\,yfj(ﬂ'ﬂ'({/(ﬁyh
MATHEMATICAL
ANALYSIS AND

ACADEMIC
PRESS J. Math. Anal. Appl. 272 (2002) 89-116 APPLICATIONS

www.academicpress.com

On the resonances of the Laplacian on
waveguides

Julian Edward

Department of Mathematics, Florida International University, Miami, FL 33199, USA
Received 19 October 2001
Submitted by F. Gesztesy

Abstract

The resonances for the Dirichlet and Neumann Laplacian are studied on compactly
perturbed waveguides. In the absence of resonances, an upper bound is proven for the
localised resolvent. This is then used to prove that the existence of a quasimode whose
asymptotics is bounded away from the thresholds implies the existence of resonances
converging to the real axis. The following upper bound to the number of resonances is
also proven:
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1. Introduction

Resonances of the Laplacian have been the object of study in a wide variety of
geometric settings (see surveys in [33,37,39]). Resonances, which are essentially
equivalent to poles of the scattering matrix, have been related to long-lived
waves (“metastable states” in the quantum mechanics literature) and also arise
naturally in studying the long time behaviour of evolution equations, particularly
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the wave equation (see [24], where this connection is pointed out in the context
of Schrodinger operators).

Despite the physical significance of resonances, very little is understood about
the resonances associated to perturbations of waveguides. The only work known
to this author that explicitly studies resonances is by Aslanyan et al. [1], where
the authors estimate the complex part of resonances arising as perturbations of
trapped modes. The authors also use numerical methods to count the resonances
that appear at low frequencies.

Several other works on the scattering theory of waveguides indirectly apply
to resonances. Christiansen and Zworski [6], and independently Parnovski [14],
have computed the asymptotics for the embedded eigenvalue counting function
added to the scattering phase for boundariless manifolds which are asymptotic
to a cylinder. They also proved a sharp upper bound on the eigenvalue counting
function, improving on an earlier work by Donnelly [7]. Melrose [12] studied
the properties of the resolvent for asymptotically perturbed cylinders, including
the nature of the singularity of the resolvent at the thresholds. Weidenmuller [34]
studied various scattering theoretic properties of Laplacian on the perturbed strip
with Dirichlet boundary conditions.

Also related is the extensive literature on the existende®egigenvalues. With
our definition of resonance, ary?-eigenvalue will be considered a resonance.
The existence of 2-eigenvalues for waveguides has drawn much study, motivated
both by their association with standing waves or “trapped modes” (see [8,9] and
references therein) and with their role in forcing equations ([17,18] and references
therein). However, it is generally believed that-eigenvalues do not exist for
generic perturbations of the strip.

In this paper, we consider the resonances associated to the Laplacian on
waveguides with either Dirichlet or Neumann boundary conditions. We prove a
resolvent estimate from which it follows that the existence of a quasimode with
certain asymptotics implies the existence of a sequence of resonances approaching
the real axis. We also prove an upper bound on the number of resonances in a
neighbourhood of the physical plane.

We define resonances as poles of the meromorphic continuation of the
resolvent away from the thresholds, in union with drfyeigenvalues occurring at
the thresholds. In particular, 1€ ¢ R? be a domain with smooth boundary which
to the exterior of some compact set coincides with the stripo, co) x (0, ).

Let A be either the Dirichlet or Neumann Laplacian, with signs arranged so that
the operator is positive semi-definite. It is well known that the Dirichlet Laplacian
has essential spectrufd, co), with thresholds aI{JZ}J For the Neumann
Laplacian, the essential spectrum @ co) with thresholds a(JZ} .Let x €
C3°(R2) i.e., a smooth function of compact support. We show |n Section 2 that
x(A — k)~ 1X, an analytic function ink with values in the bounded operators
on L2(£2), extends meromorphically froi® — [0, co) to an infinitely branched
Riemann surfacé, with the branch points occurring at the thresholds.
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The geometry ofS was studied in [34], where it is proven thatis not
simply connected. This, and the infinitely many branch points, are probably
the main reasons that the resonances on waveguides are less well understood
than for the corresponding problem for exterior domains (for exterior domains
the corresponding Riemann surface is the surface associatgd tiwor odd
dimensions, and Ip for even dimensions). Also, the tools of complex scaling
as in [22] have not been established in this setting.

Let I7: S — C be the canonical projection. The Riemannian metric induced
by IT naturally induces a distance function Snpwhich we denote dist. We prove
the following resolvent estimate:

Theorem 1. Let 2 ¢ R? be a smooth domain which to the exterior of a bounded
set equals the strif(x, y): x € (—o0, 0), y € (0, 7)}. Fixe > 0. Then for integer

p =23, q <0, p/2), there existsV, , > 0 such that ifm > M, ,, the following
property holdsif there are no thresholds in the interveh —a — 2m=9, m + a +
2m~%) and no resonances in the open set

{k € S: dist(k, [m —2m™, m 4+ 2m~?]) < 2(m — 2)" "},
then fork e [m —m~—9, m +m~1], we have
|x(A=107x f2y 2 < CoR?P.

Here C, is a positive constant depending only prand £2.

We also prove some upper bounds in a neighbourhood of the thresholds; see
Lemma 7. A consequence of this theorem is that the existence of periodic billiard
trajectories in2 satisfying certain geometric hypotheses will imply the existence
of a sequence of resonances converging to the real axis. To be specific we must
first define localised quasimodes.

We define a pair of sequencés;, A ;), with u; in the operator domain of
andi; € R, to be a quasimode if the; are uniformly compactly supported with
lujll=1,1; — oo, and

H (A—=Aj)u; H L2(2) = 0()“;00)-

Quasimodes that are supported in a neighbourhood of a stable periodic billiard
trajectory and for which the asymptotics of are fully determined by the local
geometry have been constructed by a number of authors [2,3,11]. In Section 4 of
this paper, we briefly present an example due to Buldyrev.

Coroallary 1. Suppose there exists a quasimode such that there exist8 such
that

’)Lj—nzy >o, Vn,jel.
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Then there exists an infinite sequeritg} of resonances oft such that for any
N >0,

|x,-—k,-|<cN,\;N.

