
An Algorithm for Approximating the

Satisfiability Problem of High-level

Conditions

Karl-Heinz Pennemann1 ,2

Department of Computing Science
University of Oldenburg

D-26111 Oldenburg, Germany

Abstract

The satisfiability problem is the fundamental problem in proving the conflict-freeness of speci-
fications, or in finding a counterexample for an invalid statement. In this paper, we present a
non-deterministic, monotone algorithm for this undecidable problem on graphical conditions that
is both correct and complete, but in general not guaranteed to terminate. For a fragment of high-
level conditions, the algorithm terminates, hence it is able to decide. Instead of enumerating all
possible objects of a category to approach the problem, the algorithm uses the input condition in a
constructive way to progress towards a solution. To this aim, programs over transformation rules
with external interfaces are considered. We use the framework of weak adhesive HLR categories.
Consequently, the algorithm is applicable to a number of replacement capable structures, such as
Petri-Nets, graphs or hypergraphs.

Keywords: first-order satisfiability problem, high-level conditions, high-level programs, graph
transformation, weak adhesive HLR categories.

1 This work is supported by the German Research Foundation (DFG), grants GRK 1076/1
(Graduate School on Trustworthy Software Systems) and HA 2936/2 (Development of Cor-
rect Graph Transformation Systems). Thanks to Arend Rensink for the visit to the Univer-
sity of Twente, during which the preliminary ideas for this work were discussed, to Annegret
Habel for constructive remarks concerning this paper, and to the referees for their thorough
reviews.
2 Email: Pennemann@Informatik.Uni-Oldenburg.de

Electronic Notes in Theoretical Computer Science 213 (2008) 75–94

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.075
Open access under CC BY-NC-ND license.

mailto:Pennemann@Informatik.Uni-Oldenburg.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

(High-level) Conditions are a graphical formalism to specify valid objects as
well as morphisms, i.e., they can be used to describe system or program states
as well as specify matches for transformation rules. They provide an intuitive
formalism for structural properties and are well suited for reasoning about the
behavior of transformation systems.

For a given category C of objects, the satisfiability problem is the problem
to decide for any given condition c, whether or not ∃G ∈ C. G |= c.

Is c satisfiable ?

∃G ∈ C. G |= c ?

condition c yes/no

The satisfiability problem can be used to show that a specification is conflict
free or to prove that a statement is invalid, i.e. if the negated statement is sat-
isfiable. If some object G is provided along with a positive answer, one yields
a counterexample for the latter case, illustrating an invalid system state. In
this sense, a satisfiability algorithm complements a first-order theorem prover,
with the prover searching for proof and the satisfiability algorithm looking for
a counterexample. For the category Graph of finite, directed, labeled graphs,
conditions are expressively equivalent to first order logic on graphs [20,11].
Therefore the satisfiability problem for arbitrary conditions over arbitrary
categories is not decidable, i.e., there does not exist an algorithm that decides
the satisfiability of arbitrary conditions over arbitrary categories. Still, an
approximation of this undecidable problem is possible, but necessarily either
unsound, incomplete or not guaranteed to terminate.

In this paper, we present a sound and complete algorithm that works for
conditions over a class of replacement capable categories. Instead of enumer-
ating all possible objects of a category to approach the problem, the presented
algorithm uses the input condition in a constructive way. Starting from the
initial object, e.g. the empty graph, elements of positive statements are added
if necessary, while the absence of forbidden patterns is checked. The result is
a monotone (non-deleting) algorithm which non-deterministically progresses
towards a satisfiable object. Technically, we generate for each condition a
program SeekSat. As we need to handover information between computation
steps, SeekSat works on morphisms of the considered category. To this aim,

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9476

programs over transformation rules with external interfaces are considered.

program

construction

program

application

condition c program

SeekSat(c)

yes, G |= c/no/unsure

The paper is organized as follows. In Section 2, the definition of condi-
tions is reviewed and programs over rules with external interfaces for high-level
structures such as graphs are introduced. In Section 3, the satisfiability al-
gorithm is presented, its correctness and completeness is shown, and for a
fragment of conditions, its termination and hence its capability to decide is
proved. In Section 4, practical aspects concerning a possible implementa-
tion and optimization are discussed. We relate our results to other work in
Section 5. A conclusion including further work is given in Section 6. A long
version of this paper is available at [1] including detailed proofs.

2 Conditions and Rules

In this section, we review the definitions of conditions and introduce programs
over rules with external interfaces for high-level structures such as graphs.
We seek an algorithm for the satisfiability problem of conditions that is not
concerned with a specific definition of a structure. Therefore, we use the
framework of weak adhesive HLR categories introduced as combination of
HLR systems and adhesive categories. A detailed introduction can be found
in [9,8].

For a given category C, let Mor be the set of all morphisms.

Assumption. Assume that 〈C,M〉 is a weak adhesive HLR category [8] con-
sisting of a category C of objects and a class M ⊆ Mor of monomorphisms.
Additionally, we require

• a M-initial object I, i.e., an object I ∈ C such that for every object G ∈ C
there is a unique morphism iG: I → G in M, called the initial morphism to
G,

• epi-M-factorization, i.e., for every morphism there is an epi-mono-
factorization with monomorphism in M,

• a finite length of M-decompositions, i.e., for every morphism m in M,
the length of every decomposition mn ◦ . . . ◦ m1 = m consisting of non-
epimorphisms mj in M (1 ≤ j ≤ n) is finite,

• a finite number of M-matches, i.e. for every morphism l: K ↪→ L in M and
every object G, there exist only a finite number of morphisms m: L ↪→ G in
M s.t. 〈l, m〉 has a pushout complement, and

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 77

• the pullback-pushout-M property, i.e., for every pair of M-morphisms B ↪→
D ←↩ C, the unique morphism D′ → D of the pushout 〈B ↪→ D′ ←↩ B〉 of
the pullback 〈B ←↩ A ↪→ C〉 of B ↪→ D ←↩ C is in M.

