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1. Introduction

The first serious attempt to give a logical definition of a fractional derivative is due to Liouville. Now, the fractional
calculus topic is attracting growing interest from scientists and engineers; see [1–5] and references therein. Differential
equations of fractional order play a very important role in describing some real world problems. For example some problems
in physics, mechanics and other fields can be described with the help of fractional differential equations; see [1,5–9] and
references therein. The theory of differential equations of fractional order has recently received a lot of attention and now
constitutes a significant branch of nonlinear analysis. There are numerous research papers and monographs devoted to
fractional differential equations; for example see [2,4,10–12]. On the other hand, functional differential equations arise in
a variety of areas of biological, physical, and engineering applications; see, for example, the books of Kolmanovskii and
Myshkis [13] and Hale and Verduyn Lunel [14], and the references therein.
Recently the authors in [15] have established existence results for an initial value problem for fractional functional

differential equations of mixed type. More precisely, the initial value problem

Dβx(t) = f (t, xt), t ∈ J, 0 < β < 1, (1.1)

x(t) = φ(t), −r1 ≤ t ≤ 0, (1.2)
x(t) = ψ(t), b ≤ t ≤ b+ r2 (1.3)

was studied, where Dβ is the standard Riemann–Liouville fractional derivative, f : J × C([−r1, r2],R) → R is a given
function, φ ∈ C([−r1, 0],R) with φ(0) = 0, and ψ ∈ C([b, b + r2],R) with ψ(b) = 0. For any function x defined on
[−r1, b + r2] and any t ∈ J , we denote by xt the element of C([−r1, r2],R) defined by xt(θ) = x(t + θ) for−r1 ≤ θ ≤ r2,
where r1, r2 ≥ 0 are constants.
As remarked in [15]:
• If r1 = r2 = 0 then we have an ordinary differential equation of fractional order.
• If r1 > 0 and r2 = 0 then we have a retarded functional differential equation of fractional order.
• If r1 = 0 and r2 > 0 then we have an advanced differential equation of fractional order.
• If r1 > 0 and r2 > 0 then we have a mixed differential equation of fractional order.
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Our purpose here is to extend the results of [15] to the case of initial value problems for a mixed type functional
differential inclusion of fractional order. Furthermore, to encompass the full scope of our paper, we study the boundary
value problems for a mixed type fractional functional differential inclusion.
The structure of this paper is as follows. In Section 2, we collect some definitions and results which will be needed

throughout the paper. In Section 3, we consider the following initial value problem (IVP for short) for amixed type functional
differential inclusion of fractional order, namely

Dβx(t) ∈ f (t, xt), t ∈ J, 0 < β < 1, (1.4)

x(t) = φ(t), −r1 ≤ t ≤ 0, (1.5)
x(t) = ψ(t), b ≤ t ≤ b+ r2, (1.6)

where Dβ is the standard Riemann–Liouville fractional derivative, F : J × C([−r1, r2],R) → P (R) \ {∅} is a multi-valued
map (P (R) is the family of all nonempty subsets of R) and φ and ψ are as in problem (1.1)–(1.3).
There are few papers in which the authors consider the Dirichlet-type problem for linear and nonlinear ordinary

differential equations of fractional order; see for example [16–19]. In Section 4, we prove the existence of solutions to
boundary value problems (BVP for short) of a fractional functional differential equation of mixed type

−Dβx(t) ∈ F(t, xt), 0 ≤ t ≤ 1, 1 < β < 2, (1.7)

x(t) = φ(t), −r1 ≤ t ≤ 0, (1.8)
x(t) = ψ(t), 1 ≤ t ≤ 1+ r2, (1.9)

where Dβ is the standard Riemann–Liouville fractional derivative. Here, F : [0, 1] × C([−r1, r2],R)P (R) \ {∅}, φ ∈
C([−r1, 0],R) with φ(0) = 0 and ψ ∈ C([1, 1 + r2],R) with ψ(1) = 0. For any function x defined on [−r1, 1 + r2]
and any t ∈ J , we denote by xt the element of C([−r1, r2],R) defined by xt(θ) = x(t + θ) for −r1 ≤ θ ≤ r2, where
r1, r2 ≥ 0 are constants.
The Banach fixed point theorem, the nonlinear alternative of the Leray–Schauder type and the Covitz and Nadler fixed

point theorem are the main tools to obtain our results.

2. Auxiliary facts and results

This section is devoted to collecting some definitions and results which will be needed throughout this paper.
By C := C([−r1, r2],R)we denote the Banach space of all continuous functions from [−r1, r2] into E equipped with the

norm

‖φ‖ = sup{|φ(θ)| : −r1 ≤ θ ≤ r2}

and C(J,R) is endowed with norm ‖x‖0 = sup{|x(t)| : t ∈ J}. Also, let

‖x‖r1,r2 = max{ sup
−r1≤t≤0

|x(t)|, ‖x‖0, sup
b≤t≤b+r2

|x(t)|}.