Corollary 1 follows from Theorem 1 by direct application of the arguments
appearing in [29]. Such “quasimode-to-resonance” results, baseal gmori
resolvent estimates, have previously been proven for other geometric settings,
[25-29].

If the quasimodes also satisfy certain spacing hypotheses, then Theorem 1
would also imply that the resonance counting function is bounded below by the
guasimode counting function (see [29]).

Using estimates proven in Theorem 1 along with Jensen’s formula, one can
also obtain an upper bound on the number of resonances near the physical plane.

Theorem 2. Let {k;} be the resonances af, counted with multiplicity. Define

1
N(r) = {kj: dist(k;, physical plang < 1 + Em’ lkj| < r}.

Then for any > 0, there exists a positive constafitsuch that
N(r) < Cr3te.

Using the methods of this paper, one could also obtain a global upper bounds
on the number of resonances.

Upper bounds for the number of resonances proven in other geometries suggest
that the sharp upper bound fof(r) should of the formCr. It should also be
noted that Christiansen and Zworski in [6] proved that the sharp upper bound for
the embedded eigenvalue counting functiof'is

We now give a sketch of the proof, which is based on the Fredholm determinant
method. Letys, x2 be smooth cutoff functions of bounded support. Then using
a well-known procedure (see, e.g., [23]), we show thatd — k) ~1x, extends
meromorphically to the Riemann surfade It is well known that the (non-
threshold) poles of the resolvent are among the zeros of a certain Fredholm
determinant which is analytic oft away from the thresholds. We use estimates
for the Green'’s function for the unperturbed strip and adapt arguments previously
used to study resonances for the exterior problem [12,31,35] to obtain an upper
bound on the Fredholm determinant. Using the minimodulus theorem of Cartan
together with an adaptation of a minimodulus theorem for sectors found in [4],
we obtain a lower bound on the Fredholm determinant.

Arguing as in [36], we then obtain aa priori estimate on the extended
resolvent in an open set away from the thresholds and away from the resonances.
Theorem 1 is then proven using an application of the maximum principle inspired
by one used in [29], where the argument is given in a semi-classical framework.
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The use of the Cartan theorem in the study of spectral and scattering theory was
initiated in [16,38], and the use of the minimodulus result for sectors by [15]. For
a different proof of the minimodulus theorem for sectors see [21].

Theorem 2 follows by applying Jensen’s formula for meromorphic func-
tions [4], together with the upper and lower bounds on the Fredholm determinant,
to obtain upper bounds on the number of resonances on disks, the union of which
covers the positive real axis. Remark: for the exterior problem in odd dimensions,
Jensen’s formula was used to obtain global, sharp upper bounds on the number of
resonances [35].

We conclude this section by observing that the methods used in this paper
could easily be applied to prove analogous results for perturbations of more
general cylinders, in particular the cylinderR¥:

[y, 2 %2+ %=1, z€(—00,00)}.

Note. Since the submission of this paper, we have received a preprint from
T. Christiansen [5] in which the sharp estimaté¢-) < Cr is proven.

2. Preliminaries

We prove our results for the Neumann Laplacian, leaving it to the reader to
make the simple modifications necessary for Dirichlet boundary conditions.
Let

20={(x,y): x € (—00,00), y € (0, m)}.

Let £2 be a domain with smooth boundary such that there ekists 0 so that

.Q—[,/x2+y2>M}:.Qo—{,/x2+y2>M}. (1)

On such a domain, we define the Neumann Laplacigras the operator living
on L2(£2) with

and with operator core

{u e L3(2), Auc L3(R), g—“ = o}.
n

Here 9/0n is the normal derivative at the boundary &f. (For the Dirichlet
Laplacian, the operator cored¥°(s2).)

Denote byL?(£2) the set of square integrable functions @n and the set of
bounded operators ab?($2) by £(L2($2)). Denote byB(a, r) the ball centered
at a of radiusr, intersected withf2 when appropriate. Denote the Neumann
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Laplacian ons2 (respectively29) by A (respectivelyAg). Define the Sobolev
spacesH!($2) as the operator domains @fA + 1)/2. We define a smooth
partition of unity x1 + x2 = 1 such thaty; > 0, supggx1) C B0, M + 2), and
x1=10onB(0, M + 1). We also define smooth cutoff functioms> 0 such that
71 = 1 on supjoyx1) and suppr1) C B(0, M + 3), andzz = 1 on suppx2) and
72 = 0 on B(0, M). Finally, we define a smooth cutoff functignsuch that the
supfp) C B(0, M +4) and

eleom+3 =1 2

Denote the associated resolvémty — k)~1 by Ro(k). Denote(A — k)~1 by
R(k). Then itis well known that the Green function for the operatgr— %, i.e.,
the Schwartz kernel foRg(k), is given by

1 ,
Gr(x, ’x/’ N — e*~/7k\x7x\
k(x, y,x°,y) o
o0 l >
+ E \/Z_kffV ne=klx=x1 cogny) cogny’). 3)
n=1 ne -

In the formula above, the branch lines for the functibrs +/n? — k are assumed

to be[n?, 00). In what follows, let arg be the argument associated to the branch
point n2. For each square-root function, the $et arg, (k) € (0, 27)} will be
referred to as the “physical branch,” and the 8etarg, (k) € [2r, 0]} the non-
physical branch.

Let S be the infinitely branched Riemann surface associate@,toThusGy
extends pointwise t§. The geometry of was studied in [34]. A point € S will
be on the “physical branch ¢f’ if

arg,(k) € (0,27), Vn;
thus the physical branch df can be identified with the subs€t— [0, o) of
the complex plane. Fok € S, we denote byA(k) the finite multi-index(n1,
...,np) such thatk is on the “non-physical branch” precisely for the functions
{yn? =Kk .

Let IT be the canonical projection 6fontoC. The induced Riemannian metric
on S induces a distance function that we will denote dist. It will also be convenient
to define the following functions ofi: |k| = |ITk|, Rk = RITk, and3Jk = IT1k.
Note that sincelT is not a global isometry, digf1, z2) is not always equal to
lz1 — z2].

