic” option for the calculation of the en-
richment score.

Co-expression maps and construction of directed
networks
Co-expression maps have been created using a vote
counting approach. Precisely, it was counted how many
times the expression of two genes was simultaneously
increased or decreased across the different conditions of
each dataset and the obtained value was normalized with
how often the two genes were not co-regulated [26].
Genes that are regularly associated in any condition have
higher co-expression values compared to genes associ-
ated with different genes in various conditions.
Subsequently, directed networks were extracted from

the co-expression maps. For each gene we retrieved all
the top co-expressed genes using a percentage threshold.
We chose the threshold of 1 % since it permits to obtain
more significant and detailed results in comparison to a
higher threshold and, at the same time, it does not re-
duce strongly the sensitivity compared to a more strin-
gent threshold as also argued in previous works [66, 67].
Moreover, a reason that motivated us on using a per-
centage threshold instead of one based on co-expression
values derives from the fact that we aim to compare data
coming from species-specific arrays where the expres-
sion levels are incomparable given the different
hybridization properties [8].
We created two networks, one derived from the

human co-expression map and one from the mouse co-
expression map. A network is mathematically defined by
G = (V,E) where V is the set of nodes and E is the set of
arcs. The basic structure of a network is the adjacency
matrix A(G) with an mxm size and refering to our
network the variables m are the number of genes, where
Aij = 1 if gene i and gene j are connected and Aij = 0
otherwise.

We built directed networks, meaning that links
present a direction (i.e.Aij ≠Aji), and we assigned a di-
rected arc from the node i to the node j if i is present
among the top 1 % of co-expressed genes of j. The build-
ing and the topological analysis of the two networks
were performed in R, with custom scripts and the igraph
package [68].

Differentially connected genes and functional annotation
analysis
The number of arcs attached to a node in a complex
network is defined by connectivity or degree (k). There-
fore, the number of nodes that interacts with the i-th
node is evaluated in terms of adjacency matrix as:

ki ¼
Xm

j¼1

Aij
� �

Considering that we have two biological networks based
on homologous genes between mouse and human where
each node represents a gene, we defined k1(i) and k2(i’)
the connectivity of the homologous genes in the human
(1) and mouse (2) networks respectively. The connectiv-
ity values were normalized in respect to the size of the
networks since they are built using a percentage thresh-
old. Therefore, to calculate the differential connectivity
values we added 10 to each connectivity value in order
to reduce the disproportionate fold change in connectiv-
ity among low values and then divided the human
homolog term by the mouse one:

DiffK i; i 0ð Þ ¼ K 1 ið Þ þ 10ð Þ= K2 i 0ð Þ þ 10ð Þ
To better handle the differential connectivity values, we
calculated the negative reciprocal for values comprised
between 0 and 1, and later on we subtracted one from
positive and added one to negative values. In this way,
genes with a value greater than zero are more connected
in human while genes with a value less than zero are
more connected in mice.
As for the genes ranked by the number of commonly

co-expressed genes, we performed an enrichment ana-
lysis with DAVID ranking our dataset according to the
value of differential connectivity and using the top 5 %
and bottom 5 % of human homologs for the DAVID
cluster analysis. The top 5 % of genes correspond to the
homologs with higher connectivity in human, while the
bottom 5 % of genes correspond to the homologs with
higher connectivity in mouse.

Tissue, pathway and disease analysis
We treated the tissues, pathways and diseases gene sets
in a similar fashion, therefore the methodology used is
reported in the same section. For each gene set we
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reported four different parameters describing evolutionary
aspects: (i) the conservation of co-expression in terms of
the number of homologs commonly co-expressed, (ii) dif-
ferential connectivity, (iii) ratio of duplication events and
(iv) the ratio of non-homologous genes (Additional file 2:
Figure S5).
(i) The conservation of co-expression and (ii) the dif-

ferential connectivity of a gene set was calculated using
a Mann Whitney U test on the values of the gene sets
and the remaining genes. As a measure of variation, we
used the median difference between the values of the
gene set and the remaining genes.
(iii) The ratio of duplication events and (iv) the ratio

of non-homologous genes of each gene set were tested
using the Fisher’s exact test. For (iii) the proportion of
duplicated genes of a gene set was compared with the
proportion of duplicated genes in the remaining genes,
and in a similar way for (iv) we compared the propor-
tions of non-homologous genes.
The genes co-expressed with each gene set were re-

trieved in the following way. The redundancy of a com-
monly co-expressed gene with the homologs of a gene
set was calculated in terms of relative frequency. To as-
sess the significance of association of a gene with the
gene set, a permutation analysis with 1000 iterations was
performed by repeating the analysis on a number of ho-
mologs equal to the size of the gene set that were ran-
domly selected from the entire dataset. The p-values
were determined as a fraction of permutation values that
are at least as extreme as the original value. Lastly, for
each set of p-values we applied the Benjamini & Hoch-
berg multiple testing correction method.

Availability of supporting data
The full data of the co-expression maps are made
publicly available in the Zenodo Repository, http://
dx.doi.org/10.5281/zenodo.32579. Supplementary material
is available both along with the article and in the Zenodo
Repository.
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