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Abstract

The resonances for the Dirichlet and Neumann Laplacian are studied on compactly
perturbed waveguides. In the absence of resonances, an upper bound is proven for the
localised resolvent. This is then used to prove that the existence of a quasimode whose
asymptotics is bounded away from the thresholds implies the existence of resonances
converging to the real axis. The following upper bound to the number of resonances is
also proven:

#
{
kj ∈ Res(∆), dist(kj ,physical plane) < 1 +

√
|kj |/2, |kj |< r

}
<Cr3+ε .
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1. Introduction

Resonances of the Laplacian have been the object of study in a wide variety of
geometric settings (see surveys in [33,37,39]). Resonances, which are essentially
equivalent to poles of the scattering matrix, have been related to long-lived
waves (“metastable states” in the quantum mechanics literature) and also arise
naturally in studying the long time behaviour of evolution equations, particularly

E-mail address:edwardj@fiu.edu.

0022-247X/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved.
PII: S0022-247X(02)00137-3



90 J. Edward / J. Math. Anal. Appl. 272 (2002) 89–116

the wave equation (see [24], where this connection is pointed out in the context
of Schrödinger operators).

Despite the physical significance of resonances, very little is understood about
the resonances associated to perturbations of waveguides. The only work known
to this author that explicitly studies resonances is by Aslanyan et al. [1], where
the authors estimate the complex part of resonances arising as perturbations of
trapped modes. The authors also use numerical methods to count the resonances
that appear at low frequencies.

Several other works on the scattering theory of waveguides indirectly apply
to resonances. Christiansen and Zworski [6], and independently Parnovski [14],
have computed the asymptotics for the embedded eigenvalue counting function
added to the scattering phase for boundariless manifolds which are asymptotic
to a cylinder. They also proved a sharp upper bound on the eigenvalue counting
function, improving on an earlier work by Donnelly [7]. Melrose [12] studied
the properties of the resolvent for asymptotically perturbed cylinders, including
the nature of the singularity of the resolvent at the thresholds. Weidenmuller [34]
studied various scattering theoretic properties of Laplacian on the perturbed strip
with Dirichlet boundary conditions.

Also related is the extensive literature on the existence ofL2-eigenvalues. With
our definition of resonance, anyL2-eigenvalue will be considered a resonance.
The existence ofL2-eigenvalues for waveguides has drawn much study, motivated
both by their association with standing waves or “trapped modes” (see [8,9] and
references therein) and with their role in forcing equations ([17,18] and references
therein). However, it is generally believed thatL2-eigenvalues do not exist for
generic perturbations of the strip.

In this paper, we consider the resonances associated to the Laplacian on
waveguides with either Dirichlet or Neumann boundary conditions. We prove a
resolvent estimate from which it follows that the existence of a quasimode with
certain asymptotics implies the existence of a sequence of resonances approaching
the real axis. We also prove an upper bound on the number of resonances in a
neighbourhood of the physical plane.

We define resonances as poles of the meromorphic continuation of the
resolvent away from the thresholds, in union with anyL2 eigenvalues occurring at
the thresholds. In particular, letΩ ⊂ R2 be a domain with smooth boundary which
to the exterior of some compact set coincides with the strip(−∞,∞)× (0,π).
Let∆ be either the Dirichlet or Neumann Laplacian, with signs arranged so that
the operator is positive semi-definite. It is well known that the Dirichlet Laplacian
has essential spectrum[1,∞), with thresholds at{j2}∞

j=1. For the Neumann
Laplacian, the essential spectrum is[0,∞) with thresholds at{j2}∞

j=0. Let χ ∈
C∞

0 (R
2), i.e., a smooth function of compact support. We show in Section 2 that

χ(∆ − k)−1χ , an analytic function ink with values in the bounded operators
onL2(Ω), extends meromorphically fromC − [0,∞) to an infinitely branched
Riemann surfaceS, with the branch points occurring at the thresholds.
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The geometry ofS was studied in [34], where it is proven thatS is not
simply connected. This, and the infinitely many branch points, are probably
the main reasons that the resonances on waveguides are less well understood
than for the corresponding problem for exterior domains (for exterior domains
the corresponding Riemann surface is the surface associated to

√
z for odd

dimensions, and lnz for even dimensions). Also, the tools of complex scaling
as in [22] have not been established in this setting.

Let Π :S → C be the canonical projection. The Riemannian metric induced
byΠ naturally induces a distance function onS, which we denote dist. We prove
the following resolvent estimate:

Theorem 1. LetΩ ⊂ R2 be a smooth domain which to the exterior of a bounded
set equals the strip{(x, y): x ∈ (−∞,∞), y ∈ (0,π)}. Fixα > 0. Then for integer
p � 3, q ∈ [0,p/2), there existsMp,q > 0 such that ifm>Mp,q , the following
property holds: if there are no thresholds in the interval(m−α− 2m−q,m+α+
2m−q) and no resonances in the open set{

k ∈ S: dist
(
k, [m− 2m−q,m+ 2m−q])< 2(m− 2)−p

}
,

then fork ∈ [m−m−q,m+m−q ], we have∥∥χ(∆− k)−1χ
∥∥
L2→L2 � Cpk2p.

HereCp is a positive constant depending only onp andΩ .

We also prove some upper bounds in a neighbourhood of the thresholds; see
Lemma 7. A consequence of this theorem is that the existence of periodic billiard
trajectories inΩ satisfying certain geometric hypotheses will imply the existence
of a sequence of resonances converging to the real axis. To be specific we must
first define localised quasimodes.

We define a pair of sequences(uj , λj ), with uj in the operator domain of∆
andλj ∈ R, to be a quasimode if theuj are uniformly compactly supported with
‖uj‖ = 1, λj → ∞, and∥∥(∆− λj )uj

∥∥
L2(Ω)

=O(λ−∞
j

)
.

Quasimodes that are supported in a neighbourhood of a stable periodic billiard
trajectory and for which the asymptotics ofλj are fully determined by the local
geometry have been constructed by a number of authors [2,3,11]. In Section 4 of
this paper, we briefly present an example due to Buldyrev.

Corollary 1. Suppose there exists a quasimode such that there existsα > 0 such
that ∣∣λj − n2

∣∣> α, ∀n, j ∈ Z.
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Then there exists an infinite sequence{kj } of resonances of∆ such that for any
N > 0,

|λj − kj | � CNλ−N
j .

Corollary 1 follows from Theorem 1 by direct application of the arguments
appearing in [29]. Such “quasimode-to-resonance” results, based ona priori
resolvent estimates, have previously been proven for other geometric settings,
[25–29].

If the quasimodes also satisfy certain spacing hypotheses, then Theorem 1
would also imply that the resonance counting function is bounded below by the
quasimode counting function (see [29]).

Using estimates proven in Theorem 1 along with Jensen’s formula, one can
also obtain an upper bound on the number of resonances near the physical plane.