B D

CA

D′

=

=
(PO)

Notation. A morphism m with domain A and codomain B is denoted by
m: A→B. m: A ↪→ B indicates that m is a morphism in M. For an object G,
let idG: G ↔ G be the identity on G and let iG: I → G be the initial morphism
to G. For a morphism, the actual mapping is conveyed by indices, if necessary.

Example 2.1 The category Graph of finite, directed, labeled graphs [8] to-
gether with the class M of all injective graph morphisms constitutes a weak
adhesive HLR category that satisfies the assumptions. The empty graph ∅ is
the M-initial object.

Conditions are nested constraints and application conditions generalizing the
corresponding notions in [14,7] along the lines of [20].

Definition 2.2 (conditions) A (nested) condition over an object P is of
the form ∃a or ∃(a, c), where a: P → C is a morphism and c is a condition
over C. Moreover, Boolean formulas over conditions over P yield conditions
over P , i.e., true, ¬c and ∧j∈J cj are (Boolean) conditions over P , where J is
a finite index set and c, (cj)j∈J are conditions over P . Additionally, ∀(a, c)
abbreviates ¬∃(a,¬c), false abbreviates ¬true, ∨j∈J cj abbreviates ¬∧j∈J ¬cj

and c ⇒ d abbreviates ¬c ∨ d.

P

G

C
a

p q
=

c
|=

An object G satisfies a condition ∃a [∃(a, c)], if the condition is over the
initial object I and the initial morphism iG: I → G satisfies the condition. A
morphism p satisfies a condition ∃a [∃(a, c)] if there exists a morphism q in
M such that q ◦ a = p [and q satisfies c]. The satisfaction of conditions by
objects [by morphisms] is extended onto Boolean conditions in the usual way.
We write G |= c [p |= c] to denote that object G [morphism p] satisfies c.

In the context of objects, conditions (over the initial object I) are also
called constraints. In the context of rules, conditions are also called application

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9478

conditions.

Notation. For a morphism a: P → C in a condition, we just depict the
codomain C, if the domain P can be unambiguously inferred, i.e. for applica-
tion conditions over some left-hand side L of a rule and for constraints. For
instance, the constraint ∀(∅ →

1
, ∃(

1
→

1 2
)) with the meaning “Every

node has an outgoing edge to another distinct node” can be represented by
∀(

1
, ∃(

1 2
)).

A condition is in M-normal form (MNF), if for every subcondition ∃a and
∃(a, c) the morphism a is in M.

Fact 2.3 (M-normal form) Every condition c over P can be transformed
into a condition c′ in MNF such that, for all morphism p: P ↪→ G in M,
p |= c if and only if p |= c′.

Proof Substitute every subcondition ∃a and ∃(a, c), a �∈ M, with false (see
[11]). �

For the definition of rules with external interfaces, we define partial mor-
phisms.

Definition 2.4 (partial morphisms) For a given category C, a partial
morphism from A to B, denoted by A ⇀ B, is a span of morphisms
〈A ←↩ K → B〉, consisting of morphisms K ↪→ A in M and K → B in
Mor. Two partial morphism a, b: A ⇀ B are commutative, denoted by a = b,
if there is an isomorphism Ka ↔ Kb such that the resulting triangles commute.
The set of all partial morphisms is denoted by PMor.

Fact 2.5 (closure under composition) Partial morphism are closed under
composition, i.e., A ⇀ B and B ⇀ C can be composed to A ⇀ C.

Proof By pullback construction. The result is unique up to ismorphism. �

Fact 2.6 Every morphism is also a partial morphism: M ⊆ Mor ⊆ PMor.

We require rule applications restricted to a certain context. Therefore, we con-
sider rules with external interface and declare transformations of morphisms
instead of objects. In this paper, we consider only matches in M.

Definition 2.7 (rules with external interface) A rule ρ = 〈〈X ⇀ L ←↩
K ↪→ R〉, acL〉 consists of a partial morphism x: X ⇀ L, the external interface,
two M-morphisms l: K ↪→ L, r: K ↪→ R, and a (left) application condition

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 79

acL over L.

LX K R

DG H

x
=

m′

l r

l∗ r∗

m d m∗(1) (2)

A direct derivation from a (partial) morphism m′ to a morphism m∗, denoted
by m′ ⇒ρ,m m∗, is defined by a M-morphism d: K ↪→ D and two pushouts
〈m, l∗〉 and 〈r∗, m∗〉, if m′ = m◦x and m |= acL. We will often refer to the mor-
phisms m′ and m∗ as the input and the result of the derivation, respectively.
As the match m: L → G is in M, we speak of M-matching.

External interfaces may be seen as a kind of input/output types. They
can be used to control the location of rule applications. Rules with external
interface object I correspond to usual transformation rules. For now, to con-
catenate rule applications, an external interface object X has to coincide with
the right-hand side of the predecessing rule. The external interface may be a
partial morphism to selectively use the interface information it provides, see
Example 2.9. The input may be a partial morphism, if programs over rules
with external interfaces are considered.

Remark 2.8 Intentionally, we only consider an interface on the left-hand
side, as a rule author should just have to care about the “input” interface. In
case of external interfaces for left- and right-hand side, it suffices to consider
total interface morphisms. However, one may have to write a set of similar
rules, depending on rules that follow in sequential composition.