We recall some facts frommulti-valued analysis. Let (X, ‖·‖) be a Banach space. LetP (X) = {Y ⊂ X : Y 6= ∅},Pcp(X) =
{Y ∈ P (X) : Y closed},Pcp(X) = {Y ∈ P (X) : Y compact},Pc,cp(X) = {Y ∈ P (X) : Y convex and compact}.
A multi-valued map G : X → P (X) has convex (closed) values if G(x) is convex (closed) for all x ∈ X . We say that G

is bounded on bounded sets if G(B) is bounded in X for each bounded set B of X , i.e., supx∈B{sup{‖y‖ : y ∈ G(x)}} < (∞).
The map G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a nonempty, closed subset of
X , and if for each open set N of X containing G(x0), there exists an open neighborhood M of x0 such that G(M) ⊆ N.
Also, G is said to be completely continuous if G(B) is relatively compact for every bounded subset B ⊆ X . If the multi-
valued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph
(i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). Finally, we say that G has a fixed point if there exists x ∈ X such that
x ∈ G(x).
A multi-valued map G : J → Pcl(X) is said to bemeasurable if for each x ∈ E, the function Y : J → X defined by

Y (t) = dist(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)},

is Lebesgue measurable.

Definition 2.1. A multi-valued map F : J × C([−r1, r2],R)→ Pc,cp(R) is said to be L1-Carathéodory if

(i) t 7→ F(t, x) is measurable for each x ∈ C([−r1, r2],R),
(ii) x 7→ F(t, x) is upper semicontinuous for almost all t ∈ J , and
(iii) for each real number ρ > 0, there exists a function hρ ∈ L1(J,R+) such that

‖F(t, u)‖ := sup{|v| : v ∈ F(t, u)} ≤ hρ(t), a.e. t ∈ J

for all u ∈ C([−r1, r2],R)with ‖u‖ ≤ ρ.
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Let (X, d) be a metric space induced from the normed space (X, | · |). Consider Hd : P (X)×P (X) −→ R+ ∪ {∞}, given
by

Hd(A,B) = max
{
sup
a∈A
d(a,B), sup

b∈B
d(A, b)

}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a
generalized (complete) metric space.

Definition 2.2. A multi-valued operator G : X → Pcl(X) is called
(a) γ -Lipschitz if there exists γ > 0 such that

Hd(G(x),G(y)) ≤ γ d(x, y), for each x, y ∈ X;

(b) a contraction if it is γ -Lipschitz with γ < 1.

Formore details onmulti-valuedmapswe refer to the books of Deimling [20], Górniewicz [21], Hu and Papageorgiou [22]
and Tolstonogov [23].
Now, we recall some definitions and facts about fractional derivatives and fractional integrals of arbitrary orders; see

[2–5].

Definition 2.3. The fractional primitive of order β > 0 of a function g : (0, b] → R is defined by

Iβ0 g(t) =
1

Γ (β)

∫ t

0
(t − s)β−1g(s)ds,

provided the right hand side is pointwise defined on (0, b], where Γ is the gamma function.

Note that Iβg exists for all β > 0 and g ∈ C((0, b],R) ∩ L1((0, b],R). Also, when g ∈ C(J,R) then Iβg ∈ C(J,R) and
Iβg(0) = 0.

Definition 2.4. The fractional derivative of order β > 0 of a continuous function g : (0, b] → R is defined by

Dβg(t) ≡
dβ

dtβ
g(t) =

1
Γ (1− β)

d
dt

∫ t

a
(t − s)−βg(s)ds

=
d
dt
I1−βa g(t).

Lemma 2.1 ([16]). Given h ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

Dβu(t)+ g(t) = 0, 0 < t < 1 (2.1)
u(0) = u(1) = 0, (2.2)

is

u(t) =
∫ 1

0
G(t, s)g(s)ds,

where

G(t, s) =


[t(1− s)]β−1 − (t − s)β−1

Γ (β)
, if 0 ≤ s ≤ t ≤ 1,

[t(1− s)]β−1

Γ (β)
, if 0 ≤ t ≤ s ≤ 1.

(2.3)

Making use of (2.3) the unique solution u of (2.1) and (2.2) may be written as

u(t) = −
1

Γ (β)

∫ t

0
(t − s)β−1 g(s)ds+

1
Γ (β)

∫ 1

0
tβ−1(1− s)β−1 g(s)ds, t ∈ J.

The considerations of this paper are based on the following fixed point theorems.

Theorem 2.1 (Nonlinear Alternative for Single-Valued Maps [24]). Let E be a Banach space, C a closed, convex subset of E,U an
open subset of C and 0 ∈ U. Suppose that F : U → C is a continuous, compact (that is, F(U) is a relatively compact subset of C)
map. Then either
(i) F has a fixed point in U, or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u).
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Theorem 2.2 (Nonlinear Alternative for Kakutani Maps [24]). Let E be a Banach space, C a closed convex subset of E,U an open
subset of C and 0 ∈ U . Suppose that F : U → Pc,cv(C) is an upper semicontinuous compact map; here Pc,cv(C) denotes the
family of nonempty, compact convex subsets of C. Then either
(i) F has a fixed point in U, or
(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF(u).

Next we state a selection theorem due to Bressan and Colombo.

Theorem 2.3 ([25]). Let Y be separable metric space and let N : Y → P (L1(J, E)) be a multi-valued operator which is lower
semicontinuous (l.s.c.) and has nonempty closed and decomposable values. Then N has a continuous selection, i.e. there exists a
continuous function (single-valued) f : Y → L1(J, E) such that f (x) ∈ N(x) for every x ∈ Y .

The next fixed point theorem is the well-known Covitz and Nadler fixed point theorem for multi-valued contractions
[26] (see also Deimling, [20] Theorem 11.1).

Lemma 2.2 (Covitz and Nadler [26]). Let (X, d) be a complete metric space. If G : X → Pcl(X) is a contraction, then FixN 6= ∅.