Theorem 2. Let {kj } be the resonances of∆, counted with multiplicity. Define

N(r)=
{
kj : dist(kj ,physical plane) < 1 + 1

2

√|k|, |kj |< r
}
.

Then for anyε > 0, there exists a positive constantC such that

N(r) < Cr3+ε.

Using the methods of this paper, one could also obtain a global upper bounds
on the number of resonances.

Upper bounds for the number of resonances proven in other geometries suggest
that the sharp upper bound forN(r) should of the formCr. It should also be
noted that Christiansen and Zworski in [6] proved that the sharp upper bound for
the embedded eigenvalue counting function isCr.

We now give a sketch of the proof, which is based on the Fredholm determinant
method. Letχ1, χ2 be smooth cutoff functions of bounded support. Then using
a well-known procedure (see, e.g., [23]), we show thatχ1(∆− k)−1χ2 extends
meromorphically to the Riemann surfaceS. It is well known that the (non-
threshold) poles of the resolvent are among the zeros of a certain Fredholm
determinant which is analytic onS away from the thresholds. We use estimates
for the Green’s function for the unperturbed strip and adapt arguments previously
used to study resonances for the exterior problem [12,31,35] to obtain an upper
bound on the Fredholm determinant. Using the minimodulus theorem of Cartan
together with an adaptation of a minimodulus theorem for sectors found in [4],
we obtain a lower bound on the Fredholm determinant.

Arguing as in [36], we then obtain ana priori estimate on the extended
resolvent in an open set away from the thresholds and away from the resonances.
Theorem 1 is then proven using an application of the maximum principle inspired
by one used in [29], where the argument is given in a semi-classical framework.
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The use of the Cartan theorem in the study of spectral and scattering theory was
initiated in [16,38], and the use of the minimodulus result for sectors by [15]. For
a different proof of the minimodulus theorem for sectors see [21].

Theorem 2 follows by applying Jensen’s formula for meromorphic func-
tions [4], together with the upper and lower bounds on the Fredholm determinant,
to obtain upper bounds on the number of resonances on disks, the union of which
covers the positive real axis. Remark: for the exterior problem in odd dimensions,
Jensen’s formula was used to obtain global, sharp upper bounds on the number of
resonances [35].

We conclude this section by observing that the methods used in this paper
could easily be applied to prove analogous results for perturbations of more
general cylinders, in particular the cylinder inR3:{

(x, y, z): x2 + y2 = 1, z ∈ (−∞,∞)
}
.

Note. Since the submission of this paper, we have received a preprint from
T. Christiansen [5] in which the sharp estimateN(r) < Cr is proven.

2. Preliminaries

We prove our results for the Neumann Laplacian, leaving it to the reader to
make the simple modifications necessary for Dirichlet boundary conditions.

Let

Ω0 = {
(x, y): x ∈ (−∞,∞), y ∈ (0,π)}.

LetΩ be a domain with smooth boundary such that there existsM > 0 so that

Ω −
{√
x2 + y2>M

}
=Ω0 −

{√
x2 + y2>M

}
. (1)

On such a domain, we define the Neumann Laplacian,∆, as the operator living
onL2(Ω) with

∆u≡ −∂
2u

∂x2 − ∂2u

∂y2 ,

and with operator core{
u ∈ L2(Ω), ∆u ∈L2(Ω),

∂u

∂η
= 0

}
.

Here ∂/∂η is the normal derivative at the boundary ofΩ . (For the Dirichlet
Laplacian, the operator core isC∞

0 (Ω).)
Denote byL2(Ω) the set of square integrable functions onΩ , and the set of

bounded operators onL2(Ω) by L(L2(Ω)). Denote byB(a, r) the ball centered
at a of radius r, intersected withΩ when appropriate. Denote the Neumann
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Laplacian onΩ (respectively,Ω0) by ∆ (respectively,∆0). Define the Sobolev
spacesHi(Ω) as the operator domains of(∆ + 1)i/2. We define a smooth
partition of unityχ1 + χ2 = 1 such thatχi � 0, supp(χ1) ⊂ B(0,M + 2), and
χ1 = 1 onB(0,M + 1). We also define smooth cutoff functionsτi � 0 such that
τ1 = 1 on supp(χ1) and supp(τ1) ⊂ B(0,M + 3), andτ2 = 1 on supp(χ2) and
τ2 = 0 onB(0,M). Finally, we define a smooth cutoff functionρ such that the
supp(ρ)⊂ B(0,M + 4) and

ρ|B(0,M+3) = 1. (2)

Denote the associated resolvent(∆0 − k)−1 by R0(k). Denote(∆− k)−1 by
R(k). Then it is well known that the Green function for the operator∆0 − k, i.e.,
the Schwartz kernel forR0(k), is given by

Gk(x, y, x
′, y ′)= 1

π
√−k e

−√−k|x−x ′|

+
∞∑
n=1

1√
n2 − k e

−
√
n2−k |x−x ′| cos(ny)cos(ny ′). (3)

In the formula above, the branch lines for the functionsk→ √
n2 − k are assumed

to be[n2,∞). In what follows, let argn be the argument associated to the branch
point n2. For each square-root function, the set{k: argn(k) ∈ (0,2π)} will be
referred to as the “physical branch,” and the set{k: argn(k) ∈ [2π,0]} the non-
physical branch.

Let S be the infinitely branched Riemann surface associated toGk. ThusGk
extends pointwise toS. The geometry ofS was studied in [34]. A pointk ∈ S will
be on the “physical branch ofS” if

argn(k) ∈ (0,2π), ∀n;
thus the physical branch ofS can be identified with the subsetC − [0,∞) of
the complex plane. Fork ∈ S, we denote byΛ(k) the finite multi-index(n1,

. . . , nP ) such thatk is on the “non-physical branch” precisely for the functions

{
√
n2
i − k}Pi=1.

LetΠ be the canonical projection ofS ontoC. The induced Riemannian metric
onS induces a distance function that we will denote dist. It will also be convenient
to define the following functions onS: |k| ≡ |Πk|, �k ≡ �Πk, and�k ≡ �Πk.
Note that sinceΠ is not a global isometry, dist(z1, z2) is not always equal to
|z1 − z2|.

Since we will be concerned with the behaviour of the resolvent only in a
neighbourhood of the physical plane, we shall define the following subsets ofS:

S̃ = {
k ∈ S: dist(k,physical plane) < 1+√|k|}.

It will also be convenient to studỹS away from the thresholds, hence forα > 0

S̃α = {
k ∈ S̃: dist(k, n2) > α, ∀n ∈ Z

}
.
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Fig. 1. Possible values forΛ(k).

Fork ∈ S̃, definenk to the the greatest integer such thatk is on the non-physical

plane for
√
n2
k − k. Note that (see Fig. 1)

k ∈ S̃ ⇒ Λ(k)=
{ { }, or

{0,1, . . . , n}, or
{n}.