Notation. As every span 〈L ←↩ K ↪→ R〉 of morphisms in M can be seen as
a partial morphism, we write 〈〈X ⇀ L ⇒ R〉, acL〉. If acL = true, we omit
the left application condition and write 〈X ⇀ L ⇒ R〉. In case the external
interface is the initial object, i.e. X = I, we just write 〈L ⇒ R〉.

Example 2.9 (rule with external interface) Consider the graph rule

ρ = 〈
1 2

⇀
2
←↩

2
↪→

2 3
〉

that, for a graph morphism
1 2

→ G, adds an edge from the image of node
2 to a newly created node. With an external interface, it becomes possible to
hand over information between derivation steps without the use of additional
elements. In this example, the external interface expresses that a given chain
of nodes in a graph, represented by the last two nodes, must be extended. We
will make use of similar handover effects in our satisfiability algorithm. As
X = R, this rule is iterable. Note, the indices do not correspond with the

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9480

identities of the nodes, but convey their mappings.

21 2 2 2 3

1 2 31 21 2

m′ m m∗

For modeling transactions, we consider programs [13,19,12] on transformation
rules with external interface.

Definition 2.10 (programs) (High-level) Programs are inductively defined:
Abort, Skip and every rule ρ with external interface are programs. For pro-
grams P, Q and a condition c, every finite set S of programs, Fix(P), (P; Q),
if c then P fi, P∗, P↓ and while c do P od are programs.

While Fix(P) is an interface manipulation, a program S denotes the
(demonic) nondeterministic choice, (P; Q) is the sequential composition,
if c then P fi is the conditional execution, P∗ is the reflexive, transitive closure,
P↓ is the as long as possible iteration, and while c do P od is the conditional
iteration of programs.

To reflect the presence of rules with external interface, the semantics of a
program P is a ternary relation on partial morphisms, denoted by �P� ⊆ PMor3,
instead of a binary relation on objects. The first two morphisms represents
input and result while the last morphism is an “interface relation” from the
domain of the input to the domain of the result morphism.

�Abort� = ∅

�Skip� = {〈m′, m′, id〉 | m′ ∈ PMor}

�ρ� = {〈m′, m∗, mρ〉 | m′ ⇒ρ,m m∗}

�Fix(P)� = {〈m′, m∗ ◦ mP, id〉 | 〈m
′, m∗, mP〉 ∈ �P�}

�(P; Q)� = {〈m′, m∗, mQ ◦ mP〉 | 〈m
′, m, mP〉 ∈ �P�, 〈m, m∗, mQ〉 ∈ �Q�}

�S� =
⋃

P∈S�P�

�if c then P fi� = {〈m′, m∗, mP〉 ∈ �P� | m′ |= c} ∪ {〈m′, m′, id〉 | m′ |= ¬c}

�P∗� = �{Skip, (Fix(P); P∗)}�

�P↓� = {〈m′, m∗, id〉 ∈ �P∗� | �m.〈m∗, m, id〉 ∈ �Fix(P)�}

�while c do P od� = {〈m′, m∗, id〉 ∈ �if c then P fi∗� | m∗ |= ¬c}

where mρ: X ⇀ R is the partial ρ-induced morphism X ⇀ L ←↩ K ↪→ R and
id is the identity on the domain of m′ (and m∗).

Remark 2.11 Programs of the form (P; (Q; R)) and ((P; Q); R) can be proved
to be equal; by convention, both can be written as P; Q; R.

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 81

Fact 2.12 Every program P in the sense of [13,12] can be seen as a program
over rules with the initial object as external interface: 〈G, H〉 ∈ �P� in the
sense of [12] if and only if 〈iG, iH , idI〉 ∈ �P′�, where P′ is yielded from P by
substituting every elementary program 〈L ⇒ R〉 with Fix(〈I → L ⇒ R〉).

Example 2.13 (Fix operator) The Fix operation is not a true computation
step, but an interface manipulation, mainly used for normalization and in con-
text of sequential composition. For the rule AddNode : 〈∅ → ∅ ⇒ 〉, the use
of Fix is illustrated in Figure 1: We will find 〈m′, m∗, mAddNode〉 ∈ �AddNode� if
and only if 〈m′, m∗ ◦mAddNode, id∅〉 ∈ �Fix(AddNode)�. The different semantics
are emphasized by bold morphisms.

∅∅
1

G+
1

G

mAddNode

m′ m∗

∅∅
1

G+
1

G

mAddNode

m′ m∗

Figure 1. AddNode and Fix(AddNode)

Example 2.14 (sequential composition) We distinguish two uses of the
sequential composition: with and without handover. Consider the rules

AddNode : 〈 ∅ → ∅ ⇒ 〉

DeleteNodeN : 〈 → ⇒ ∅ 〉

DeleteNode : 〈 ∅ → ⇒ ∅ 〉

The program AddNode; DeleteNodeN has no observable effect: a node is added
in the first step and deleted in the second step (sequential composition with
handover). The program Fix(AddNode); DeleteNode also adds a node in the
first step; in the second step however, a nondeterministically chosen, isolated
node is deleted (sequential composition without handover). The bold mor-
phisms in Figure 2 mark the differences in the external interface condition of
the second rule application.

∅∅
1 1

∅

G+
1

G G

∅∅
1

∅

G+
1

G G′

Figure 2. Sequential composition with and without handover

In the following, we will consider only non-deleting rules with external interface
in M. For a morphism a: A → B, let dom(m) = A and codom(m) = B.