3. Initial value problems for fractional functional differential inclusions

In this section we are concerned with the existence of solutions for the problem (1.4)–(1.6). We first give the definition
of its solution. For this section J = [0, b].

Definition 3.1. A function x ∈ C([−r1, b + r2],R) is said to be a solution of (1.4)–(1.6) if x(t) = φ(t), t ∈ [−r1, 0], x(t) =
ψ(t) on [b, b+ r2] and there exists a function v ∈ L1(J,R) such that

x(t) =
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds, t ∈ J.

Theorem 3.1. Assume that the following conditions are satisfied:
(H1) F : J × C([−r1, r2],R)→ Pc,cp(R) is an L1-Carathéodory multi-valued map;
(H2) there exist p ∈ C(J,R) andΩ : [0,∞)→ (0,∞) continuous and nondecreasing such that

‖F(t, u)‖ := sup{|v| : v ∈ F(t, u)} ≤ p(t)Ω(‖u‖)

for almost all t ∈ J and all u ∈ C([−r1, r2],R);
(H3) there exists l ∈ L1(J,R), with Iβ l <∞ such that

Hd(F(t, u), F(t, ū)) ≤ l(t)‖u− ū‖ for every u, ū ∈ C([−r1, r2],R),

and

d(0, F(0, u)) ≤ l(t), for a.e. t ∈ J;

(H4) there exists a number K0 > 0 such that
K0

‖p‖0bβ
Γ (β+1)Ω(K0 +max{‖φ‖, ‖ψ‖})

> 1.

Then the IVP (1.4)–(1.6) has at least one solution on [−r1, b+ r2].

Proof. We transform the problem (1.4)–(1.6) into a fixed point problem. A solution to (1.4)–(1.6) is a fixed point of the
operator G : C([−r1, b+ r2],R) −→ P (C([−r1, b+ r2],R)) defined by

G(x) :=


h ∈ C([−r1, b+ r2],R) :

h(t) =


φ(t), if t ∈ [−r1, 0],
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds, if t ∈ J ,

ψ(t), if t ∈ [b, b+ r2],


where

v ∈ SF ,y = {v ∈ L1(J,R) : v(t) ∈ F(t, yt) for a.e. t ∈ J}.

Let u : [−r1, b+ r2] → R be a function defined by

u(t) =

{
φ(t), if t ∈ [−r1, 0],
0, if t ∈ J,
ψ(t), if t ∈ [b, b+ r2].
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For each y ∈ C(J,R)with y(0) = 0 we denote by z the function defined by

z(t) =

{0, if t ∈ [−r1, 0],
y(t), if t ∈ J,
0, if t ∈ [b, b+ r2].

If the function x satisfies the integral equation

x(t) =
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds

we can decompose the function x as x(t) = y(t) + u(t) for t ∈ J . This implies that xt = yt + ut for every t ∈ J and the
function y satisfies

y(t) =
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds.

In what follows, let B = {y ∈ C([−r1, b+ r2],R) : y0 = 0} and let G : B→ B be defined by

G(y) :=


h ∈ C([−r1, b+ r2],R) :

h(t) =


0, if t ∈ [−r1, 0],
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds, if t ∈ J ,

0, if t ∈ [b, b+ r2].


Then the operator G having a fixed point is equivalent to the operator G having a fixed point. So we turn to proving that G
has a fixed point which is a solution of the problem (1.4)–(1.6).
Claim 1: G(y) is convex for each y ∈ C([−r1, b+ r2],R).
Indeed, if h1, h2 belongs to G(y), then there exist v1, v2 ∈ SF ,y such that for each t ∈ J we have

hi(t) =
1

Γ (β)

∫ t

0
(t − s)β−1vi(s)ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t) =
1

Γ (β)

∫ t

0
(t − s)β−1[dv1(s)+ (1− d)v2(s)]ds.

Since SF ,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ G(y).

Claim 2: G sends bounded sets into bounded sets in C([−r1, b+ r2],R).
It is enough to show that, for any α > 0, there exists a positive constant L̂ such that, for each

y ∈ Bα = {y ∈ B : ‖y‖[−r1,b+r2] ≤ α},

we have ‖h‖0 ≤ L̂. For y ∈ B and s ∈ J we have

‖ys‖[−r1,r2] = max
θ∈[−r1,r2]

|y(s+ θ)| ≤ max
[−r1,b+r2]

|y(t)| = ‖y‖[−r1,b+r2] = ‖y‖r1,r2

and

‖ys + us‖ ≤ ‖ys‖ + ‖us‖ ≤ ‖y‖r1,r2 +max{‖φ‖, ‖ψ‖}.

Let y ∈ Bα . Then for each h ∈ G(y) there exists v ∈ SF ,y such that

h(t) =
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds, t ∈ J.

By (H2) we have for each t ∈ J

|h(t)| ≤
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds

≤
1

Γ (β)

∫ t

0
p(s)Ω(‖ys + us‖)(t − s)β−1ds

≤
1

Γ (β)
Ω(α +max{‖φ‖, ‖ψ‖})

∫ t

0
p(s)(t − s)β−1ds
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≤
‖p‖0
Γ (β)

Ω(α +max{‖φ‖, ‖ψ‖})
∫ t

0
(t − s)β−1ds

≤
bβ‖p‖0
Γ (β + 1)

Ω(α +max{‖φ‖, ‖ψ‖}).