DenoteΛ(k)c to be the complement ofΛ(k) within the integers. We note for
future reference the following formula:

�
√
n2 − k = ± ((�k)

2 + (n2 − �(k))2)1/4
2

×
(

1 − 1√
1 + (�k/(n2 − �k))2

)
, (4)

with the plus (respectively, minus) sign appearing whenn ∈Λ(k)c (respectively,
n ∈Λ(k)).

Lemma 1. Letψ1,ψ2 be smooth functions of bounded support onΩ that depend
on x alone, and with values in[0,1]. Then the mapping fromC − [0,∞) to
L(L2(Ω)) given by

k→ψ2R0(k)ψ1

extends to a meromorphic function onS. Also, the same is true for the mappings

k→ ∂

∂x
ψ2R0(k)ψ1, k→ ∂

∂y
ψ2R0(k)ψ1.
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Furthermore, fork ∈ S̃α on the physical sheet,∥∥∥∥ ∂i∂xi ψ2R0(k)ψ1

∥∥∥∥
L2→L2

� C ln(|k|)(1+ |k|)i/2, i = 0,2, (5)

whereC depends only onα,ψ1,ψ2, and∥∥∥∥ ∂i∂xi ψ2R0(k)ψ1

∥∥∥∥
L2→L2

� C(1 + |k|)i/2, i = 1,3, (6)

whereC depends only onα,ψ1,ψ2.

Proof. The analytic extension ofψ2R0(k)ψ1 and its first partial derivatives
follow immediately from the compactness of the support ofψ1Gkψ2, together
with the pointwise meromorphicity ink of Gk .

To prove Eqs. (5) and (6), fixk on the physical plane. If|�k|> 1, then Eqs. (5)
and (6) hold be the Spectral Theorem and interpolation. Thus in what follows, we
assume|�k| � 1.

Let P be the orthogonal projection ofL2(Ω0) onto the closed subspace
spanned by{f (x)cos(ny): f ∈ L2(R), 0 � n � nk}. Thus(I − P)∆0(I − P)

is a self-adjoint operator whose spectrum is[(nk + 1)2,∞). Sincek is on the
physical branch of all of the square-root functions associated to the Schwartz ker-
nel of (I −P)∆0(I −P), it follows that((I −P)∆0(I −P)− k)−1 is a bounded
operator onL2(Ω0) and the following estimate holds by the Spectral Theorem:∥∥(I − P)R0(k)(I − P)∥∥= ∥∥((I − P)∆0(I −P)− k)−1∥∥

�
∣∣k − (nk + 1)2

∣∣−1 � α−1.

The last inequality follows from the assumption that|k−n2|> α for all n. Hence∥∥ψ1(I − P)R0(k)(I − P)ψ2
∥∥� α−1. (7)

We now estimate the norm of the operatorψ1PR0(k)Pψ2, whose Schwartz
kernel is

ψ1(x)ψ2(x
′)

1

π
√−k e

−√−k|x−x ′|

+ψ1(x)ψ2(x
′)
nk∑
n=1

1√
n2 − k e

−
√
n2−k|x−x ′| cos(ny)cos(ny ′).

In what follows,C will denote various positive constants that are independent
of k,n. Then, since|�k|< 1,

∥∥ψ1PR0(k)Pψ2
∥∥� 1

π
√|k| +

nk∑
n=1

1

|√n2 − k|

�
nk∑
n=0

1

|√n2 − k| � C ln(�k). (8)
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SinceP commutes withR0(k), it follows that

ψ1(I − P)R0(k)(I − P)ψ2 +ψ1PR0(k)Pψ2 =ψ1R0(k)ψ2.

Hence, by combining Eqs. (7) and (8) we obtain that ask → ∞ with k ∈ S̃α , we
have ∥∥ψ1R0(k)ψ2

∥∥� C ln(|k|).
Thus Eq. (5) has been proven fori = 0. The proof of Eq. (6), withi = 1, is similar.
For i = 2, we write

∂2

∂x2ψ2R0(k)ψ1 = ∂2

∂x2 (∆0 + 1)−1[∆0,ψ2]R0(k)ψ1

+ (k + 1)
∂2

∂x2(∆0 + 1)−1ψ2R0(k)ψ1

+ ∂2

∂x2 (∆0 + 1)−1ψ2ψ1.

Then the desired estimate follows from the estimates fori = 0,1.
The proof fori = 3 is similar. ✷
We now prove the existence of a meromorphic extension ofR(k). The

argument follows closely along the lines of the corresponding result for exterior
domains found in [23]. For a proof of this result for more general perturbations of
the cylinder, see [13].

Proposition 1. Letχ ∈C∞
0 (Ω). Then the mapping fromC −[0,∞) toL(L2(Ω))

given by

k→ χ(∆− k)−1χ

extends to a meromorphic function inS. At each polek0, the coefficients of the
negative powers of(k − k0) in the Laurent series are finite rank operators.

Proof. We define an approximation ofR(k) as follows. Assume for the moment
thatk is on the physical branch ofS. Let

Ra(k)= τ1R(k0)χ1 + τ2R0(k)χ2. (9)

Herek0 is a parameter to be chosen below.
We have

(∆− k)Ra(k)= I +K, (10)

with

K = (k0 − k)τ1R(k0)χ1 + [∆,τ1]R(k0)χ1 + [∆,τ2]R0(k)χ2. (11)
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By Eq. (10) we have fork ∈ C − [0,∞):

Ra = (∆− k)−1(I +K).
By Eqs. (11) and (2) we haveρK =K, hence

Raρ = (∆− k)−1ρ(I +Kρ).
Fork = k0 and�(k0)� 0, we have by the Spectral Theorem that‖Kρ‖L2→L2 < 1
and hence we can write

ρRa(k)ρ(I +Kρ)−1 = ρR(k)ρ. (12)

Fix such ak0.
Next we observe from Eq. (9) thatk → ρRa(k)ρ extends meromorphically

to S − {02,12, . . .}, with values inL(L2(Ω)). For the terms involvingR0(k),
this follows from Lemma 1, while for the term involvingR(k0), note that the
functionk → (k0 − k) extends to the functionk → (k0 −Πk), which is analytic
onS. It follows that the meromorphy ofρR(k)ρ is equivalent to meromorphy of
(I +Kρ)−1.

On the other hand, sinceχ1 andρ are compactly supported, it follows thatKρ
is an analytic compact operator-valued function ofk on S − {02,12, . . .}. Thus
ρR(k)ρ is a finitely-meromorphic Fredholm family ink [30], and meromorphic
Fredholm theory thus impliesρR(k)ρ is meromorphic fork ∈ S − {02,12, . . .}.

To proveρR(k)ρ is meromorphic in a neighbourhood of the thresholdL2,
L ∈ Z, one applies the argument above to the functionz→ ρR(L2 − z2)ρ in a
neighbourhood ofz= 0.