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9482

Fact 2.15 (every morphism in M) For non-deleting rules with external
interface in M, i.e. rules of the form ρ = 〈X ↪→ L ↔ K ↪→ R〉, the ρ-induced
morphism mρ: X ↪→ R is in M. For every derivation m′ ⇒ρ,m m∗, the mor-
phism m∗◦mρ is in M and there is a morphism m∗

ρ: codom(m′) ↪→ codom(m∗)
in M such that m∗

ρ◦m′ = m∗ ◦mρ. Consequently, for every program computa-
tion 〈m′, m∗, mP〉 ∈ �P�, the morphism mP: dom(m′) ↪→ dom(m∗) is in M and
there is a morphism m∗

P: codom(m′) → codom(m∗) with m∗
P ◦ m′ = m∗ ◦ mP.

Furthermore m′ in M implies m∗ in M.

3 The Satisfiability Problem

After we give a formal definition of the satisfiability problem of high-level con-
ditions, we will present a construction that, for any given condition, will yield
a program over rules with external interface, trying to construct a satisfiable
object.

Definition 3.1 (satisfiability problem) For a given category C, the satis-
fiability problem is the problem to decide for any given condition c, whether
or not ∃G ∈ C. G |= c.

Like the satisfiability problem of first-order logic on graphs and on finite
structures in general [21,5], the satisfiability problem of graph conditions and
high-level conditions in general is undecidable [11]. We seek a correct and com-
plete algorithm, not always guaranteed to terminate. The algorithm answers
yes, as soon a result is found, answers no, if it terminates without results, and
does not answer in case of non-termination.

SeekSat

∃G ∈ C. G |= c ?

condition c yes/no/no answer

The idea of our algorithm is to use the given condition in a constructive
way by adding elements of positive statements if necessary while checking the
absence of forbidden elements. The result is a monotone algorithm which non-
deterministically progresses towards an object satisfying the input condition.

Theorem 3.2 (SeekSat) For each condition c, there is a program
SeekSat(c) that is correct and complete, i.e.,

〈idI , iM , idI〉 ∈ �SeekSat(c)� implies M |= c,

(∃H ∈ C. H |= c) implies ∃M ∈ C. 〈idI , iM , idI〉 ∈ �SeekSat(c)�.

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 83

Satisfaction of conditions by objects is defined by presence (or absence) of
morphisms. For each condition c, we define two programs Sat(c) and Sat(c),
that for a given input p′: P ↪→ G in M are supposed to deliver some results
p∗: P ↪→ H in M, with the properties p∗ |= c and p∗ �|= c, respectively.

Construction. (SeekSat) For a condition c over the initial object I in MNF,
define SeekSat(c) = Fix(Sat(c)). For a condition over P in MNF, define Sat
and Sat as follows:

Sat(∃a) = if¬∃a then
⋃

P ↪→C′↪→C=a,C′ �∼=C{〈P ↪→ C ′ ⇒ C〉} fi

Sat(∃(a, c)) =
⋃

P ↪→C′↪→C=a{〈P ↪→ C ′ ⇒ C〉}; Sat(c)

Sat(∧j∈J cj) = while (¬∧j∈J cj) do ;
j∈J

if¬cj then Fix(Sat(cj)) fi od

where ;
j∈{1,...,n}Pj = ((P1; P2); . . . ; Pn).

Sat(∃a) = if∃a then Abort fi

Sat(∃(a, c)) = while ∃(a, c) do 〈〈P
a

↪→ C ⇒ C〉, c〉; Sat(c) od

Sat(∧j∈J cj) =
⋃

j∈J{Sat(cj)}

Sat(true) = Skip, Sat(true) = Abort, Sat(¬c) = Sat(c), and Sat(¬c) =
Sat(c).

In the case of Sat, existential statements correspond to an expansion of ex-
isting substructures (if necessary): Given a morphism P ↪→ G, the program
Sat(∃a) non-deterministically extends any partial occurrence C ′ to C, pro-
vided ∃a is not already satisfied. Similarly, given a morphism P ↪→ G, the
program Sat(∃(a, c)) non-deterministically extends any partial occurrence C ′

to C and subsequently applies Sat(c) on that occurrence. Moreover, conjunc-
tion corresponds to an iterated random sequentialization until a solution is
found (this iteration may not terminate). The completeness of Fix(Sat(c))
implies that the execution order of the subprograms cj is irrelevant for the
overall problem, and it suffices to consider just one sequentialization. Nega-
tion corresponds to a switch to the complementary Sat, and no computation
is necessary in the case of true.

For the complementary Sat, the (non)satisfiability of a basic existential
statement ∃a is just checked: If ∃a is satisfied, the computation is ended and
a depth-first interpreter would backtrack. For a nested existential statement
∃(a, c), an occurrence of C that does satisfy c is selected in the hope that a
subsequent application of Sat(c) yields a result in which C does not satisfy c
(this iteration may not terminate). Conjunction corresponds to nondetermin-
istic choice between alternatives: only one subcondition has to be dissatisfied
such that the negation of conjunction becomes satisfied. Negation corresponds
to a switch to the complementary Sat, and the computation is ended in the

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9484

case of true.

Remark 3.3 For abbreviated conditions, the construction of Sat and Sat is
extended as follows:

Sat(∀(a, c)) = Sat(∃(a,¬c))

Sat(false) = Abort

Sat(c ⇒ d) = Sat(¬c ∨ d) = {Sat(c), Sat(d)}

Sat(∨j∈J cj) = Sat(∧j∈J ¬cj)

Sat(∀(a, c)) = Sat(∃(a,¬c))

Sat(false) = Skip

Sat(c ⇒ d) = Sat(¬c ∨ d)

Sat(∨j∈J cj) = Sat(∧j∈J ¬cj)

Remark 3.4 Sat(c) is a program of finite size for every condition c in MNF:
As we consider only finite conjunctions and disjunctions of conditions and the
number of all decompositions P ↪→ C ′ ↪→ C is finite (a consequence of a finite
number of M-matches), all program sets are finite and the sequentialization
in case of Sat(∧j∈J cj) is of finite length.

