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This paper develops a fast semi-analytical model for solving the three-dimensional elasto-plastic contact
problems involving layered materials using the Equivalent Inclusion Method (EIM). The analytical elastic
solutions of a half-space subjected to a unit surface pressure and a unit subsurface eigenstrain are
employed in this model; the topmost layer is simulated by an equivalent inclusion with fictitious eigen-
strain. Accumulative plastic deformation is determined by a procedure involving an iterative plasticity
loop and an incremental loading process. Algorithms of the fast Fourier transform (FFT) and the Conjugate
Gradient Method (CGM) are utilized to improve the computation efficiency. An analytical elastic solution
of layered body contact (O’Sullivan and King, 1988) and an indentation experiment result involving a lay-
ered substrate (Michler et al., 1999) are used to examine the accuracy of this model. Comparisons
between numerical results from the present model and a commercial FEM software (Abaqus) are also
presented. Case studies of a rigid ball loaded against a layered elasto-plastic half-space are conducted
to explore the effects of the modulus, yield strength, and thickness of the coating on the hardness, stiff-
ness, and plastic deformation of the composite body.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Coatings are widely used for surface reinforcement, friction and
wear reduction, and fatigue prevention (Bhushan and Peng, 2002;
Tichy and Meyer, 2000). Protective coating layers can be found in
many engineering applications including cutting tools, cams, gears,
magnetic storage media, and biomedical devices, some of which
may involve plastic deformation under a heavy-duty condition.
In the presence of material dissimilarity between the layer and
the substrate, the contact stresses may differ remarkably from
those developed in a homogeneous body. A numerical elasto-plas-
tic contact model for layered bodies is thus necessary to assist
coating material choice and layer design.

The elastic layered contact is an analytically complicated prob-
lem. The spatial dimensions of the governing differential equations
of elasticity are generally reduced by using the integral transform
methods, such as the Hankel (Burmister, 1945) and Fourier trans-
forms (Chen, 1971; Ju and Chen, 1984; Plumet and Dubourg,
1998). The displacements and stresses in a layered body can be
solved in a hybrid space-frequency domain. O’Sullivan and King
(1988) extended the method given by Chen (1971) to compute
the subsurface stress field in a layered half-space subjected to
distributed surface pressure and shear tractions; and Nogi and
ll rights reserved.

ang).
Kato (1997) developed the explicit frequency response functions
of elastic field for a purely pressure-loaded layered body. The
O’Sullivan and King approach has been extensively used by many
researchers (Liu and Wang, 2002; Liu et al., 2005, 2007; Polonsky
and Keer, 2000, 2001).

Numerical methods are generally required to solve the problem
of the elasto-plastic contact between layered solids. A good review
on the numerical methods applied to the layered contact problems
was given by Bhushan and Peng (2002). Peng and Bhushan (2001,
2002) developed a layered body contact model for elastic/plastic
solids with computer-generated rough surfaces using a variational
principle method. The elastic-perfectly plastic behavior of a mate-
rial is approximately simulated by using a cut off value (i.e., the
hardness of the softer material) to limit the contact pressure. This
approximate technique may give an efficient evaluation of the real
contact area and the gap between contacting rough surfaces,
however, it also leads to incorrect subsurface stress and strain
fields because the residual stress and plastic deformation are not
considered. The finite element method (FEM) has been extensively
used by many researchers to perform the numerical studies of
elasto-plastic indentation problems involving homogeneous
(Hardy et al., 1971; Follansbeea and Sinclairb, 1984; Mesarovic
and Fleck, 1999) and layered (Komvopoulos, 1989; Tian and Saka,
1991; Kral and Komvopoulos, 1996; Kral and Komvopoulos,
1997; Ye and Komvopoulos, 2003) materials. The FEM is flexible
enough to solve the problems with complicated geometries and
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Nomenclature