Finally, it is easy to see that the functionρ can be replaced by any smooth
cutoff function. This completes the proof.✷

Next, we note the following result due to Melrose [13, Proposition 6.28]. As
z→ 0 for integerL,

ρ(∆−L2 − z2)−1ρ = A

z2 + B

z
+C, (13)

whereA is the orthogonal projection onto theL2(Ω) eigenspace associated to the
energy levelL2,B is a projection operator related to the generalised (non-L2(Ω))
eigenfunctions associated to the energy levelL2, andC is an operator bounded
nearz = 0. We will use this asymptotic formula to provide upper bounds on the
resolvent in Lemma 7.

We now define the resonances of∆ to be the polesρR(k)ρ in S−{L2, L ∈ Z},
in union with anyL2 eigenvalues occurring at the thresholds. We define the
multiplicity of a non-threshold resonancekj as the rank of the projection∫

γ

ρR(k)ρ dk
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for a sufficiently small contourγ aboutkj . The multiplicity of the any resonance
occurring at a threshold is defined to be the dimension of the corresponding
eigenspace.

3. Estimates on Fredholm determinant

In what follows, letC be various positive constants. LetK be as in the proof
of Proposition 1. A simple argument shows that(I +Kρ) is invertible if and only
if (I + (Kρ)3) is invertible. On the other hand, sinceKρ is a pseudodifferential
operator of order−1 in L(L2(Ω)), with compactly supported Schwartz kernel, it
follows that(Kρ)3 is trace class. Thus the Fredholm determinant det(I + (Kρ)3)
is entire onS, and furthermore:

Lemma 2. The non-threshold resonances of∆ (counted with their multiplicities)
are among the zeros of the function

k→ h(k)≡ det
(
I + (Kρ)3(k)),

counted with their multiplicities.

The reader is referred to [32] for a proof of this result.
The rest of this section is used to prove:

Proposition 2. For k ∈ S̃, we have the estimate

|h(k)| � C expC|k|3/2
dist(k, {L2, L ∈ Z})3 , (14)

with C a positive constant independent ofk.

Proof. Assume in what follows thatk ∈ S̃, k �= L2 for L ∈ Z. We apply the
theory of characteristic values developed in [10], and adapted to exterior problems
in [12,31,35]. The characteristic valuesµj(A) of a compact operatorA are
the eigenvalues, listed in decreasing order and counting multiplicities, of the
operator|A|. We recall the following inequalities from [10]:µj+k−1(AB) �
µj(A)µk(B), µj+k−1(A+B)� µj(A)+µk(B), µj(AB)� ‖A‖µj (B).

We writeKρ =K1 +K2, with K2 = [∆,τ2]R0(k)χ2ρ.

Applying inequalities on Fredholm determinants appearing in [10], we get∣∣det
(
I + (Kρ)3)∣∣� det

(
I + 4|K1|3)6 det

(
I + 4|K2|3)6

�
( ∞∏
j=1

(
1+ 4µj(|K1|)3)

)6( ∞∏
j=1

(
1+ 4µj(|K2|)3)

)6

.

(15)
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We shall estimate the terms on the right-hand side of the last equation with a series
of lemmas. We estimate first the term involvingK1. Recall that fork ∈ S

K1 = (k0 −Πk)τ1R(k0)χ1ρ + [∆,τ1]R(k0)χ1ρ. (16)

Lemma 3.
∞∏
j=1

(
1 + 4µj(|K1|)3)� CeC|k| ln |k|, ∀k ∈ S.

Proof. The argument here follows [35]. Sinceτ1, χ1 are compactly supported, it
follows by standard eigenvalue asymptotics for pseudodifferential operators [20]
that

µj
(∣∣τ1R(k0)χ1ρ

∣∣)∼ Cj−1

and

µj
(∣∣[∆,τ1]R(k0)χ1ρ

∣∣)∼ Cj−1/2.

It follows that, denoting the largest integer belowx by �x�,

µj−1(|K1|)�C|k|�j/2�−1 +C�j/2�−1/2.

Hence we get

µj
(|K1|3)�

(
µ(�j/3�+1)(|K1|))3

�
(
C|k|�j/6+ 2�−1 +C(�j/6� + 2)−1/2)3

�C|k|3j−3 +Cj−3/2.

Note that|k|2< j is equivalent to|k|3j−3< j−3/2. Thus

∞∏
j=1

(
1 + 4µj(|K1|)3)�

∏
j�|k|2

(
1 +C|k/j |3) ∏

j>|k|2

(
1 +Cj−3/2)

These two factors are bounded as in [35]; we sketch the argument. The first factor
is bounded by comparing it to

exp

( |k|2∫
1

ln
(
1 +C|k/x|3)dx

)
. (17)

Note that

|k|2∫
1

ln
(
1+C|k/x|3)dx �

C|k|∫
1

ln
(
1+C|k/x|3)dx + 2

|k|2∫
C|k|

C|k/x|3dx

�C|k| ln(|k|).
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Thus Eq. (17) is bounded by exp(C|k| ln |k|). The second factor is treated
similarly. Thus

∞∏
j=1

(
1 + 4µj(|K1|)3)� eC|k| ln |k|. (18)

Note that this estimate holds for allk ∈ S. ✷
Next, we estimate the terms involvingK2 away from the thresholds.

Lemma 4. Supposek ∈ S̃α . Then
∏∞
j=1(1 + 4µj(|K2|)3) < eC|k|3/2, whereC is

some positive constant.

Proof. The proof is an adaptation of the “good half plane–bad half plane” argu-
ment found in [31,35].

First, we assumek ∈ S̃α is on the physical sheet, and assume without loss of
generality that|k| is large. We have, by Lemma 1,

µj(K2)= µj
(
ρ(I +∆)−1(I +∆)K2

)
� µj

(
ρ(I +∆)−1)∥∥(I +∆)K2

∥∥� Cj−1|k|3/2.
Now the arguments leading to Eq. (18) are easily adapted to this case. In fact,

∞∏
j=1

(
1 + 4µj(|K2|)3)�

∞∏
j=1

(
1+C|k|9/2/j3).

This last product is estimated as follows. First, one proves

exp

( |k|3/2∫
1

ln
(
1+C|k|9/2/x3)dx

)
� eC|k|3/2 (19)

as follows:

|k|3/2∫
1

ln
(
1 +C|k|9/2/x3)dx

=
( |k|3/2/ ln |k|∫

1

+
|k|3/2/10∫

|k|3/2/ ln |k|
+

|k|3/2∫
|k|3/2/10

)
ln
(
1 +C|k|9/2/x3)dx.