Example 3.5 (satisfiable condition) Consider the following graph condi-
tion c = ∀(

1
, ∃(

1
)) ∧ ¬∃() ∧ ∃() expressing “All nodes have an

outgoing edge, there exists no cycle of length two and there is a node”. The
program SeekSat(c) is:

Fix(while¬c do

if∃(
1
,¬∃(

1
)) then // P1

Fix(while ∃(
1
,¬∃(

1
)) do

〈〈∅ →
1
⇒

1
〉,¬∃(

1
)〉; // select a node

if¬∃(
1

) then

{〈
1
→

1 2
⇒

1 2
〉, 〈

1
→

1
⇒

1
〉} // choice

fi od) fi

if ∃() then Fix(if ∃() then Abort fi) fi // P2

if¬∃() then Fix({〈∅ → ∅ ⇒ 〉}) fi // P3

od)

A fragment of the semantics of SeekSat(c) is depicted below by represent-
ing each morphism with its codomain (all depicted morphisms have I as do-

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 85

main/interface).

∅ ∅ ∅
1 1

1

1

1 1

P1 P2 P3 P1

P1

P1

�
P2

P2

�
P2

P3

SeekSat(c)

There exists some G ∈ Graph such that 〈idI , iG, idI〉 ∈ �SeekSat(c)�, hence
c is satisfiable.

The rule sets in the cases of Sat(∃a) and Sat(∃(a, c)) are minimal. For
every rule left out, there is a satisfiable condition for which SeekSat is not
complete anymore. We show this exemplarily for the cases P ∼= C ′ and C ′ ∼= C
of Sat(∃(a, c))

Example 3.6 (minimality) Assume, it is possible to
exclude the case C ′ ∼= C for Sat(∃(a, c)), i.e. redefine
Sat(∃(a, c)) =

⋃
P ↪→C′↪→C=a,C′ �∼=C{〈P ↪→C ′ ⇒C〉}; Sat(c). Then the con-

dition
c1 = ∃(, ∃(

0
)) ∧ ∃(, ∃(

1
)) ∧ ¬∃(

0 1
)

is satisfied by the graph
0 1

, but there is no 〈idI , m
∗, idI〉 ∈ �SeekSat(c1)�.

Assume, it is possible to exclude the case P ∼= C ′ for Sat(∃(a, c)), i.e. re-
define Sat(∃(a, c)) =

⋃
P ↪→C′↪→C=a,P �∼=C′{〈P ↪→ C ′ ⇒ C〉}; Sat(c). Then the

condition
c2 = ∃(, ∃(

0
)) ∧ ∃(, ∃(

1
)) ∧ ¬∃(

0 1
)

is satisfied by the graph
0 1

, but there is no 〈idI , m
∗, idI〉 ∈ �SeekSat(c2)�.

Fact 3.7 (monotonicity) Sat and Sat are monotone: for every condition
c in MNF, for every 〈m′, m∗, id〉 ∈ Fix(Sat(c)) [Fix(Sat(c))] there is a total
morphism x: codom(m′) → codom(m∗) in M from the codomain of m′ to the
codomain of m∗ such that x ◦ m′ = m∗.

Proof As every condition c is in MNF, every morphism a: P → C in every
subcondition ∃a and ∃(a, c) is in M. Consequently, Sat and Sat are programs
over non-deleting rules with total interface (see Fact 2.15). �

The proof of Theorem 3.2 is based on the following lemma.

Lemma 3.8 (Sat and Sat) Let id: P → P be the identity over P . For each
condition c over an object P , Sat(c) and Sat(c) are programs that, with respect
to the satisfiability problem, are

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9486

(correct) ∀m′, m∗ ∈ M. 〈m′, m∗, id〉 ∈ �Fix(Sat(c))� implies m∗ |= c,

∀m′, m∗ ∈ M. 〈m′, m∗, id〉 ∈ �Fix(Sat(c))� implies m∗ �|= c,

(complete) ∀m′, x ∈ M. x◦m′ |= c implies ∃m∗, y, z ∈ M. 〈m′, m∗, id〉 ∈
�Fix(Sat(c))�, m∗ = z ◦ m′ and x = y ◦ z.

∀m′, x ∈ M. x◦m′ �|= c implies ∃m∗, y, z ∈ M. 〈m′, m∗, id〉 ∈
�Fix(Sat(c))�, m∗ = z ◦ m′ and x = y ◦ z.

P

G M H

m′

z y

m∗

=

x
=

Completeness means, if a given M-morphism m′ can be extended by a
M-morphism x to satisfy c, there is a transition from m′ to a M-morphism
m∗ (m∗ = z ◦m′ for some M-morphism z) and m∗ lies exactly along the way
to x ◦ m′ (x = y ◦ z) preserving the possibility to eventually yield x ◦ m′.
While this does not imply a guarantee to reach x ◦ m′ at all, we can reach a
possibly smaller morphism, namely m∗ that also satisfies the subcondition c
(see correctness).