Since we will be concerned with the behaviour of the resolvent only in a
neighbourhood of the physical plane, we shall define the following subséts of

S ={k € s: dist(k, physical plang < 1+ /|k[}.
It will also be convenient to study away from the thresholds, hence for 0
So = {k € : dist(k, n®) > o, Vn € Z}.
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\

*Ak)={1}

Ak)={n«}

t t
2
M 1 (nk+l )2

AK={01,.,nu} o
AK={0,1,.,ny}

Fig. 1. Possible values fot (k).

Fork € S, definen, to the the greatest integer such thég on the non-physical
plane for,/n,f — k. Note that (see Fig. 1)

3 {h or
keS = A(k):{{o,l,...,n}, or
{n}.
DenoteA (k)€ to be the complement of (k) within the integers. We note for
future reference the following formula:

SYAYA 2_ ¢,
St\/nz——k:j:((“gk) +(I’l - gh(k))

2y1/4

1
x|(1— ) (4)
V1+ (Jk/(n2 — Rk))2
with the plus (respectively, minus) sign appearing whenA (k)¢ (respectively,
n e Ak)).

Lemma 1. Lety1, ¥» be smooth functions of bounded support®rhat depend
on x alone, and with values ifi0, 1]. Then the mapping fronr® — [0, c0) to
L(L?(£2)) given by

k — YraRo(k)yn

extends to a meromorphic function 8nAlso, the same is true for the mappings

0 d
k — 8—1/f2R0(k)1/f1, k — —vy2Ro(k)y1.
X ay
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Furthermore, fork € S, on the physical sheet,

i .
veRooya| < CIn(kDQA+ kD2 i=0,2, (5)
L“—L

whereC depends only oa, v1, ¥, and

8i .
’ -2 Ro(k) Y1 <CA+ kD72, i=13, (6)
8xl L2—>L2

whereC depends only oa, 1, V.

Proof. The analytic extension ofi2Ro(k)y1 and its first partial derivatives
follow immediately from the compactness of the support/aet;; >, together
with the pointwise meromorphicity ik of Gy.

To prove Egs. (5) and (6), fikon the physical plane. I5k| > 1, then Egs. (5)
and (6) hold be the Spectral Theorem and interpolation. Thus in what follows, we
assumeask| < 1.

Let P be the orthogonal projection af?(£29) onto the closed subspace
spanned by f(x) cogny): f € L3R), 0< n < ni}. Thus(I — P)Ao(I — P)
is a self-adjoint operator whose spectruni(s; + 1)2, 00). Sincek is on the
physical branch of all of the square-root functions associated to the Schwartz ker-
nel of (I — P) Ao(I — P), it follows that((I — P)Ao(I — P) — k)1 is a bounded
operator on.2(£2g) and the following estimate holds by the Spectral Theorem:

|1 = PYRot)(I = P)| = [ (I = P) oI — P) — k)|
<k -+ <ot
The last inequality follows from the assumption thiat- n?| > « for all n. Hence
|[v2Z = PYRo()(I = P)y2| <@, 7

We now estimate the norm of the operatorP Ro(k) Py, whose Schwartz
kernel is

Y1) (x) —e
ny
YY) ; anl__ke—v "=kl cogny) cogny’).

In what follows,C will denote various positive constants that are independent
of k, n. Then, sinceJk| < 1,

Nk

1 +Z 1
AR a2 K]

nj

1
< - -
"0 |v/n2 — k|

[¥1PRo(k) P2 || <

< CIn(%k). 8)
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Since P commutes withRg(k), it follows that

Y1(I — P)Ro(k)({ — P)Y2 + Y1 P Ro(k) P2 = Y1 Ro(k) 2.
Hence, by combining Egs. (7) and (8) we obtain that as oo with k € S, we
have

|¥1Ro(k)W2| < CIn(lk)).
Thus Eg. (5) has been proven foe 0. The proof of Eq. (6), withh = 1, is similar.
Fori = 2, we write

32 32 1

Wl/fZRO(k)I/fl = ﬁ(Ao + 1) "[Ao, Y2l Ro(k) Y1

32
+ (k+ D75 (4o + 1)~ Yy2Ro(k) Y1

92 B
+ 5540+ D) Yoy

Then the desired estimate follows from the estimates fe0, 1.
The proof fori =3 is similar. O

We now prove the existence of a meromorphic extensionR¢f). The
argument follows closely along the lines of the corresponding result for exterior
domains found in [23]. For a proof of this result for more general perturbations of
the cylinder, see [13].

Proposition 1. Let x € C5°(£2). Then the mapping froi@ — [0, co) to L(L?(£2))
given by

k— x(A— k)_lx
extends to a meromorphic function $h At each poleko, the coefficients of the
negative powers afk — ko) in the Laurent series are finite rank operators.

Proof. We define an approximation d&(k) as follows. Assume for the moment
thatk is on the physical branch ¢f. Let

Rq (k) = 1R (ko) x1 + T2Ro(k) X2 9
Herekg is a parameter to be chosen below.
We have
(A—KR,k)=1+K, (10)

with

K = (ko — k)t1R (ko) x1 + [A, T1]1R (ko) x1 + [A, 2] Ro(k) x2. (11)
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By Eq. (10) we have fok € C — [0, 0c0):
Ri=(A—k)~YI +K).

By Egs. (11) and (2) we hayeK = K, hence
Rup= (A=K o+ Kp).

Fork = ko and3(kg) >> 0, we have by the Spectral Theorem th&ip|[;2_, ;2 <1
and hence we can write

PR (K)o (I + Kp) ™t = pR(K)p. (12)

Fix such akg.

Next we observe from Eq. (9) that— pR,(k)p extends meromorphically
to S — {02, 12, ...}, with values in£(L?3(£2)). For the terms involvingRo(k),
this follows from Lemma 1, while for the term involving (ko), note that the
functionk — (ko — k) extends to the functiokh — (kg — ITk), which is analytic
on S. It follows that the meromorphy g R (k) o is equivalent to meromorphy of
(I+Kp)~L

On the other hand, singg and are compactly supported, it follows th&jp
is an analytic compact operator-valued functiorkadn S — {02, 12, ...}. Thus
pR(k)p is a finitely-meromorphic Fredholm family ik [30], and meromorphic
Fredholm theory thus impliesR (k) is meromorphic fok € § — {02, 12, .. .}.