Thus

‖h‖0 ≤
bβ‖p‖0
Γ (β + 1)

Ω(α +max{‖φ‖, ‖ψ‖}) := L̂.

Consequently, Gmaps bounded sets into bounded sets in B.
Claim 3: G sends bounded sets in C([−r1, b+ r2],R) into equicontinuous sets.
We consider Bα as in Claim 2 and let h ∈ G(y) for y ∈ Bα . Let ε > 0 be given. Now let τ1, τ2 ∈ J with τ2 > τ1. We consider

two cases τ1 > ε and τ1 ≤ ε.
Case 1. If τ1 > ε then

|h(t2)− h(t1)| ≤
1

Γ (β)

∫ t1−ε

0

∣∣(t2 − s)β−1 − (t1 − s)β−1∣∣ |v(s)|ds
+

1
Γ (β)

∫ t1

t1−ε

∣∣(t2 − s)β−1 − (t1 − s)β−1∣∣ |v(s)|ds+ 1
Γ (β)

∫ t2

t1
(t2 − s)β−1|v(s)|ds

≤
Ω(α +max{‖φ‖, ‖ψ‖})

Γ (β)

(∣∣∣∣∫ t1−ε

0
[(t2 − s)β−1 − (t1 − s)β−1]hρ(s)ds

∣∣∣∣
+

∣∣∣∣∫ t1

t1−ε

[
(t2 − s)β−1 − (t1 − s)β−1

]
hρ(s) ds

∣∣∣∣+ ∣∣∣∣∫ t2

t1
(t2 − s)β−1 hρ(s)ds

∣∣∣∣) .
Case 2. Let τ1 ≤ ε. For τ2 − τ1 < ε we get

|h(t2)− h(t1)| ≤
1

Γ (β)

∣∣∣∣∫ t2

0
(t2 − s)β−1v(s)ds−

∫ t1

0
(t2 − s)β−1v(s)ds

∣∣∣∣
≤
Ω(α +max{‖φ‖, ‖ψ‖})

Γ (β)

(∫ 2ε

0
(t2 − s)β−1hρ(s)ds+

∫ ε

0
(t1 − s)β−1 hρ(s)ds

)
.

As a consequence of Claims 2, 3 and the Arzelá–Ascoli theorem we can conclude that G : B −→ P (B) is completely
continuous.
Claim 4: G has closed graph.
Let yn −→ y∗, hn ∈ G(yn) and hn −→ h∗. We shall prove that h∗ ∈ G(y∗). Now hn ∈ G(yn) means that there exists

vn ∈ SF ,yn such that

hn(t) =
1

Γ (β)

∫ t

0
(t − s)β−1vn(s)ds, t ∈ J.

Wemust prove that there exists v∗ ∈ SF ,y∗ such that

h∗(t) =
1

Γ (β)

∫ t

0
(t − s)β−1v∗(s)ds, t ∈ J.

Since F(t, ·) is upper semicontinuous, then for every ε > 0, there exists n0(ε) ≥ 0 such that for every n ≥ n0, we have

vn(t) ∈ F(t, ytn + u
t) ⊂ F(t, yt

∗
+ ut)+ εB(0, 1), a.e. t ∈ J.

Since F(·, ·) has compact values, then there exists a subsequence vnm(·) such that

vnm(·)→ v∗(·) asm→∞

and

v∗(t) ∈ F(t, yt∗ + u
t), a.e. t ∈ J.

For everyw ∈ F(t, yt + ut), we have

|vnm(t)− v∗(t)| ≤ |vnm(t)− w| + |w − v∗(t)|.

Then

|vnm(t)− v∗(t)| ≤ d(vnm(t), F(t, y
t
∗
+ ut)).
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By an analogous relation, obtained by interchanging the roles of vnm and v∗, it follows that

|vnm(t)− v∗(t)| ≤ Hd(F(t, y
t
n + u

t), F(t, yt
∗
+ ut)) ≤ l(t)‖ytn − y

t
∗
‖.

Then

|hn(t)− h∗(t)| ≤
1

Γ (β)

∫ t

0
(t − s)β−1|vnm(s)− v∗(s)|ds

≤
1

Γ (β)

∫ t

0
(t − s)β−1l(s)‖yn − y∗‖0ds.

Hence

‖hn − h∗‖ ≤
1

Γ (β)

∫ t

0
(t − s)β−1l(s)‖yn − y∗‖0ds→ 0, asm→∞.

Claim 5: Now, we show that the set

M := {y ∈ C([−r1, b+ r2], E) : y ∈ λG(y) for some 0 < λ < 1}

is bounded.
Let y ∈M be such that y ∈ λG(y) for some λ < 1. Then there exists v ∈ SF ,y such that

y(t) = λ
1

Γ (β)

∫ t

0
(t − s)β−1v(s)ds, t ∈ J.

This implies by our assumptions that for each t ∈ J we have

|y(t)| ≤
1

Γ (β)

∫ t

0
p(s)Ω(‖ys + us‖)(t − s)β−1ds

≤
‖p‖0bβ

Γ (β + 1)
Ω(‖y‖r1,r2 +max{‖φ‖, ‖ψ‖}), t ∈ J.

Then
‖y‖r1,r2

‖p‖0bβ
Γ (β+1)Ω(‖y‖r1,r2 +max{‖φ‖, ‖ψ‖})

≤ 1.