Proof of Lemma 3.8. See long version at [1]. �

Proof of Theorem 3.2. Without loss of generalization c is a condition over
the initial object I in M-normal form (see Fact 2.3). As SeekSat(c) is defined
as Fix(Sat(c)), the correctness and completeness of SeekSat(c) are special
cases of the correctness and completeness of Fix(Sat(c)). More precisely, as
m′ = idI : I ↔ I and any morphism from the initial object is in M and c is a
condition over I, the correctness of Fix(Sat(c)) reduces to

〈idI , iM , idI〉 ∈ �Fix(Sat(c))� implies iM |= c implies M |= c,

and the completeness of Fix(Sat(c)) reduces to

H |= c implies iH |= c implies ∃iM . 〈idI , iM , idI〉 ∈ �Fix(Sat(c))�.

I

I M H

idI

iM y

iM
=

x
=

�

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 87

A consequence of the completeness of Theorem 3.2 is that termination
implies a decision of the problem.

Corollary 3.9 If SeekSat(c) terminates and �M. 〈idI , iM , idI〉 ∈
�SeekSat(c)�, then c is not satisfiable.

SeekSat is guaranteed to terminate for a certain fragment of conditions.
Hence it is able to decide the satisfiability problem for this subclass.

Let Cond be the set of all conditions and let BCond be the ∃a-fragment of
non-nested existential conditions, i.e. Boolean formulas over basic conditions
∃a.

Theorem 3.10 For the ∃a-fragment of Cond, SeekSat is guaranteed to ter-
minate.

A consequence of Theorem 3.10 and Corollary 3.9 is the decidability of
BCond.

Corollary 3.11 For the ∃a-fragment of Cond, SeekSat decides the satisfia-
bility problem.

Let BCond\∧ be the set of all non-nested existential conditions without
conjunction. The proof of Theorem 3.10 is based on the following property:
For all conditions c ∈ BCond\∧ that do not contain conjunction, for all tuples
〈m′, m∗, id〉 in the semantics of Fix(Sat(c)), the satisfiability of all conditions
in BCond\∧ is preserved from m′ to m∗, or the satisfiability of c is guaranteed
from m∗.

Lemma 3.12 For all conditions c ∈ BCond\∧, for all 〈m′, m∗, id〉 ∈
�Fix(Sat(c))�,

∀d ∈ BCond\∧. m′ |= d implies m∗ |= d,

or ∀x ∈ M with x ◦ m∗ ∈ M. x ◦ m∗ |= c.

Proof of Lemma 3.12. See long version at [1]. �

Proof of Theorem 3.10. Let c ∈ BCond in conjunctive normal form, i.e.
c = ∧j∈J cj and cj ∈ BCond\∧ for each j ∈ J = {1, . . . , n}. The pro-
gram SeekSat(c) terminates if the while iteration of Sat(∧j∈J cj) termi-
nates. The iteration is guaranteed to terminate after at most n iterations,
as in each iteration 〈m1, mn+1, id〉 ∈ �;

j∈J
if¬cj then Fix(Sat(cj)) fi� with

〈mj, mj+1, id〉 ∈ �if¬cj then Fix(Sat(cj)) fi� for j ∈ J , there must be an
index k ∈ J in which the satisfiability of subcondition ck is established and
guaranteed from m∗. If such a step does not exists, the satisfiability of each
condition c�, � ∈ J , is be preserved in each step j ∈ J and for the whole

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9488

iteration. This case however can be excluded: by correctness of Fix(Sat(c)),
this would mean ∧j∈J cj is already satisfied and contradict the test ¬∧j∈J cj

at the begin of the while iteration. �

In the following, we briefly state the implications of our results to the
complementary tautology problem.

Definition 3.13 (tautology problem) For a given category C, the tautology
problem is the problem to decide for any given condition c, whether or not
∀G ∈ C. G |= c.

Each instance of the tautology problem may be viewed as an instance of
the satisfiability problem, by negating both the input condition, as well as
the answer. However, in contrast to positives answers, negative answers of a
satisfiability algorithm may only be lifted to the tautology problem in case of
termination and completeness. Otherwise, the incompleteness of the algorithm
would correspond to unsoundness in the case of the tautology problem. A
consequence of Theorem 3.2, Theorem 3.10 is the following:

Corollary 3.14 For the ∃a-fragment of Cond, SeekSat decides the tautology
problem.

4 Implementation and Optimization

In this section, we want to discuss practical aspects concerning an implemen-
tation of SeekSat and further optimizations.

Neither a pure depth-first, nor a pure breadth-first evaluation of SeekSat is
guaranteed to find a result for a satisfiable condition: A depth-first execution
may take a wrong choice towards an infinite subtree of the transition system
without results, a breadth-first evaluation is at least not possible on the level
of programs, as the unfolded transition system tree may have an infinite degree
at some points. Either a breadth-first evaluation on the level of transformation
rules or a small results-first evaluation seems to be the best way to organize
the search.

The main goals of any non-deterministic algorithm is to reduce the number
of available choices and to minimize backtracking. Therefore, the number of
“equivalent” matchings that lead to isomorphic results must be reduced. As
application conditions restrict the number of matches, rules with interface K
should be replaced by rules with smaller interface K ′ and a positive existential
application condition, if possible. In context of external interfaces, however,
this seems to be only viable for the case Sat(∃a). Moreover, isomorphism
checks should be applied to avoid unnecessary recomputations and seem ap-

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 89

propriate especially in context of a breadth-first or size-based evaluation.

In case of conjunction, disjunction and for all program sets in general, the
order in which subprograms are executed is free to choose. Known heuristics
[15] should be applied here to determine an order in which viable choices are
tried first and while others are suppressed until a later point. The proposi-
tional structure of conditions may be even used to rule out certain choices
and to prune whole branches of the search tree. For the rule sets in case of
∃a and ∃(a, c), at least an initial idea is to order the rules by the number of
elements they will introduce, with the aim to try to introduce as few elements
as possible.