The first and third integrals on the right-hand side are easily shown to be
O(|k|3/2), and the second integral is estimated as
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|k|3/2/10∫
|k|3/2/ ln |k|

ln
(
1 +C|k|9/2/x3)dx ∼

|k|3/2/10∫
|k|3/2/ ln |k|

ln
(
C|k|9/2/x3)dx

�C|k|3/2.
Also it is easy to show that

exp

( ∞∫
|k|3/2

ln
(
1 +C|k3/2/x|3)dx

)
� eC|k|3/2. (20)

By Eqs. (19) and (20), the lemma holds fork on the physical sheet.
Now supposek ∈ S̃α is on the non-physical sheet. There are two possible cases:

Λ(k)= {0,1, . . . , n2
k} orΛ(k)= {n2

k} (see Fig. 1). Suppose for now the first case.
We write

Gk(x, x
′, y, y ′)= 1

π
√−k

(
e−√−k|x−x ′| + e

√−k|x−x ′|)

+
nk∑
n=1

1√
n2 − k

(
e−

√
n2−k|x−x ′| + e

√
n2−k|x−x ′|)cos(ny)cos(ny ′)

− 1

π
√−k e

√−k|x−x ′| −
nk∑
n=1

1√
n2 − k e

√
n2−k|x−x ′| cos(ny)cos(ny ′)

+
∞∑

n=nk+1

1√
n2 − k e

−
√
n2−k|x−x ′| cos(ny)cos(ny ′).

Note first that

e−
√
n2−k|x−x ′| + e

√
n2−k|x−x ′| = e−

√
n2−k(x−x ′) + e

√
n2−k(x−x ′),

and hence the operatorA1, whose Schwartz kernel is

1

π
√−k

(
e−√−k|x−x ′| + e

√−k|x−x ′|)

+
nk∑
n=1

1√
n2 − k

(
e−

√
n2−k|x−x ′| + e

√
n2−k|x−x ′|)cos(ny)cos(ny ′),

will have rank 2nk + 2. Thus the operator[∆,τ2]A1χ2ρ will also have rank
2nk + 2. It follows now from Eq. (4) that fork ∈ S̃α

µj
([∆,τ2]A1χ2ρ

)
�
{
eC|k|1/2, j � 2nk + 2,
0, j > 2nk + 2.

Also, observe that the operatorA2, whose Schwartz kernel is given by
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− 1

π
√−k e

√−k|x−x ′| −
nk∑
n=1

1√
n2 − k e

√
n2−k|x−x ′| cos(ny)cos(ny ′)

+
∞∑

n=nk+1

1√
n2 − k e

−
√
n2−k|x−x ′| cos(ny)cos(ny ′),

equalsR0(Πk), i.e.,R0 evaluated on the physical sheet. Hence

det
(
I + 4

∣∣K2(k)
∣∣3)

� det
(
I + 16

∣∣[∆,τ2]A1χ2ρ
∣∣3)6 det

(
I + 16

∣∣[∆,τ2]A2χ2ρ
∣∣3)6

�
2nk+2∏
j=1

(
1 + eC|k|1/2)eC|k|3/2 (21)

� eC|k|3/2. (22)

The last inequality holds becausenk|k|1/2 � C|k|.
For the case whereΛ(k)= {n2

k}, we write

Gk(x, x
′, y, y ′)= 1

π
√−k e

−√−k|x−x ′|

+
nk−1∑
n=1

1√
n2 − k e

−
√
n2−k|x−x ′| cos(ny)cos(ny ′)

+
∞∑

n=nk+1

1√
n2 − k e

−
√
n2−k|x−x ′| cos(ny)cos(ny ′)

+ 1√
n2
k − k

(
e

−
√
n2
k−k|x−x ′| − e

√
n2
k−k|x−x ′|)cos(ny)cos(ny ′).

The argument in this case is similar to the one for the case previous. The details
are left to the reader.✷

Proposition 2, fork away from the thresholds, now follows from Lemmas 3, 4
and Eq. (15). We now prove bounds on the determinant near the thresholds.

Lemma 5. LetL be any integer. Then fork ∈ S, dist(k,L2)� α,

∣∣det
(
I + (Kρ)3)∣∣� CeC|k|3/2

dist(L2, k)3/2
,

with C independent ofk,L.

Proof. The key observation is that the pole forK atL2 is simple with rank one
residue. In particular, note that



104 J. Edward / J. Math. Anal. Appl. 272 (2002) 89–116

[∆,τ2] 1√
L2 − k e

√
L2−k|x ′−x|

= τ ′′ 1√
L2 − k + τ ′′ e

√
L2−k|x ′−x| − 1√
L2 − k + 2τ ′ sgn(x ′ − x)e

√
L2−k|x ′−x|,

where sgn(t)= 1 for t > 0, sgn(t)= −1 for t < 0. Thus, we may write

Kρ =K3 +K4,

whereK3 is a rank one operator with Schwartz kernel

1√
L2 − k τ

′′
2 (x)ρ(x

′)χ2(x
′)cos(ny)cos(ny ′), (23)

andK4 has pointwise bounded Schwartz kernel in a neighbourhood of theL2. In
the argument that follows we use the inequality

µj
(|A+B|2)� 2µj

(|A|2 + |B|2),
which follows from the quadratic form inequality|A+ B|2 � 2|A|2 + 2|B|2 and
a minimax argument. Fixε ∈ (0,1/2).

µj
(
(Kρ)3

)=µj
(|Kρ|2)3/2

�µj
(|K3 +K4|2)3/2 � 23/2µj

(|K3|2 + |K4|2)3/2
� 23/2(µ�(1−ε)j�(|K3|)2 +µ�εj�+1(|K4|)2)3/2.

It follows from Eq. (23) that

µ�(1−ε)j�(|K3|)=
{
C/

√
L2 − k, j = 1,

0, j > 1.

Thus

∣∣det
(
I + (Kρ)3)∣∣� ∞∏

j=1

(
1 +µj

(
(Kρ)3

))

�
(

1 + 23/2
(

C

(L2 − k)1/2 +µ1(K4)

)3/2
)

×
∞∏
j=2

(
1 + 23/2µ�εj�+1(K4)

3). (24)

Now we analyseµj(K4). LetP be the orthogonal projection onto the orthogonal
complement of the subspace ofL2(Ω0):{

f (x)cos(Ly);
∞∫

−∞
|f (x)|2dx <∞

}
.
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Then we haveK4 = K1 +K2P +K5, whereK1 andK2 are as in the proof of
Proposition 2, and whereK5 has Schwartz kernel

ρ(x)

(
τ ′′(x)e

√
L2−k|x ′−x| − 1√
L2 − k + 2τ ′ sgn(x ′ − x)e

√
L2−k|x ′−x|

)

× χ2(x
′)ρ(x ′)cos(Ly)cos(Ly ′). (25)

Thus

µn(K4)
3 �

(
µ�n/3�+2(K1)+µ�n/3�(K2P)+µ�n/3�(K5)

)3
�C

(
µ�n/3�+2(K1)

3 +µ�n/3�(K2P)
3 +µ�n/3�(K5)

3).
Hence, by applying inequalities for Fredholm determinants as in Eq. (15),

∞∏
j=1

(
1 + 23/2µ�εj−1�(K4)

3)�
( ∞∏
j=1

(
1 +Cµ�εj/3�+1(K1)

3))6

×
( ∞∏
j=1

(
1+Cµ�εj/3�(K2P)

3))36( ∞∏
j=1

(
1 +Cµ�εj/3�(K5)

3))36

.