To prove pR(k)p is meromorphic in a neighbourhood of the threshnfg
L € Z, one applies the argument above to the functior pR(L? — z%)p in a
neighbourhood of = 0.

Finally, it is easy to see that the functigncan be replaced by any smooth
cutoff function. This completes the proofo

Next, we note the following result due to Melrose [13, Proposition 6.28]. As
z — 0O for integerL,

A B
p(A—L?—z2)tp = S+ +C (13)

whereA is the orthogonal projection onto tfi&(£2) eigenspace associated to the
energy levelL2, B is a projection operator related to the generalised (ho(12))
eigenfunctions associated to the energy lev&landC is an operator bounded
nearz = 0. We will use this asymptotic formula to provide upper bounds on the
resolventin Lemma?7.

We now define the resonancesbfo be the polegR(k)p in S —{L2, L € Z},
in union with anyL? eigenvalues occurring at the thresholds. We define the
multiplicity of a non-threshold resonange as the rank of the projection

/,oR(k)p dk

Y
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for a sufficiently small contouy aboutk ;. The multiplicity of the any resonance
occurring at a threshold is defined to be the dimension of the corresponding
eigenspace.

3. Estimates on Fredholm deter minant

In what follows, letC be various positive constants. LEtbe as in the proof
of Proposition 1. A simple argument shows that+- K p) is invertible if and only
if (I + (Kp)®) is invertible. On the other hand, sinéé is a pseudodifferential
operator of order-1 in £(L?(£2)), with compactly supported Schwartz kernel, it
follows that(K p)3 is trace class. Thus the Fredholm determinantidet(K p)3)
is entire onS, and furthermore:

Lemma 2. The non-threshold resonancesf(counted with their multiplicities
are among the zeros of the function
k — h(k) = def(I + (Kp)3(k)),

counted with their multiplicities.

The reader is referred to [32] for a proof of this result.

The rest of this section is used to prove:
Proposition 2. For k € §, we have the estimate

C expC|k|3/2

dist(k, {L2, L € Z})3’
with C a positive constant independentkof

|h(k)| <

(14)

Proof. Assume in what follows that € S, k # L2 for L € Z. We apply the
theory of characteristic values developed in [10], and adapted to exterior problems
in [12,31,35]. The characteristic valugs;(A) of a compact operatoA are
the eigenvalues, listed in decreasing order and counting multiplicities, of the
operator|A|. We recall the following inequalities from [10}z; 1 x—1(AB) <
1 (A ur(B), pjk-1(A + B) < 1 (A) + ju(B), 1 j(AB) < || Allje; (B).

We write Kp = K1 + K2, with Ko =[A, 2] Ro(k) x2p0.

Applying inequalities on Fredholm determinants appearing in [10], we get

|det(7 + (K0)%)| < det(7 + 41K1°)° det(7 + 4IK2|°)°

< (]O‘o[(1+4u,-(|1<1|)3))6<]O"o[(1+4u,-(|1<z|)3))6.

j=1 j=1
(15)
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We shall estimate the terms on the right-hand side of the last equation with a series
of lemmas. We estimate first the term involvikg. Recall that fok € S

K1 = (ko — ITk)T1R (ko) x10 + [A, T1]1R (ko) x1p. (16)
Lemma 3.

o0

[T+ 4(K1)3) < CeCHINE vkes.

j=1

Proof. The argument here follows [35]. Sineg, x1 are compactly supported, it
follows by standard eigenvalue asymptotics for pseudodifferential operators [20]
that

wj(|rR (ko) xap) ~ Cj ™

and
1 (|4, Tl R (ko) xap|) ~ Cj Y2,

It follows that, denoting the largest integer belevioy | x |,
1K) < ClkILj/2) 7+ CLij2) 72,

Hence we get

wi(1K11%) < (njan (KaD)?
<(CIKILj/6+2) "1+ C(Lj/6) + 2 ?)°
<Clk]¥j3+cj%2
Note that|k|? < j is equivalent tdk|3j 3 < j=3/2, Thus

oo

[T@+4u;ak1p®) < [T @+cik/iP) ] @+ci™2?)

j=1 J<Ik|? J> k2
These two factors are bounded as in [35]; we sketch the argument. The first factor
is bounded by comparing it to

Ik|?
exp(/ln(1+ C|k/x|3)dx>. (17)
1
Note that
Ik|? Clkl Ik|?
/ln(1+C|k/x|3)dx< / In(l+C|k/x|3)dx+2/ Clk/x|®dx
1 1 Clk|

< Clk| In(lk]).
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Thus Eq. (17) is bounded by ei@|k|In|k]). The second factor is treated
similarly. Thus

o]

[ T2+ 4, (1K1D3) < eCHINAL (18)
j=1

Note that this estimate holds for dlle S. O

Next, we estimate the terms involvirkp away from the thresholds.

Lemma 4. Suppos& € . Then[ 172, (1+ 4 (1K2D)3) < eCIKP? whereC is
some positive constant.

Proof. The proof is an adaptation of the “good half plane—bad half plane” argu-
ment found in [31,35].

First, we assumé < S, is on the physical sheet, and assume without loss of
generality thatk| is large. We have, by Lemma 1,

wi(K2)=p;(p(I + )" M1 + A)K)
<uj(p + M| + MKz < Cj kP2

Now the arguments leading to Eqg. (18) are easily adapted to this case. In fact,
o o0
[T(@+4eK203) < ]2+ CIkI”?/53).
Jj=1 j=1

This last product is estimated as follows. First, one proves
|k|3/2

exp( / In(L1+ Clk|%2/x3) dx> < P (19)
1

as follows:
|k|3/2

/ In(1+ C|k|%?/x3) dx
1

k1¥2/Injk|  |k1%2/10 Ik[¥2
- / + / + / In(1+ Clk|¥?/x3) dx.
1 k13/2/Ink|  |kI3/2/10

The first and third integrals on the right-hand side are easily shown to be
0 (|k|¥/?), and the second integral is estimated as
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kI%/2/10 k13/2/10
In(1+ Clk|%?/x3) dx ~ / In(Cl1k1¥?/x%) dx
1k[3/2/In k| 1k[3/2/ In |k
< Clk|¥2.