Before SeekSat is constructed for a condition c, the condition should be
brought into normal form and optimized by a set of straightforward substitu-
tions, e.g., ∃(a, ∃b) may be substituted by ∃(b ◦ a).

In general, the information flow within programs should be improved, e.g.,
to avoid subsequent double checks of conditions. E.g., in case of Sat(∧j∈J cj),
the use of variables would bring some improvement:

while ∧j∈J var j do

foreach j ∈ J do

if¬cj then Fix(Sat(cj)); foreach j ∈ J do var j := false od fi;

var j := true

od od

For practical purposes, artificial bounds may be introduced to yield a correct
and terminating, but incomplete algorithm such that for every condition c,
a positive answer will imply the satisfiability of c for some object G ∈ C,
but a negative answer will not always imply the absence of such an object.
These restrictions could be based on CPU time, object’s sizes, or the length or
width of the search tree, and should preferably apply only for nested conditions
c �∈ BCond.

SeekSat

∃G ∈ C. G |= c ?

condition c yes/no/unsure

5 Related Concepts

In this section, we try to relate SeekSat to algorithms for the satisfiability
problem (SAT) of first-order formulas. Before that, we briefly review the
connection of first-order formulas and high-level conditions and discuss the

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9490

main differences between SAT algorithms on high-level conditions and first-
order formulas.

In [11], transformations between graph conditions and first-order logic on
graphs are considered, similar to [20]. For directed, labeled graphs, both con-
cepts are expressively equivalent. The proof is based onto two steps: First,
there are transformations between M-satisfiable conditions (this definition)
and A-satisfiable conditions [10], i.e. conditions with a semantics in which
the morphisms required to be present or absent (p, q in the definition) are
arbitrary. Second, there are transformations between A-satisfiable graph con-
ditions and graph formulas, relating the semantics of formulas and conditions:
on the one hand assignments of variables to a structure representing a graph,
on the other hand arbitrary morphisms from the graphs in the condition to a
tested graph. Note, the transformations of the first step are high-level, those
of the second step are graph-specific.

graph conditions
M-satisfiability

graph conditions
A-satisfiability

first-order
graph formulas

yes/no/unsure

[10,11] [11]

SAT tools [23,22,17,4,2]SeekSat [this paper]

In case of directed, labeled graphs, the translation into first-order formulas
allows to use existing tools to solve the satisfiability problem of conditions,
and may form the basis of an evaluation of SeekSat and its implementation.
Still, the point of SeekSat is to make a translation of the problem unnecessary
by providing an implementation of a SAT algorithm for any category satisfying
the assumptions of Section 2.

The main differences between algorithms on high-level conditions and for-
mulas are the following: high-level algorithms become structure-specific once
they are “instantiated” for a given category. While SAT algorithms for general
first-order logic necessarily consider arbitrary structures (and have to be re-
stricted by a set of axioms to a target structure, which adds to the complexity
of the problem), SeekSat will, by definition, only consider objects of the given
category C. Another difference is represented by M- and A-satisfiability: dis-
tinct elements in M-satisfiable conditions are mapped onto distinct elements
in the domain. In formulas, it remains open if the values of variables are equal
or distinct, unless it is explicitly stated. Finally, an algorithm on conditions
can and should use the fact that conditions make quantifications and state-
ments in bulks. In this sense, conditions may have a lower logical complexity
when compared to their translations in first-order logic.

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 91

Most first-order SAT solvers, including the most successful ones [18] such
as Darwin [2] and Paradox [4] are based on finite model building, like their
idols Mace2 [16], Mace4 [17], Falcon [22] and SEM [23]. Most of these
tools (except Darwin) approach the satisfiability problem by translating it,
for a given domain size, into a decidable SAT problem of either propositional
logic or at least ground clauses with equality. This has the advantage of using
existing implementations of well-known (propositional) SAT algorithms, such
as the dominating Davis-Putnam-Logemann-Loveland (DPLL) algorithm [6]
and its derivatives, thus benefiting from years of experience and know-how.
However, the translation phase is usually associated with a significant blow-
up: Generating all ground instances over a domain of size n for a clause with v
variables will yield nv instances alone [17]. Also, the problem has to be solved
again and again for increasing domain sizes, while only few tools are capable
to reuse earlier results.

In contrast, SeekSat contains no such translation. Nevertheless, SeekSat
seems, to some degree, related to the family of enumeration algorithms that
are based on tree search and splitting, like the DPLL algorithm. SeekSat is
based on a tree search where internal nodes correspond to partial solutions
(morphisms), branches are choices (partitioning the search space), and leaf
nodes are complete results or deadends. Instead of splitting, i.e. the process of
branching by selecting a propositional variable x from a formula and assigning
true and false, respectively, SeekSat will either skip, modify the morphism by
adding elements to its codomain (positive statement) or backtrack (negative
statement), depending on the satisfaction of the considered subcondition by
the current morphism. While currently not the case, SeekSat can be made
aware of the propositional structure of a condition to exclude whole branches
of the search tree without losing results, as discussed in Section 4. This should
strenghten the above relation.

Recently, the Model Evolution Calculus [3,2] was described, which lifts
the propositional DPLL procedure to first-order logic. Similar to SeekSat,
the split rule of the ME calculus is restricted to positive literals (the model
evolves only in case of positive statements). Where SeekSat uses morphisms
to apply a rule, the ME calculus uses unification. Like SeekSat, the ME
calculus is shown to be correct and complete. It is claimed that the ME
calculus can decide the Bernays-Schönfinkel (∃∀) fragment of first-order logic.
The SAT solver Darwin is an implementation of the ME calculus [2] and was
among the best solvers at the CADE 2007 [18].