The first of these products is estimated exactly as in the proof of Lemma 3, and
the estimate for the second of these products is derived similarly to the estimate
for det(I + 4|K2|3) away from the thresholds (noting thatµn(K2P) � µn(K2)).
Finally,

∞∏
j=1

(
1 +Cµj (K5)

)3 = exp

(∑(
ln
(
1 +µj

(
(K5)

3))))

∼ exp

(∑
µj
(
(K5)

3))

� exp

((∑
µj
(|K5|2)2)1/2(∑

µj
(
(K5)

2))1/2
)

�C.

The last inequality holds because, by Eq. (25), the Hilbert–Schmidt norms (see,
e.g., [19, Vol. 1]) ofK5 andK2

5 are bounded by a bound independent ofk, for k
in a small neighbourhood ofL2. Thus

∞∏
j=1

(
1 + 23/2µ�εj−1�(|K4|)3)� CeC|k|3/2. ✷

Proposition 2 now follows from Lemmas 3–5.✷
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4. Resolvent estimate and bounds on number of resonances

Proving both Theorems 1 and 2 requires lower bounds on the Fredholm
determinant studied in the previous section. For this we use the following lemma,
which is an adaptation of an argument found in Cartwright [4, pp. 89–91]. The
Cartwright result has previously been used in the scattering theoretic context
by [15].

Lemma 6. Let k = reiθ . Suppose the functiong is analytic in the sector{θ ∈
(0,π)}, and satisfies

|g(k)|<C exp
(
C|k|3/2).

Let φ : R → R be any increasing, real-valued function such thatlimx→∞ φ(x)
= ∞. Then, for anyM > 0, there existsR2 = R2(M) such that for eachr > R2

|g(k)|> exp
(−|k|5/2φ(|k|)),

except perhaps in a set ofθ , denotedθr , with |θr |< 1/(Mr1/2). Here|A| denotes
the Lebesgue measure ofA.

Proof. By Carleman’s formula [11], we have

∑
1�rn�R

sinθn
rn

(
1− r2

n

R2

)
= 1

πR

π∫
0

ln
∣∣g(Reiθ )∣∣sinθ dθ

+ 1

2π

R∫
1

(
ln |g(y)| + ln |g(−y)|)( 1

y2
− 1

R2

)
dy + χ(R),

whereχ(R) = O(1) asR → ∞, andrneiθn are the zeros ofg(z) in upper half
space. Set ln+(x)= max(ln(x),0). Then it follows that

1

πR

π∫
0

ln
∣∣g(Reiθ )∣∣sinθ dθ

� − 1

2π

R∫
1

(
ln+ |g(y)| + ln+ g|(−y)|) 1

y2 dy −O(1)

� −C
R∫

1

y3/2 1

y2
dy −O(1)� −CR1/2 −O(1)

� −CR1/2, R > R0, (26)
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for some constantR0. Now fix M > 0 and suppose now that for eachr, there
exists a setθr of measure at least 1/Mr1/2 such that forθ ∈ θr

|g(k)|< exp
(−|k|5/2φ(|k|)).

Then we have

1

πR

π∫
0

ln
∣∣g(Reiθ )∣∣sinθ dθ � CR1/2 − 2R3/2φ(R)

1/(2MR1/2)∫
0

sinθ dθ

�CR1/2 − 2R3/2φ(R)

(
1 − cos

(
1

2MR1/2

))
�CR1/2 −R1/2φ(R)/(4M2). (27)

Comparing Eqs. (26) and (27), we derive a contradiction forR > R1 for some
R1 =R1(M). SettingR2 = max(R0,R1), we obtain for|k|>R2

|g(k)|> exp
(|k|5/2φ(|k|)),

except for arg(k) ∈ θ|k|, with |θ|k||< 1/(M|k|1/2). The lemma is proven.✷
Proof of Theorem 2. We can, without loss of generality, assume|k|>R2, where
R2 will be determined by Lemma 6. The proof will apply Jensen’s formula for
meromorphic functions [4, p. 9] to the function

h(k)= det
(
I + (Kρ)3)

to obtain upper bounds on the number of resonances in a set of disks that form
a cover for the following subset of̃S:{

k ∈ S: dist(k,physical plane) < 1 + 1

2

√|k|, |k|>R2

}
.

We consider separately the two cases:

(A) the part of S̃ which is a continuation from the upper half of the physical
plane,

(B) the part ofS̃ which is a continuation from the lower half of the physical plane.

We treat case (A); the argument for case (B) is similar. To obtain the necessary
lower bounds onh(k), we first apply Lemma 6 and Proposition 2 to a sector that is
slightly shifted away from the positive real axis. SettingM = 100 andφ(x)= lnx
in Lemma 6, we get for|k|>R2

|h(k)|> exp
(−|k|5/2 ln |k|),

except for arg(k) ∈ θ|k|, with |θ|k||< 1/(100|k|1/2). Fix a positive integerL with
L2 �R2. Thus setting�(k0)= L2 +L, one can choose�k0<L/99 such that
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|h(k0)|> exp
(−|k0|5/2 ln |k0|). (28)

We now apply the Minimodulus Theorem of Cartan to obtain a lower bound on
|h(k)| near the real axis. The following version of the theorem can be easily
deduced from the arguments found in [11, pp. 21–22]: ifg is analytic inB(0,R)⊂
C and|g(0)|> 0, then for anyr < R one has

|g(z)|> |g(0)|1+H(max|z|=R |g(z)|
)−H

, H = 2r

R − r + ln(3e/2η)

ln(R/r)
;

this estimate valid inB(0, r) outside an exceptional set of disks whose summed
radii is less that 4ηR. We setR = L, r = L/(10), η = 1/(4L). Applying the
Cartan theorem and Proposition 2, there existsk1 ∈B(L2 +L,1)⊂ S such that

|h(k1)|> exp
(−C|k1|5/2 ln |k0| ln |k1|)> exp

(−C|k1|5/2+ε). (29)

Note that the diskB(k1,0.9L) does not contain any thresholds. We apply Prop-
osition 2 and Jensen’s formula toh(k) on the diskB(k1,0.9L) to conclude that the
number of zeros, counting multiplicities, in the diskBL ≡ B(k1,0.8L) is bounded
byC|k1|5/2+ε.

Next, we bound the number of zeros in a neighbourhood of the thresholdL2.
Suppose first thath(k) has a pole atk = L2. Then clearly there existsk2 ∈ S̃,
with dist(k2,L

2) < 1, such that|h(k2)| > 1. The functionz → h(L2 − z2) is
meromorphic in the disk{

z:
∣∣z−

√
L2 − k2

∣∣<√0.9(L+ 1)
};

here we view the disk as lying in the complex plane and| · | is the standard absolute
value function. The only pole forz→ h(L2 − z2) in this disk is atz= 0, and by
Proposition 2 the pole has order at most 3. Hence by Jensen’s formula, the number
of zeroes in the disk{

z:
∣∣z−

√
L2 − k2

∣∣<√0.8(L+ 1)
}

(30)

is bounded byC|k2|3/2. We label the disk inS corresponding to Eq. (30) as̃BL.
Next suppose thath(k) has no pole atL2. It follows that z → h(L2 − z2)

is analytic in the disk{z: |z| < √
L}. By Proposition 2 and Lemma 6, there

existsz1 with |z1| < √
L/100 such that|h(z1)| > e−|L2|5/2 ln |L2|. Applying the

Cartan theorem, we obtainz2 such that|z2| < 1 and |h(z2)| > e−C|L2|5/2+ε
.