By (H4), there existsM∗ such that ‖y‖r1,r2 6= M∗.
Set

U = {y ∈ C([−r1, b+ r2],R) : ‖y‖r1,r2 < M∗ + 1}.

From the choice of U there is no y ∈ ∂U such that y ∈ λG(y) for λ ∈ (0, 1). As a consequence of the Leray–Schauder
Alternative for Kakutani maps [24] we deduce that G has a fixed point and therefore the problem (1.4)–(1.6) has at least one
solution. �

Next, we study the case where F is not necessarily convex valued. Our approach here is based on the Leray–Schauder
Alternative for single-valued maps combined with a selection theorem due to Bressan and Colombo [25] for lower
semicontinuous multi-valued operators with decomposable values.

Theorem 3.2. Suppose that:

(h1) F : J × C([−r1, r2],R) −→ P (E) is a nonempty, compact-valued, multi-valued map such that:
(a) (t, u) 7→ F(t, u) isL⊗B measurable;
(b) u 7→ F(t, u) is lower semicontinuous for a.e. t ∈ J;

(h2) for each ρ > 0, there exists a function ϕρ ∈ L1(J,R+) such that

‖F(t, u)‖ = sup{|v| : v ∈ F(t, u)} ≤ ϕρ(t) for a.e. t ∈ J

and for u ∈ C([−r1, r2], E) with ‖u‖ ≤ ρ.

In addition suppose (H1) and (H4) are satisfied. Then the IVP (1.4)–(1.6) has at least one solution.

Proof. Assumptions (h1) and (h2) imply that F is of lower semicontinuous type. Then there exists [25] a continuous function
p : C(J, E)→ L1(J,R) such that p(y) ∈ F (y) for all y ∈ C(J, E), where F is the Nemitsky operator defined by

F (y) = {w ∈ L1(J,R) : w(t) ∈ F(t, yt) for a.e. t ∈ J}.
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Consider the problem

Dβy(t) = p(y)(t), t ∈ J, 0 < β < 1, (3.1)

y(t) = φ(t), −r1 ≤ t ≤ 0, (3.2)
y(t) = ψ(t), b ≤ t ≤ b+ r2. (3.3)

It is obvious that if y ∈ C(J, E) is a solution of the problem (3.1)–(3.3), then y is a solution to the problem (1.4)–(1.6).
Transform the problem (3.1) and (3.2) into a fixed point problem considering the operator N : C([−r1, b + r2],R) →

C([−r1, b+ r2],R) defined by:

N(y)(t) :=


φ(t), if t ∈ [−r1, 0]
1

Γ (β)

∫ t

0
(t − s)β−1p(y)(s)ds, if t ∈ J,

ψ(t), if t ∈ [b, b+ r2].

We prove that N : C([−r1, b+ r2],R)→ C([−r1, b+ r2],R) is continuous.
Let {yn} be a sequence such that yn −→ y in C([−r1, b + r2],R). Then there is an integer q such that ‖yn‖ ≤ q for all

n ∈ N and ‖y‖r1,r2 ≤ q; so yn ∈ Bq and y ∈ Bq.We have then by the dominated convergence theorem

‖N(yn)− N(y)‖ ≤
1

Γ (β)
sup
t∈J

[∫ t

0
(t − s)β−1|p(yn)− p(y)|ds

]
−→ 0.

ThusN is continuous. Next we prove thatN is completely continuous by proving, as in Theorem 3.1, thatN maps bounded
sets into bounded sets in C([−r1, b+ r2],R) and N maps bounded sets into equicontinuous sets of C([−r1, b+ r2],R).
Finally, as in Theorem 3.1 we can show that the set

E(N) := {y ∈ C([−r1, b+ r2],R) : y = λG(y), for some 0 < λ < 1}

is bounded. As a consequence of the Leray–Schauder Alternative for single-valued maps we deduce that N has a fixed point
ywhich is a solution to problem (3.1)–(3.3). Then y is a solution to the IVP (1.4)–(1.6). �

We present now a result for the problem (1.4)–(1.6) with a nonconvex valued right hand side, by using the Covitz and
Nadler fixed point theorem.

Theorem 3.3. Suppose (H3) and the following hypothesis hold:
(h3) F : J × C([−r1, r2],R) −→ Pcp(R) has the property that F(·, y) : J 7−→ Pcp(R) is measurable for each y ∈

C([−r1, r2],R).

If

‖Iβp‖0 < 1;

then the IVP (1.4)–(1.6) has at least one solution.

Remark 3.1. For each y ∈ C(J, E) the set SF(y) is nonempty since by (h3) F has a measurable selection (see [27], Theorem
III.6).

Proof. Transform the problem (1.4)–(1.6) into a fixed point problem. Let the multi-valued operator G : B → P (B) be
defined as in Theorem 3.1. We shall show that G satisfies the assumptions of Lemma 2.2. The proof will be given in two
steps.
Step 1: G(y) ∈ Pcl(B) for each y ∈ B.
Indeed, let (yn)n≥0 ∈ G(y) such that yn −→ ỹ in B. Then ỹ ∈ B and there exists gn ∈ SF ,y such that for each t ∈ J

yn(t) =
1

Γ (β)

∫ t

0
(t − s)β−1gn(s)ds.

Using the fact that F has compact values and from (H3), we may pass to a subsequence if necessary to get that gn converges
weakly to g in L1(J,R). An application of Mazur’s theorem implies that gn converges strongly to g and hence g ∈ SF ,y. Then
for each t ∈ J

yn(t) −→ ỹ(t) =
1

Γ (β)

∫ t

0
(t − s)β−1g(s)ds.