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9492

6 Conclusion

We have presented a non-deterministic algorithm for the satisfiability prob-
lem of high-level conditions. It was shown that the algorithm is correct and
complete, thus it is not guaranteed to terminate in general. A fragment of con-
ditions was identified, namely ∃a-fragment of conditions, for which the termi-
nation of the algorithm was proved. Consequently, the algorithm can decide
the satisfiability problem as well as the complementary tautology problem
for this subclass. We have discussed certain aspects concerning an imple-
mentation and its optimization. For practical purposes, the algorithm can be
converted into a non-complete, but terminating algorithm. The algorithm was
formally described by using programs over transformation rules with external
interfaces.

Further topics include

– an investigation, whether or not the presented algorithm is (directly)
portable to conditions with arbitrary satisfiability [10,11] (conditions can
no longer assumed to be in MNF and one may require rules with K → R
not in M),

– a systematic study of rules with external interfaces,

– an algorithm for approximating the tautology problem (such an algorithm
will yield results in some instances for which SeekSat does not terminate),

– an implementation of SeekSat,

– further comparison with existing first-order satisfiability algorithms and
tools, such as Darwin [2], Mace4 [17] and SEM [23].

References

[1] http://formale-sprachen.informatik.uni-oldenburg.de/pub/eindex.html.

[2] Baumgartner, P., A. Fuchs and C. Tinelli, Implementing the model evolution calculus,
International Journal on Artificial Intelligence Tools 15 (2006), pp. 21–52.

[3] Baumgartner, P. and C. Tinelli, The model evolution calculus, in: Proc. 19th International
Conference on Automated Deduction (CADE), LNAI (LNCS) 2741 (2003), pp. 350–364.

[4] Claessen, K. and N. Sörensson, New techniques that improve MACE-style finite model finding,
in: Proc. CADE-19 Workshop on Model Computation (MODEL), 2003.

[5] Courcelle, B., Graph rewriting: An algebraic and logical approach, in: Handbook of Theoretical
Computer Science, volume B, Elsevier, Amsterdam, 1990 pp. 193–242.

[6] Davis, M., G. Logemann and D. Loveland, A machine program for theorem-proving, Commun.
ACM 5 (1962), pp. 394–397.

[7] Ehrig, H., K. Ehrig, A. Habel and K.-H. Pennemann, Theory of constraints and application
conditions: From graphs to high-level structures, Fundamenta Informaticae 74 (2006), pp. 135–
166.

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–94 93

[8] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph
Transformation,” EATCS Monographs of Theoretical Computer Science, Springer-Verlag,
Berlin, 2006.

[9] Ehrig, H., A. Habel, J. Padberg and U. Prange, Adhesive high-level replacement systems: A new
categorical framework for graph transformation, Fundamenta Informaticae 74 (2006), pp. 1–29.

[10] Habel, A. and K.-H. Pennemann, Satisfiability of high-level conditions, in: Graph
Transformations (ICGT’06), LNCS 4178 (2006), pp. 430–444.

[11] Habel, A. and K.-H. Pennemann, Correctness of high-level transformation systems relative to
nested conditions, 2008, submitted.

[12] Habel, A., K.-H. Pennemann and A. Rensink, Weakest preconditions for high-level programs,
in: Graph Transformations (ICGT’06), LNCS 4178 (2006), pp. 445–460, a long version is
available as technical report.

[13] Habel, A. and D. Plump, Computational completeness of programming languages based on
graph transformation, in: Proc. Foundations of Software Science and Computation Structures,
LNCS 2030 (2001), pp. 230–245.

[14] Heckel, R. and A. Wagner, Ensuring consistency of conditional graph grammars, in:
SEGRAGRA’95, ENTCS 2, 1995, pp. 95–104.

[15] Kumar, V., Algorithms for constraint satisfaction problems: A survey, AI Magazine 13 (1992),
pp. 32–44.

[16] McCune, W., MACE 2.0 reference manual and guide, Tech. Memo ANL/MCS-TM-249,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
(2001).

[17] McCune, W., Mace4 reference manual and guide, Tech. Memo ANL/MCS-TM-264,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
(2003).

[18] Pfenning, F., editor, “Proc. 21th International Conference on Automated Deduction (CADE),”
LNAI (LNCS) 4603, Springer, 2007.

[19] Plump, D. and S. Steinert, Towards graph programs for graph algorithms, in: Graph
Transformations (ICGT’04), LNCS 3256 (2004), pp. 128–143.

[20] Rensink, A., Representing first-order logic by graphs, in: Graph Transformations (ICGT’04),
LNCS 3256 (2004), pp. 319–335.

[21] Trakhtenbrot, B. A., The impossibility of an algorithm for the decision problem on finite classes
(In Russian), Doklady Akademii Nauk SSSR 70 (1950), pp. 569–572, english translation in:
Nine Papers on Logic and Quantum Electrodynamics, AMS Transl. Ser. 2, 23:1–5, 1963.

[22] Zhang, J., Constructing finite algebras with FALCON, Journal of Automated Reasoning 17

(1996), pp. 1–22.

[23] Zhang, J. and H. Zhang, SEM: A system for enumerating models, in: Proc. International Joint
Conferences on Artificial Intelligence (IJCAI), 1 (1995), pp. 298–303.

K.-H. Pennemann / Electronic Notes in Theoretical Computer Science 213 (2008) 75–9494

	Introduction
	Conditions and Rules
	The Satisfiability Problem
	Implementation and Optimization
	Related Concepts
	Conclusion
	References