Also it is easy to show that
o0
exp( / In(1+ CIk%¥?/x ) dx) < eCWI*2, (20)
Ik [3/2

By Egs. (19) and (20), the lemma holds foon the physical sheet.

Now supposé € S, is on the non-physical sheet. There are two possible cases:
A(k)=1{0,1,..., n,f} or A(k) = {nk} (see Fig. 1). Suppose for now the first case.
We write

Gr(x.x' v, y) = — (e~ k=¥l | ov=Klx—x|
. ») n\/—_k( )

e*«/ﬂ\x%/\ + eV nsz\xfx/l) cogny) cos(ny’)

1 vy v “klx—x
- o =l cogny) cogny’)
ol Z
+ n?=klx—x'l cogny) cogny’).
n= A+1
Note first that

e*«/nszlex’l _i_e«/nszlex’l _ e*«/nsz(xfx’) _i_e«/nsz(xfx/),
and hence the operatdn, whose Schwartz kernel is

1 (ef«/f_klex’l _i_e«/f_klex’l)

T —k
ng
2 / 2 ’
+ Z (efx/n —klx—x'] + e«/n —klx—x I) COS(ny) COS(ny’),
o n? —k

will have rank 2, + 2. Thus the operatofA, ©2]A1x2p will also have rank
2ny + 2. It follows now from Eq. (4) that fok € S,

1/2 .
eCIKY2 i <oy + 2,

i([A, 2]A <
wi([A, t21A1x2p) {O, P om+2

Also, observe that the operatap, whose Schwartz kernel is given by
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= NRx=x| \/n klx—x'|
7T\/__ke X_i \/_ cogny) cogny’)
+n%:+1 \/_ —Vn?—klx=x'l cogqny) cogny’),

equalsRo(ITk), i.e., Ro evaluated on the physical sheet. Hence
det(7 + 4| K2(k)|°)
< det(7 + 16|[A, 21 41x20[*)° def(] + 16][4, T21A2x20[%)°®

2np+2 1 o

< [T @+e™ ) eI (21)
j=1

< CIP2, (22)

The last inequality holds becauzsak|1/2 < Clkl.
For the case whera (k) = {nk} we write

1 e—\/—_k\x—x/\
A/ —k

Gr(x,x',y,y) =
ng—1
_l’_
= =
+ Z —vnt=kle= xlCOS(ny) cogny’)

n= '1k+1

= (e*\/”fifk”*x/‘ _ e/n?klw‘) cogny) cogny’).

2
ng —k

~VnE k= cogny) cogny’)

The argument in this case is similar to the one for the case previous. The details
are left to the reader.O

Proposition 2, fok away from the thresholds, now follows from Lemmas 3, 4
and Eq. (15). We now prove bounds on the determinant near the thresholds.

Lemma5. Let L be any integer. Then fdre S, dist(k, L?) < «,
Cec‘k‘3/2

dist(L2, k)3/2’

with C independent of, L.

|det(7 + (Kp)®)| <

Proof. The key observation is that the pole f&rat L2 is simple with rank one
residue. In particular, note that
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[A, Tz];e«/ szk\x’fx\
L2 —k

, 1 //e«/Lz—k\x’—x\ _1
=T +7
VL2 —k VL2 —k
where sgi¥) = 1 forz > 0, sgn(z) = —1 forr < 0. Thus, we may write
Kp = K3+ Ky,

+ 21_/ Sgr.(x/ _ x)e\/ L27k\x’,x\’

whereK3 is a rank one operator with Schwartz kernel

1
ﬁré’(x)p(f)xz(f) cogny) cogny’), (23)
and K4 has pointwise bounded Schwartz kernel in a neighbourhood df¢hin
the argument that follows we use the inequality

wj(1A+ B?) <2u;(IAIP+BI?),

which follows from the quadratic form inequalityh + B|2 < 2|A|2+ 2|B|? and
a minimax argument. Fix € (0, 1/2).

1w (Kp)3) = u; (1Kp1D)¥?
< wj(1Ks+ Kal?)? <2321 (1 K3 + [Kal?)
< 2%2(ura—o 1 (IK3D? + e +1(1Kah?) ¥,
It follows from Eq. (23) that

C/NL?2—k, j=1,
0, j>1

3/2

mrai—e (K3 = {

Thus

(1+1;((Kp)?))

—18

|deq(7 + (Kp)*)| <
1

< (1+23/2(7C +u1(K4)>3/2)
= (L2 _ k)l/2

o
X l_[ (142321 )1 41(Ka)3). (24)
j=2

.
Il

Now we analyse:;(K4). Let P be the orthogonal projection onto the orthogonal
complement of the subspacebf(2o):

:f(x>cos(Ly); /|f(x>|2dx<oo}.
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Then we haveky = K1 + K2P + K5, whereK1 and K2 are as in the proof of
Proposition 2, and whergs has Schwartz kernel

N L2—k|x' —x| _ /
p(x) (r”(x)eT_kl + 27 sgn(x’ — x)eV LAkl x|)
x x2(x")p(x") cosLy) cogLy"). (25)

Thus

3
10 (K8)® < (1t1n/3)42(K 1) + iins3) (K2 P) + pns3) (Ks))
< C(MLn/3J+2(K1)3 + 1 1n/3) (K2P)3 + g3 (K5)3)~
Hence, by applying inequalities for Fredholm determinants as in Eq. (15),

6
o0 o0

l_[ (1+2%2p1¢j-1)(Ka)®) < (H (1+ CMLej/3j+1(Kl)3)>
=1

00 36 / o0 36
X(H(l-FClleej/iBJ(KzP)s)) (]‘[(1+Cmej/3j(1<5)3)) .

j=1 j=1

j=1

The first of these products is estimated exactly as in the proof of Lemma 3, and
the estimate for the second of these products is derived similarly to the estimate
for det(7 + 4|K»|®) away from the thresholds (noting thay (K2 P) < pn(K2)).
Finally,

o]

1:[ (L+Cpy(Ks)® = exp(z (in(2+p ((K5)3)))>
~ exp(Z i ,-(<Ks>3))
< exp((z uj(|1<s|2)2) 1/2(2 1 (<K5>2))1/2)

<C.