So ỹ ∈ G(y).
Step 2: There exists γ < 1, such that

Hd(G(y),G(y)) ≤ γ ‖y− y‖r1,r2 for each y, y ∈ B.
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Let y, y ∈ B and h ∈ G(y). Then there exists g(t) ∈ F(t, yt + ut) such that for each t ∈ J

h(t) =
1

Γ (β)

∫ t

0
(t − s)β−1g(s)ds.

From (H3) it follows that

Hd(F(t, yt + ut), F(t, yt + ut)) ≤ l(t)‖y− y‖, t ∈ J.

Hence there isw ∈ F(t, yt + ut) such that

|g(t)− w| ≤ l(t)‖y− y‖, t ∈ J.

Consider U : J → P (E), given by

U(t) = {w ∈ E : |g(t)− w| ≤ l(t)‖y− y‖}.

Since the multi-valued operator V (t) = U(t) ∩ F(t, yt + ut) is measurable (see Proposition III.4 in [27]), there exists a
function g(t), which is a measurable selection for V . So, g(t) ∈ F(t, yt + ut) and

|g(t)− g(t)| ≤ l(t)‖y− y‖, for each t ∈ J.

Let us define for each t ∈ J

h(t) =
1

Γ (β)

∫ t

0
(t − s)β−1g(s)ds.

Then for t ∈ J

|h(t)− h(t)| ≤
1

Γ (β)

∫ t

0
(t − s)β−1|g(s)− g(s)|ds

≤
1

Γ (β)

∫ t

0
(t − s)β−1l(s)‖y− y‖ds

≤
1

Γ (β)

∫ t

0
(b− s)β−1l(s)‖y− y‖r1,r2ds

≤ ‖Iβ l‖0‖y− y‖r1,r2 .

Then

‖h− h‖0 ≤ ‖Iβ l‖0‖y− y‖r1,r2 .

By an analogous relation, obtained by interchanging the roles of y and y, it follows that

Hd(G(y),G(y)) ≤ ‖Iβ l‖0‖y− y‖r1,r2 .

So, G is a contraction and thus, by Lemma 2.2, G has a fixed point y, which is a solution to (1.4)–(1.6). �

4. Boundary value problems for fractional functional differential inclusions

By a solution of (1.7)–(1.9) we mean a function x ∈ C([−r1, 1 + r2],R) with x(t) = φ(t), φ(0) = 0 on [−r1, 0], x(t) =
ψ(t), ψ(1) = 0 on [1, b+ r2] and there exists a function v ∈ L1([0, 1],R) such that

x(t) =
1

Γ (β)

∫ 1

0
G(t, s)v(s)ds.

Wemention that for this section J = [0, 1].

Theorem 4.1. Suppose (H1) and (H3) hold. Moreover assume that the following conditions hold:
(A2) there exist p ∈ L1(J,R) andΩ : [0,∞)→ (0,∞) continuous and nondecreasing such that

‖F(t, u)‖ := sup{|v| : v ∈ F(t, u)} ≤ p(t)Ω(‖u‖)

for almost all t ∈ J and all u ∈ C([−r1, r2],R);
(A3) there exists a number K0 > 0 such that

K0
2

Γ (β)
Ω(K0 +max{‖φ‖, ‖ψ‖})‖p‖L1

> 1.

Then the BVP (1.7)–(1.9) has at least one solution on the interval [−r1, 1+ r2].
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Proof. We transform the problem (1.7)–(1.9) into a fixed point problem. A solution to (1.7)–(1.9) is a fixed point of the
operatorN : C([−r1, 1+ r2],R) −→ P (C([−r1, 1+ r2],R)) defined by

N (x) :=


h ∈ C([−r1, 1+ r2],R) :

h(t) =


φ(t), if t ∈ [−r1, 0],
1

Γ (β)

∫ t

0
G(t, s)v(s)ds, if t ∈ J ,

ψ(t), if t ∈ [1, 1+ r2],


where

v ∈ SF ,y = {v ∈ L1(J,R) : v(t) ∈ F(t, yt) for a.e. t ∈ J}.

Using the decomposition of Theorem 3.1, in what follows, let B = {y ∈ C([−r1, 1+ r2],R) : y0 = 0} and let N : B→ B
be defined by

N(y) :=


h ∈ C([−r1, 1+ r2],R) :

h(t) =


0, if t ∈ [−r1, 0],
1

Γ (β)

∫ t

0
G(t, s)v(s)ds, if t ∈ J ,

0, if t ∈ [1, 1+ r2].


Then the operatorN having a fixed point is equivalent to the operator N having a fixed point. So we turn to proving that N
has a fixed point which is a solution of the problem (1.7)–(1.9).
Claim 1: N(y) is convex for each y ∈ C([−r1, 1+ r2],R).
This claim is obvious, since F has convex values (see also the proof of Step 1 of Theorem 3.1).
Claim 2: N sends bounded sets into bounded sets in C([−r1, 1+ r2],R).
It is enough to show that, for any α > 0, there exists a positive constant L̂ such that, for each

y ∈ Bα = {y ∈ B : ‖y‖[−r1,1+r2] ≤ α},

we have ‖h‖0 ≤ L̂. For y ∈ B and s ∈ J we have

‖ys‖[−r1,r2] = max
θ∈[−r1,r2]

|y(s+ θ)| ≤ max
[−r1,1+r2]

|y(t)| = ‖y‖[−r1,1+r2] = ‖y‖[r1,r2].