Now applying Jensen’s formula as above, the number of zeros on the disk{z:
|z− z2|<√

0.8(L+ 1)} is bounded byCL5/2+ε . Again in this case we label the
corresponding disk inS asB̃L.

Theorem 2 now follows by noting{
k ∈ S̃, dist(k,physical sheet) <

√|k|
2

+ 1, R2< |k|< r
}
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⊂
�r�2⋃

L=�R2�2

(
BL ∪ B̃L

)
. ✷

Lemma 7. (A) For any t, ε, α > 0, there exists a constantC dependent onε,α
but independent oft such that

‖ρR(k)ρ‖ � CeCt |k|5/2+ε
, (31)

for all k ∈ S̃α −⋃kj
B(kj , |kj |−t ) with |�(k)|< |k|1/2/2, wherekj are among the

resonances of∆.
(B) For L any integer, we have the following estimates at the thresholdL2 for

anyε > 0, δ ∈ (0,1/2). If there exist no resonances in the diskB(L2, δ), then

‖ρR(k)ρ‖ � CeC|k|5/2+ε ln(1/δ)

|L2 − k|1/2δ3
, k ∈B(L2, δ/2). (32)

If the only resonances in the diskB(L2, δ) are precisely atk = L2, then

‖ρR(k)ρ‖ � CeC|k|5/2+ε ln(1/δ)

|L2 − k|δ5/2 , k ∈B(L2, δ/2). (33)

HereC is independent ofk,L, δ.

Proof. As in [36], we bound the resolvent in terms of Fredholm determinants.
In what follows,C will denote various positive constants. For simplicity we set
α = 1. We recall:

ρRa(k)ρ(I +Kρ)−1 = ρR(k)ρ. (34)

We begin by estimating the resolvent away from the thresholds, so our analysis
will be conducted oñSα .

It follows from Eq. (9) and Lemma 1 that fork ∈ S̃α
‖ρRaρ‖L2→L2 � C|k|1/2. (35)

To bound(1+Kρ)−1, we proceed as follows: from [10, Theorem 5.1], we have∥∥(I +Kρ)−1
∥∥
L2→L2 �

∣∣det
(
I + (Kρ)3)∣∣−1 det

(
I + |Kρ|3)3. (36)

By the proof of Proposition 2, we have

det
(
I + |Kρ|3)3 � eC|k|3/2, k ∈ S̃α. (37)

We now obtain a lower bound on|h(k)| = | det(I + (Kρ)3)|. SetM = 1/100
and fixR2 = R2(M) in Lemma 6. In what follows, we assume without loss of
generality that|k|> R2. We will also prove the result only for the portion of the
non-physical branch iñS that is reached by a path from the upper half space.



110 J. Edward / J. Math. Anal. Appl. 272 (2002) 89–116

Arguing as in the proof of Theorem 2, forL any non-negative integer, we
have that there existsk1 ∈ B(L2 +L,1) such that|h(k1)|> exp(−|k1|5/2 ln |k1|).
Applying the Cartan theorem withR = 0.9L, r = 0.8L, andη = (2L)−2t−1/4,
we get

|h(k)|> exp
(−(2t + 1)C|k|5/2+ε), (38)

for k in B(k1,0.8L) but outside an exceptional set of disks of radius no larger
than (2L)−2t . We decompose the system of disks into the union

⋃
Uj , where

Uj are connected and mutually disjoint. We can assume that eachUj contains
a resonance, which we labelkj . For if not, then Eq. (31) holds onUj by the
Maximum Principle. Using the inequality(2L)−2t < |kj |−t , it then follows that
for eachj , Uj ⊂ B(kj , |kj |−t ).

We now obtain lower bounds onh in a neighbourhood of the thresholds.
Choosek1 with �k1 = L2 and�k1 ∈ (1, (L+ 1)/100), such that

|h(k1)|> exp
(−|k1|5/2 ln |k1|).

Suppose first thath(k) has a pole of orderj atL2, with j = 1, 2 or 3. Applying the
Cartan theorem to the functionz→ zjh(L2 − z2), in the disk{|z−

√
L2 − k1|<

R} with R = 1.2
√
L, r = √

L, andη= 1/(4R(2L)2t ) we obtain

|h(k)|> e−Ct |k|5/2+ε

|L2 − k|j/2 , (39)

for k in B(L2,0.9L) but outside a union of disks with summed radii no greater
than(2L)−2t . On the other hand, ifz→ h(L2 − z2) is regular atz = 0, then we
can apply the Cartan theorem directly to obtain Eq. (39) holding inB(L2,0.9L).
In either case, the inequality appearing in Eq. (31) now holds inS̃1 in the
complement of the system of disks. Arguing as above, we can assume that the
union of disks is of the form

⋃
B(kj , |kj |−t ). Part (A) of the lemma has been

proven.
We now prove Eq. (32). Thus suppose there exists no resonance in the disk

B(L2, δ). Using Eq. (3) and Proposition 2, and using the Cartan theorem as above,
we have

∥∥ρ(∆−L2 − z2)−1ρ
∥∥

<
∥∥ρRa(k)ρ∥∥ ∣∣det

(
I + |Kρ|3)∣∣3∣∣det

(
I + (Kρ)3)∣∣−1

� C√
δ

eC|k|3/2

δ3 eC|k|5/2+ε ln(1/δ)

� CeC|k|5/2+ε ln(1/δ)

δ7/2 , |z| ∈ (√δ/3,√2δ/3
)
.
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Also, by Eq. (13), the functionz→ zρ(∆− L2 − z2)−1ρ is analytic in{z: |z|<√
2δ/3}. By the previous inequality we have

∥∥zρ(∆−L2 − z2)−1ρ
∥∥< CeC|k|5/2+ε ln(1/δ)

δ3 , |z| =√
δ/2.