The last inequality holds because, by Eq. (25), the Hilbert—-Schmidt norms (see,
e.g., [19, Vol. 1]) ofK5 andK52 are bounded by a bound independent offor &
in a small neighbourhood df?. Thus

o]

3/2
[ 1@ +2%2u -1 (1KaD®) < €M7
j=1

Proposition 2 now follows from Lemmas 3-50



106 J. Edward / J. Math. Anal. Appl. 272 (2002) 89-116

4. Resolvent estimate and bounds on number of resonances

Proving both Theorems 1 and 2 requires lower bounds on the Fredholm
determinant studied in the previous section. For this we use the following lemma,
which is an adaptation of an argument found in Cartwright [4, pp. 89-91]. The
Cartwright result has previously been used in the scattering theoretic context
by [15].

Lemma 6. Let k = re'?. Suppose the functiog is analytic in the sectofd e
(0, m)}, and satisfies
lg(k)| < C exp(CIk|¥?).

Let ¢ :R — R be any increasing, real-valued function such that,_, . ¢ (x)
= 00. Then, for anyM > 0, there exist®R, = Ro(M) such that for eachh > R»

lg (k)| > exp(—|k|>%p (|k])),

except perhaps in a set 6f denoted,, with |6,| < 1/(Mr1/2). Here|A| denotes
the Lebesgue measure 4f

Proof. By Carleman’s formula [11], we have

b/
sing, r2 1 ol
E < — F = j'[_R |n|g(Re' )|S|n9d9
0

1<m <R "n
R
+ l/(In| W1+l (= = =) dy+ x(R)
= 8(y s 52~ 72 ) 4+ x(B.

1

wherex (R) = O(1) asR — oo, andr,e'® are the zeros of(z) in upper half
space. Set In(x) = max(In(x), 0). Then it follows that

m
1 ol
—/In|g(Re’9)|SIn9d9
TR
0

1

R
1
> /(In+ 8O+ gl (—))) 5 dy = 0D

1
p 1
> —c/ywﬁ dy—0() > —CRY?— 0(1)
1

>_—CRY?, R> Ry, (26)
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for some constanRp. Now fix M > 0 and suppose now that for eachthere
exists a sef,, of measure at least/Mr1/2 such that fo® € 6,

|g(k)| < exp(—[k[>2¢ (kD).
Then we have
™ 1/(2M RY/2)
niR / In|g(Re?)|sinG do < CRY2 — 2R3 (R) / sind do
0

1
1/2 _ 5p3/2 _
<CR 2R ¢(R)(l COS(ZMRl/Z))

< CRY? — RY2¢(R)/(4M?). (27)

Comparing Egs. (26) and (27), we derive a contradictionKos R; for some
R1 = R1(M). SettingR2> = max(Ro, R1), we obtain forlk| > R2

|g(k)| > exp(|k[*%¢ (k).
except for argk) € 6, with |6x)| < 1/(M |k|*/?). The lemma is proven. O
Proof of Theorem 2. We can, without loss of generality, assuthe> R2, where

R> will be determined by Lemma 6. The proof will apply Jensen’s formula for
meromorphic functions [4, p. 9] to the function

h(k) = de{l + (Kp)®)

to obtain upper bounds on the number of resonances in a set of disks that form
a cover for the following subset ¢f.

1
{k € S: dist(k, physical plang< 1+ 5\/|k|, k| > Rz}.
We consider separately the two cases:

(A) the part of S which is a continuation from the upper half of the physical
plane,
(B) the part ofS which is a continuation from the lower half of the physical plane.

We treat case (A); the argument for case (B) is similar. To obtain the necessary
lower bounds ok (k), we first apply Lemma 6 and Proposition 2 to a sector that is
slightly shifted away from the positive real axis. Settiig= 100 andp (x) = Inx
in Lemma 6, we get fork| > R2

|h(k)| > exp(—|k|>2In|k|),

except for argk) € O, with |6 | < 1/(100k|Y/?). Fix a positive integeL. with
L? > Ro. Thus settingi (ko) = L? + L, one can choos&kg < L/99 such that
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|h(ko)| > exp(—|kol2In |kol). (28)

We now apply the Minimodulus Theorem of Cartan to obtain a lower bound on
|h(k)| near the real axis. The following version of the theorem can be easily
deduced fromthe arguments foundin [11, pp. 21-22]iganalytic inB(0, R) C

C and|g(0)| > 0, then for any- < R one has

2r In(3e/2n)
R—r In(R/r)’

—H
51> 12O (maxiz)l) . H=

this estimate valid inB(0, ) outside an exceptional set of disks whose summed
radii is less that 4R. We setR =L, r = L/(10), n = 1/(4L). Applying the
Cartan theorem and Proposition 2, there exists B(L2 + L, 1) C S such that

|h(k1)| > exp(—Clk1>2In kol In [k1]) > exp(—Clk1|>/?T€). (29)

Note that the diskB(k1, 0.9L) does not contain any thresholds. We apply Prop-
osition 2 and Jensen’s formula/dk) on the diskB(k1, 0.9L) to conclude that the
number of zeros, counting multiplicities, in the diBk = B(k1, 0.8L) is bounded

by C|k1|5/2+6.