Let y ∈ Bα . Then for each h ∈ N(y) there exists v ∈ SF ,y such that

h(t) =
∫ 1

0
G(t, s)v(s)ds, t ∈ J.

We have for each t ∈ J

|h(t)| ≤
1

Γ (β)

∫ t

0
|t − s|β−1|v(s)|ds+

1
Γ (β)

∫ 1

0
|1− s|β−1|v(s)|ds

≤
1

Γ (β)

∫ t

0
|t − s|β−1|hρ(s)|ds+

1
Γ (β)

∫ 1

0
|1− s|β−1hρ(s)ds

≤
1

Γ (β)

∫ 1

0
|hρ(s)|ds+

1
Γ (β)

∫ 1

0
hρ(s)ds =

2
Γ (β)

∫ 1

0
hρ(s)ds.

Thus

‖h‖0 ≤
2

Γ (β)
‖hρ‖L1 := L̂.

Consequently, N maps bounded sets into bounded sets in B.
Claim 3: N sends bounded sets in C([−r1, 1+ r2],R) into equicontinuous sets.
We consider Bα as in Claim 2 and let h ∈ N(y) for y ∈ Bα . Let ε > 0 be given. Now let τ1, τ2 ∈ J with τ2 > τ1. Then we

have

|h(t2)− h(t1)| =
∣∣∣∣∫ 1

0
[G(t2, s)− G(t1, s)]v(s)ds

∣∣∣∣
≤

∫ t1

0
[G(t2, s)− G(t1, s)]v(s)ds+

∫ t2

t1
[G(t2, s)− G(t1, s)]v(s)ds+

∫ 1

t2
[G(t2, s)− G(t1, s)]v(s)ds

≤
tβ−12 − tβ−11

Γ (β)

∫ 1

0
(1− s)β−1|v(s)ds
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+

∣∣∣∣ 1
Γ (β)

∫ t1

0
[(t2 − s)β−1 − (t1 − s)β−1]|v(s)|ds

∣∣∣∣+ ∣∣∣∣ 1
Γ (β)

∫ t2

t1
(t2 − s)β−1|v(s)|ds

∣∣∣∣
≤
tβ−12 − tβ−11

Γ (β)

∫ 1

0
(1− s)β−1hρ(s)ds

+
1

Γ (β)

∫ t1

0
|(t2 − s)β−1 − (t1 − s)β−1|hρ(s)ds+

1
Γ (β)

∫ t2

t1
(t2 − s)β−1hρ(s)ds.

As t1 → t2 the right hand side of the last inequality tends to zero.
As a consequence of Claims 2, 3 and the Arzelá–Ascoli theorem we can conclude that N : B −→ P (B) is completely

continuous.
Claim 4: N has closed graph.
This can be proven as in Step 4 of Theorem 3.1, and thus the details are omitted.
Claim 5: Now, we show that the set

M := {y ∈ C([−r1, 1+ r2], E) : y ∈ λN(y) for some λ > 1}

is bounded.
Let y ∈M be such that y ∈ λN(y) for some λ < 1. Then there exists v ∈ SF ,y such that

y(t) = λ
∫ 1

0
G(t, s)v(s)ds, t ∈ J.

This implies by our assumptions that for each t ∈ J we have

|y(t)| ≤
∫ 1

0
|G(t, s)||v(s)|ds

≤

∫ 1

0
sup{|G(t, s)| : (t, s) ∈ J × J}p(s)Ω(‖ys + us‖)ds

≤
2

Γ (β)
Ω(‖y‖r1,r2 +max{‖φ‖, ‖ψ‖})‖p‖L1 .

Then

‖y‖r1,r2
2

Γ (β)
Ω(‖y‖r1,r2 +max{‖φ‖, ‖ψ‖})‖p‖L1

≤ 1.

By (A3), there existsM∗ such that ‖y‖r1,r2 6= M∗. Set

U = {y ∈ C([−r1, 1+ r2],R) : ‖y‖r1,r2 < M∗ + 1}.

From the choice of U there is no y ∈ ∂U such that y ∈ λN(y) for λ ∈ (0, 1). As a consequence of the Leray–Schauder
Alternative for Kakutani maps [24] we deduce that N has a fixed point and therefore the BVP (1.7)–(1.9) has at least one
solution. �

Next, we study the case where F is not necessarily convex valued. Our approach here is based on the Leray–Schauder
Alternative for single-valued maps combined with a selection theorem due to Bressan and Colombo [25] for lower
semicontinuous multi-valued operators with decomposable values.

Theorem 4.2. Suppose that (H1), (h1), (h2) and (A3) hold. Then the BVP (1.7)–(1.9) has at least one solution.

Proof. Assumptions (h1) and (h2) imply that F is of lower semicontinuous type. Then there exists [25] a continuous function
p : C(J, E)→ L1(J,R) such that p(y) ∈ F (y) for all y ∈ C(J, E), where F is the Nemitsky operator defined by

F (y) = {w ∈ L1(J,R) : w(t) ∈ F(t, yt) for a.e. t ∈ J}.