Hence Eq. (32) holds by the Maximum Principle. The proof for Eq. (33) is
similar. ✷
Lemma 8. Let p be an integer withp > 2 and q ∈ [0,p/2). Then there exists
a positive constantsMp,q,Cp such that ifm>Mp,q , and if f (k) is an analytic
function in a regionΓ in C, with

Γ ≡
{

�(k) ∈ [m− 2m−q,m+ 2m−q ], − 1

(�k)p � �k � 1

(�k)2p
}
,

and iff satisfies the estimates

(A) |f (k)| � e|k|p ,
(B) |f (k)| � 1/�(k) for �k > 0,

then fork ∈ [m−m−q,m+m−q ] we have

|f (k)| � Cp|k|2p. (40)

Proof. In what follows,Cp will denote various constants independent ofm,k,
whileC will various constants independent ofm,k,p. We use an argument based
on the Maximum Principle. Below, we will construct a family of functionsFα(k)
parametrised byα such that

(1) Fα is analytic onΓ ,
(2) |Fα|< e onΓ ,
(3) on the interval[m−m−q,m+m−q ], |Fα|> 1/2,
(4) on{z ∈ Γ : |z−m| � (3/2)m−q}, we have|Fα| � C|k|p exp(−C|k|2p−2q).

Assuming suchFα exist, consider the function onΓ :

h(k)≡ f (k)Fα(k)exp
(−ik2p+1).

On the curve�k = −1/(�k)p, there exists a positive constantM1 such that
�k >M1 implies�(k2p+1) <−(�k)p and|k|p − (�k)p < C. Thus we have

|h(k)| � exp
(|k|p)eexp

(−(�k)p)� C.

On the curve�k = 1/(�k)2p, we have for�k >M1

|h(k)| � (�k)2pe| exp(Cp)| � Cp(�k)2p.
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On the curve�k =m+ 2m−q , we have

|h(k)| � exp
(
(m+ 2m−q)p

)
C|k|p exp

(−C|k|2p−2q)| exp(Cp)|
�Cp |k|p exp

(|k|p−2q).
Noting thatp > 2q , it follows that there existsM2 > 0 such that ifm > M2,
then |h(k)| < Cp . Similarly, on the curve�k = m − 2m−q we have (assuming
m>M2)

|h(k)| �Cp.
ChooseM3 such that�k >M3 − 2 impliesCp(�k)2p > C with C the maximum
of the variousC ’s above. SettingMp,q = max(M1,M2,M3), we have that for
m>Mp,q it follows by the Maximum Principle that|h(k)| � Cp(m+ 2m−q)2p
on Γ . Since |Fα exp(−ik2p+1)| > 1/2 on the interval[m − m−q,m + m−q ],
Eq. (40) follows.

It remains to prove the existence ofFα . Let ψ ∈ C∞
0 (R) by defined so that

ψ = 1 on[m− 1.1m−q,m+ 1.1m−q], andψ = 0 on(−∞,m− 1.2m−q] ∪ [m+
1.2m−q,∞). Define

Fα(z)= (πα−2)−1/2
∫
R

exp

(−(x − z)2
α2

)
ψ(x) dx.

The analyticity ofFα follows immediately. To prove property (2), note first that

(πα−2)−1/2
∫
R

exp

(−x2

α2

)
dx = 1. (41)

Thus, settingz= u+ iv, with u,v ∈ R, it is easy to see that

|Fα(z)| � exp|v2/α2|.
Settingα = (m+ 2m−q)−p , property (2) follows.

To prove property (3), supposez ∈ [m−m−q,m+m−q ]. Thus

|Fα(z)− 1| = π−1/2
∫
R

e−y2|ψ(αy + z)− 1|dy

� π−1/2
∫

|y|>0.1m−q/α

e−y2
dy � 1/2

sincem−q/α is large.
For property (4), assumez= u+ iv ∈ Γ ∩ {ζ : |ζ −m|> 3/2m−q}. Then

|Fα(z)| � (πα−2)−1/2
∣∣exp(v2/α2)

∣∣ ∫
R

exp

(−(x − u)2
α2

)
ψ(x) dx
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� (πα−2)−1/2e

∫
[m−1.2m−q ,m+1.2m−q ]

exp

(−(x − u)2
α2

)
dx

�Cα−1 exp
(−(0.3m−q)2α−2)� C|k|p exp

(−C|k|2p−2q).
The proof of Lemma 5 is complete.✷
Proof of Theorem 1. In view of Lemmas 7 and 8, we setp = 3. We can (in-
creasingMp,q if necessary) suppose‖ρR(k)ρ‖ � e|k|3 away from

⋃
(kj , |kj |−t ).

Let q ∈ [0,p/2), and letMp,q be as in Lemma 7. Assume the hypotheses of the
theorem; hence the operator valued functionρR(k)ρ is analytic on{

k ∈ S: dist
(
k, [m− 2m−q,m+ 2m−q])< 2(m− 2)−3}.

Settingt = 2p in Lemma 7, we obtain

‖ρR(k)ρ‖ � e|k|3

in the region

G ≡ {
k ∈ S: dist

(
k, [m− 2m−q,m+ 2m−q ])< (m− 2)−3}.

Let Γ̃ ⊂ G be an open subset such that the projectionΠ , restricted toΓ̃ , is an
isometry ontoΓ , with Γ as in Lemma 8. Thus̃Γ lies on one of the branches of
G, and its intersection with the physical plane will be non-empty and consist of
one of the two sets

k: Γ− ≡
{

�(k) ∈ [m− 2m−q,m+ 2m−q ], − 1

(�k)3 � �k � 0

}
,

or

k: Γ+ ≡
{

�(k) ∈ [m− 2m−q,m+ 2m−q ], 0 � �k � 1

(�k)6
}
.

Assume for the moment that the intersection isΓ+. Then we have shown that
estimate A of the previous lemma holds forρR(k)ρ, and estimate B holds by
the Spectral Theorem. The conclusion of Theorem 1 follows. The case ofΓ− is
proven in the same way, using the obvious adaptation of Lemma 8. The theorem
now follows from Lemma 8. ✷

5. Example of quasimode construction

We present an example due to Buldyrev [3], in which a quasimode is con-
structed for the Dirichlet Laplacian. Figure 2 is the union of two circular arcs
of radii r1, r2. Under an assumption (see p. 20 in [3]) that will be satisfied for
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Fig. 2. Circular arcs.

Fig. 3. Waveguide with resonances.

genericr1, r2, d , Buldyrev then constructs a quasimode concentrated on the peri-
odic billiard trajectory of period 2d which lies along they-axis. The associated
frequencies arew2

p,q , with

wp,q = 1

2d

(
πp+

(
q + 1

2

)
arccos

√(
1 − 2d

r1

)(
1− 2d

r2

)
+O

(
1

p

))
;

herep,q are arbitrary positive integers. It is easy see that for anyr1, r2, d and any
fixedq , the sequencewp,q will satisfy the asymptotics required in the hypothesis
of Corollary 1.

It should be remarked that under weaker—and easier to verify—hypotheses
on r1, r2, d , Buldyrev’s construction yields a sequence of functionsuj such that
‖(∆− λj )uj‖L2(Ω) =O(λmj ) with m<∞, and this would enable one to prove a
weaker version of Corollary 1.
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Fig. 3 shows one of the ways in which the circular arcs in Fig. 2 can be placed
in a portion of a waveguide (actually only the portion near the periodic billiard
trajectory is necessary for the quasimode construction).
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