Next, we bound the number of zeros in a neighbourhood of the thregfold
Suppose first thak(k) has a pole at = L2. Then clearly there exists; € S,
with dist(ko, L2) < 1, such thatih(kp)| > 1. The functionz — h(L? — z?) is
meromorphic in the disk

[z |e = VL2 —ko| < VOO(L+ D) };

here we view the disk as lying in the complex plane an the standard absolute
value function. The only pole far — h(L? — z2) in this disk is at; = 0, and by
Proposition 2 the pole has order at most 3. Hence by Jensen’s formula, the number
of zeroes in the disk

[z |z = VL2 — k2| < JOBL + 1)} (30)

is bounded byC|k2|%/2. We label the disk ir§ corresponding to Eq. (30) a3 .
Next suppose thak(k) has no pole at.2. It follows thatz — h(L? — z?)
is analytic in the disk{z: |z| < +/L}. By Proposition 2 and Lemma 6, there
existszy with |z1| < /L7100 such thati(z1)| > e~ 1E172INL Applying the
Cartan theorem, we obtairp such that|zz| < 1 and |h(z2)| > e €A%,
Now applying Jensen’s formula as above, the number of zeros on thgzlisk
|z — 22| < /O.8(L + 1)} is bounded byC L%?*¢. Again in this case we label the
corresponding disk i5 asB; .
Theorem 2 now follows by noting

= JV0k
{k € S, dist(k, physical shegt< % +1, Ry< k] < r}
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[r12
C U BLUBL O
L=|R2]?

Lemma 7. (A) For anyt, e, > 0, there exists a constarit dependent o, o
but independent afsuch that
loR(U)pl < CeCTIHT* (31)

forallk € S, — Uy, Bk, k1~ with |3 (k)| < |k|Y/2/2, wherek ; are among the
resonances oft.

(B) For L any integer, we have the following estimates at the threshélfbr
anye > 0, § € (0, 1/2). If there exist no resonances in the dBKL.2, §), then

Clk[%/2+eIn(1/8)
IPRPI < < k€ B(L?,8/2). (32)
If the only resonances in the digk L2, §) are precisely ak = L2, then
Clk[%/2+€In(1/6)
T2k
HereC is independent o, L, .

loR(K)pll < ke B(L?8/2). (33)

Proof. As in [36], we bound the resolvent in terms of Fredholm determinants.
In what follows, C will denote various positive constants. For simplicity we set
a=1. We recall:

pR.(K)p(I + Kp)~t=pR(Kk)p. (34)

We begin by estimating the resolvent away from the thresholds, so our analysis
will be conducted ors,, . 3
It follows from Eq. (9) and Lemma 1 that fére S,

loRapl 1212 < CIKIY, (35)
To bound(1+ Kp)~1, we proceed as follows: from [10, Theorem 5.1], we have
1 3
[+ K7 12, 12 <[detl + (Kp)®) | detl +KpP)”. (36)
By the proof of Proposition 2, we have
det(7 + 1Kpl?)° <M ke, (37)

We now obtain a lower bound di (k)| = | det(7 + (Kp)3)|. SetM = 1/100
and fix R» = Ro(M) in Lemma 6. In what follows, we assume without loss of
generality thatk| > R>. We will also prove the result only for the portion of the
non-physical branch i that is reached by a path from the upper half space.
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Arguing as in the proof of Theorem 2, fdr any non-negative integer, we
have that there exists € B(L? + L, 1) such thath(k1)| > exp(—|k1|%2In|k1]).
Applying the Cartan theorem witR = 0.9L, r = 0.8L, andn = (2L)~%~1/4,
we get

lh(k)| > exp(— (2 + 1)C|k|>?T€), (38)

for k in B(k1,0.8L) but outside an exceptional set of disks of radius no larger
than (2L)~%. We decompose the system of disks into the unigt/;, where
U; are connected and mutually disjoint. We can assume that adontains
a resonance, which we labk}. For if not, then Eq. (31) holds oty; by the
Maximum Principle. Using the inequali2L)~% < |k;|~, it then follows that
foreachj, U; C B(kj, |kj|™").

We now obtain lower bounds oh in a neighbourhood of the thresholds.
Choosek1 with 9tk1 = L2 and3k1 € (1, (L + 1)/100), such that

Ih(k1)| > exp(—1k1>2In [ky]).

Suppose first that(k) has a pole of ordef at L2, with j = 1, 2 or 3. Applying the

Cartan theorem to the functian— z/h(L? — z2), in the disk{|z — /L2 — k1| <
R} with R =1.2/L,r =+/L, andn = 1/(4R(2L)%) we obtain

_Ct|k|5/2+e

lh(k)| > (39)

L2 k2
for k in B(L2,0.9L) but outside a union of disks with summed radii no greater
than(2L)~%. On the other hand, if — k(L2 — z?) is regular at; = 0, then we
can apply the Cartan theorem directly to obtain Eq. (39) holding(ih?, 0.9L).
In either case, the inequality appearing in Eq. (31) now holdsiirin the
complement of the system of disks. Arguing as above, we can assume that the
union of disks is of the forny J B(k;, |k;|~"). Part (A) of the lemma has been
proven.

We now prove Eq. (32). Thus suppose there exists no resonance in the disk
B(L?, 8). Using Eq. (3) and Proposition 2, and using the Cartan theorem as above,
we have

lo(a—L2—2z371p|

< |oRak)p]| |detT + 1Kol®) *|det(1 + (Kp)3)|
C CW¥?
N
CeCIKIP2<In(1/8)

< sz |z| € (\/5/_3’\/25/3)-

Clk|%/2+eIn(1/s
< oCIkI (1/8)
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Also, by Eq. (13), the function — zp(A — L? — z2)~1p is analytic in{z: |z| <
+/28/3}. By the previous inequality we have

CeC|k|5/2+f In(1/5)

=3 . lzl=4/3/2.