Consider the problem

−Dβy(t) = p(y)(t), t ∈ J, 1 < β < 2, (4.1)

y(t) = φ(t), −r1 ≤ t ≤ 0, (4.2)
y(t) = ψ(t), b ≤ t ≤ 1+ r2. (4.3)

It is obvious that if y ∈ C(J,R) is a solution of the problem (4.1)–(4.3), then y is a solution to the problem (1.7)–(1.9).
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Transform the problem (4.1)–(4.3) into a fixed point problem considering the operator N1 : C([−r1, 1 + r2],R) →
C([−r1, 1+ r2],R) defined by:

N1(y)(t) :=


φ(t), if t ∈ [−r1, 0]∫ 1

0
G(t, s)p(y)(s)ds, if t ∈ J,

ψ(t), if t ∈ [1, 1+ r2].

We prove that N1 : C([−r1, 1+ r2],R)→ C([−r1, 1+ r2],R) is continuous.
Let {yn} be a sequence such that yn −→ y in C([−r1, 1 + r2],R). Then there is an integer q such that ‖yn‖ ≤ q for all

n ∈ N and ‖y‖r1,r2 ≤ q; so yn ∈ Bq and y ∈ Bq.We have then by the dominated convergence theorem

|N1(yn)(t)− N1(y)(t)| ≤
∫ 1

0
|G(t, s)||p(yn(s))− p(y(s))|ds

≤
2

Γ (β)

∫ 1

0
|p(yn(s))− p(y(s))|ds.

Hence

‖N1(yn)− N1(y)‖0 → 0 as n→∞.

Thus N1 is continuous. Next we prove that N1 is completely continuous by proving, as in Theorem 4.1, that N1 maps
bounded sets into bounded sets in C([−r1, 1+ r2],R) and N1 maps bounded sets into equicontinuous sets of C([−r1, 1+ r2],R).
Finally, as in Theorem 4.1 we can show that the set

E(N1) := {y ∈ C([−r1, 1+ r2],R) : y = λN1(y), for some 0 < λ < 1}

is bounded. As a consequence of the Leray–Schauder Alternative for single-valuedmaps we deduce that N1 has a fixed point
ywhich is a solution to problem (4.1)–(4.3). Then y is a solution to the BVP (1.7)–(1.9). �

We present now a result for the problem (1.7)–(1.9) with a nonconvex valued right hand side, by using the Covitz and
Nadler fixed point theorem.

Theorem 4.3. Suppose that (h3) and (H3) hold. If
2

Γ (β)
‖l‖L1 < 1,

then the BVP (1.7)–(1.9) has at least one solution.

Proof. Transform the problem (1.7)–(1.9) into a fixed point problem. Let the multi-valued operator N : B → P (B) be
defined as in Theorem 4.1. We shall show that N satisfies the assumptions of Lemma 2.2. The proof will be given in two
steps.
Step 1: N(y) ∈ Pcl(B) for each y ∈ B.
Indeed, let (yn)n≥0 ∈ N(y) such that yn −→ ỹ in B. Then ỹ ∈ B and there exists gn ∈ SF ,y such that for each t ∈ J

yn(t) =
∫ 1

0
G(t, s)gn(s)ds.

Using the fact that F has compact values and from (A2), we may pass to a subsequence if necessary to get that gn converges
weakly to g in L1([0.1],R). An application of Mazur’s theorem implies that gn converges strongly to g and hence g ∈ SF(y).
Then for each t ∈ J

yn(t) −→ ỹ(t) =
∫ 1

0
G(t, s)g(s)ds.

So ỹ ∈ N(y).
Step 2: There exists γ < 1, such that

Hd(N(y),N(y)) ≤ γ ‖y− y‖r1,r2 for each y, y ∈ B.

Let y, y ∈ B and h ∈ N(y). Then there exists g(t) ∈ F(t, yt + ut) such that for each t ∈ J

h(t) =
1

Γ (β)

∫ t

0
(t − s)β−1g(s)ds.

From (A2) it follows that

Hd(F(t, yt + ut)), (F(t, yt + ut)) ≤ l(t)‖y− y‖, t ∈ J.
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Hence there isw ∈ F(t, yt + ut) such that

|g(t)− w| ≤ l(t)‖y− y‖, t ∈ J.

Consider U : J → P (E), given by

U(t) = {w ∈ E : |g(t)− w| ≤ l(t)‖y− y‖}.

Since the multi-valued operator V (t) = U(t) ∩ F(t, yt + ut) is measurable (see Proposition III.4 in [27]), there exists a
function g(t), which is a measurable selection for V . So, g(t) ∈ F(t, yt + ut) and

|g(t)− g(t)| ≤ l(t)‖y− y‖, for each t ∈ J.

Let us define for each t ∈ J

h(t) =
∫ 1

0
G(t, s)g(s)ds.

Then for t ∈ J

|h(t)− h(t)| ≤
∫ 1

0
|G(t, s)||g(s)− g(s)|ds

≤

∫ 1

0
|G(t, s)|l(s)‖y− y‖ds

≤
2

Γ (β)
‖l‖L1‖y− y‖r1,r2 .

Then

‖h− h‖0 ≤
2

Γ (β)
‖l‖L1‖y− y‖r1,r2 .

By an analogous relation, obtained by interchanging the roles of y and y, it follows that

Hd(N(y),N(y)) ≤
2

Γ (β)
‖l‖L1‖y− y‖r1,r2 .

So, N is a contraction and thus, by Lemma 2.2, N has a fixed point y, which is a solution to (1.7)–(1.9). �
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