Hence Eq. (32) holds by the Maximum Principle. The proof for Eqg. (33) is
similar. O

|zp(a - 2 272 <

Lemma 8. Let p be an integer withp > 2 and g € [0, p/2). Then there exists
a positive constanta?/,, ,, C,, such that ifm > M, ,, and if f (k) is an analytic
function in a region/” in C, with

1 1
— % _ —-q —-q — Ry —_—
p_{gl(k)e[m 2m~ 4, m +2m™1], o7 <Jk K (?ﬁk)zl’}’

and if f satisfies the estimates

(A) 1f ()| <X,
(B) If (k)] <1/3(k) for Ik >0,

then fork e [m —m~—9, m +m~1] we have

| f (k)| < Cplk|?P. (40)

Proof. In what follows, C;, will denote various constants independentafk,
while C will various constants independentof k, p. We use an argument based
on the Maximum Principle. Below, we will construct a family of functiaigk)
parametrised by such that

(1) F, is analytic onl",
(2) |Fyl<eonr,
(8) ontheintervalm —m=4,m + m™1], | Fy| > 1/2,
(4) on{zeT: |z—m| > (3/2)m~1}, we have F, | < C|k|? exp(—C |k|2P—24).
Assuming suclF, exist, consider the function of:
h(k) = f (k) Fy (k) exp(—ik?PTY).

On the curvelk = —1/(Mk)?, there exists a positive constamf; such that
Nk > M1 impliesI(k2P+1) < —(Rk)? and|k|? — (k)P < C. Thus we have

(k)| < exp(|k|P)e exp(—(k)P) < C.
On the curvelk = 1/(9k)??, we have fomik > M

|h(k)| < (Rk)?Pe| exp(C)p)| < Cp(Rk)?P.
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On the curvéik =m + 2m~4, we have
|h (k)| < exp((m +2m~1)P)CIk|? exp(—C|k[?P~27) | exp(C )|
< Cplk|? exp(|k|P~24).

Noting that p > 2g, it follows that there existd/> > 0 such that ifm > M>,
then|r(k)| < Cp. Similarly, on the curveik =m — 2m~7 we have (assuming
m > M3)

[h(kK)| < Cp.

ChooseM3 such thatik > M3 — 2 impliesC,,(?ﬁk)zP > C with C the maximum
of the variousC’s above. SettingVf,, , = max(M1, M, M3), we have that for
m > M, 4 it follows by the Maximum Principle that.(k)| < C,(m + 2m—1)2p
on I'. Since |F, exp(—ik?’*t1)| > 1/2 on the intervallm — m~4,m + m~4],
Eq. (40) follows.

It remains to prove the existence 6f. Let ¢ € C5°(R) by defined so that
v=21lonm—11In"9,m+1L1Im9],andy =0on(—oo,m —1.2m~ 91U [m +
1.2m™1, 00). Define

C(y — 2
Fa(2) = (ra )2 / exp(%)vf(x)dx.
R

The analyticity ofF,, follows immediately. To prove property (2), note first that

.2
(ra—2)~ Y2 / exp(a—);> dx=1. (41)
R

Thus, setting = u +iv, with u, v € R, it is easy to see that
|Fa(2)] < explv?/a?].
Settinga = (m + 2m~—9)~P, property (2) follows.
To prove property (3), supposes [m —m ™9, m +m~9]. Thus

2
|Fa(z>—1|=n—1/2fe—> [y (ay +2) — 1| dy
R
<12 / e_y2 dy<1/2
|y|>0.1m~ 49/«

sincem™1 /a is large.
For property (4), assume=u +ive I' N{¢: | —m| > 3/2m™1}. Then

(v — \2
|Fo(2)] < (ra™2) "2 |expv?/a?) | / exp(Lz””)w<x>dx
o
R
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iy N2

< (a2 Y2 / exp<4(x 2 u)-) dx

o
[m—1.2m=4,m+1.2m—4]

< Ca~texp(—(0.3m™1)%a~2) < Clk|P exp(—C|k|?P~24).
The proof of Lemma 5 is complete.n
Proof of Theorem 1. In view of Lemmas 7 and 8, we set= 3. We can (in-
creasingM,, , if necessary) suppoge R (k)p|l < K away from{J(k;, 1k;17").

Letg [0, p/2), and letM,, , be as in Lemma 7. Assume the hypotheses of the
theorem; hence the operator valued funcldtik) e is analytic on

{k es: dist(k, [m—2m=—9,m+ 2qu]) <2(m — 2)73}.
Settingr = 2p in Lemma 7, we obtain

loR(K)pll < e
in the region

G ={kes: distk, [m —2m™9, m+2m™7]) < (m — 2)"3}.

Let I" C G be an open subset such that the projecfibmestricted tal”, is an
isometry ontol”, with I" as in Lemma 8. Thug" lies on one of the branches of
g, and its intersection with the physical plane will be non-empty and consist of
one of the two sets

1
k: I_= {ﬂt(k) em—2m~4, m+2m™ 1], ——— <3k<0},

or

k: Iy = {E)’t(k) em—-2m™1 m+2m1], 0<IJk < (9%]];)6 }
Assume for the moment that the intersection/is. Then we have shown that
estimate A of the previous lemma holds foR(k)p, and estimate B holds by
the Spectral Theorem. The conclusion of Theorem 1 follows. The cafe &f
proven in the same way, using the obvious adaptation of Lemma 8. The theorem
now follows from Lemma 8. O

5. Example of quasimode construction

We present an example due to Buldyrev [3], in which a quasimode is con-
structed for the Dirichlet Laplacian. Figure 2 is the union of two circular arcs
of radii 1, r2. Under an assumption (see p. 20 in [3]) that will be satisfied for
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Fig. 2. Circular arcs.

Fig. 3. Waveguide with resonances.

genericry, r2, d, Buldyrev then constructs a quasimode concentrated on the peri-
odic billiard trajectory of period 2 which lies along they-axis. The associated

frequencies are? , with

1 1 2d 2d 1
Wpg =57 p+ q+§ arcco 1—r_1 1_}’_2 +0 > :

herep, ¢q are arbitrary positive integers. It is easy see that forrany,, d and any
fixedg, the sequence, , will satisfy the asymptotics required in the hypothesis
of Corollary 1.

It should be remarked that under weaker—and easier to verify—hypotheses
onry,rz,d, Buldyrev’s construction yields a sequence of functiopsuch that
1A —=Apujllp2e) = 0()»71) with m < oo, and this would enable one to prove a
weaker version of Corollary 1.
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Fig. 3 shows one of the ways in which the circular arcs in Fig. 2 can be placed
in a portion of a waveguide (actually only the portion near the periodic billiard
trajectory is necessary for the quasimode construction).
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