Letters
a0 Hertz contact radius based on material properties of

substrate, mm
Ac contact area, mm2

Aijkl influence coefficient of stress by eigenstrain or plastic
strain

Bn
ij; Bt

ij influence coefficients of stresses by pressure and shear
traction

Cc
ijkl; Cs

ijkl elastic moduli of layer and substrate, GPa

Dp, Dt, Des influence coefficients of displacements by pressure,
shear, and eigenstrain

Eb, Ec, Es Young’s moduli of mating body, coating, and substrate,
GPa

E* equivalent Young’s moduli, GPa
Gp, Gt the Green’s functions of displacement by pressure and

shear traction
h, hi surface gap, initial surface clearance, mm
N1, N2, N3 element numbers along three axes
Nc number of element in the coating along the z-axis
p contact pressure, MPa
p0 Hertz peak pressure based on material properties of

substrate, MPa
R radius of indenter, lm
s shear traction, MPa
Sij the deviatoric stress, MPa

t coating thickness, mm
Tn

ij; Tt
ij the Green’s functions of stresses caused by contact pres-

sure and shear traction
u3 surface normal displacement, mm
uð1Þ3 ; uð2Þ3 normal displacements caused by pressure and eigen-

strain, mm
W normal indentation load, N
Wc transitional load leading to the onset of plasticity, N
x, y, z space coordinates, mm

Greek letters
le equivalent shear moduli, GPa
lf friction coefficient
d rigid body approach, mm
2D1, 2D2, 2D3 element sizes along three axes, mm
eij; ep

ij; e�ij total material distortion, plastic strain, and equivalent
eigenstrain

k effective plastic strain
mb, mc, ms Poisson ratios of mating body, coating, and substrate
rij, rVM total stress and the von Mises stress, MPa
rYc, rYs yield strengths of coating and substrate, MPa

rð1Þij ; rð2Þij ; rð3Þij stresses caused by pressure, plastic strain,
eigenstrain, MPa

Xc, Xs, Wp domains of coating, substrate, and plastically
deformed material
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material constitutive responses. However, a large number of ele-
ments is needed to mesh the entire layered body, which may in-
crease the computation burden significantly.

A three-dimensional semi-analytical method (SAM) developed
by Jacq et al. (2002) to study the elasto-plastic contacts is based
on the exact solutions of uniform eigenstrains in a single cubic
inclusion in a half-space derived by Chiu (1978). This approach
has been further used to study the elasto-plastic contact problems
involving friction, wear, thermal loading, and rough surfaces
(Antaluca and Nelias, 2008; Boucly et al., 2005, 2007; Chen and
Wang, 2008; Chen et al., 2008a,b; Nelias et al., 2006, 2007a,b;
Wang and Keer, 2005). Chiu (1980) also derived two-dimensional
analytical solutions for a layer on a rigid frictionless half-plane
with eigenstrains.

The purpose of this paper is to develop a fast semi-analytical
model for three-dimensional elasto-plastic contact of layered
bodies. The simulation domain is discretized into small cuboidal
elements, and the approach of calculating eigenstresses in a half-
space proposed by Jacq et al. (2002) is used. The Equivalent Inclu-
sion Method (EIM) previously developed for the inhomogeneous
inclusion problem (Mura, 1982) is utilized here to simulate the
stress disturbance due to the layer effect. Using the Conjugate Gra-
dient Method (CGM) (Polonsky and Keer, 1999) and the discrete
convolution and fast Fourier transform (DC-FFT) algorithm (Liu
et al., 2000) will yield high computation efficiency, which makes
the solutions of problems requiring fine mesh or transient analysis
feasible. The simulations can provide detailed information of the
surface pressure, subsurface stress, and plastic deformation.
Fig. 1. Elasto-plastic contact of a sphere with a layered substrate.
2. Theoretical background

2.1. Contact problem description and modeling

Consider the contact of a ball (Eb,mb) with a layered half-space,
where the elastic constants of coating and substrate materials
are (Ec,mc) and (Es,ms), respectively. The origin of the Cartesian coor-
dinate system is set to be the initial contact point, and the z-axis
points inwards the layered half-space (Fig. 1). The increasing nor-
mal load W pushes the sphere into the layered half-space, and both
the coating and substrate materials may yield when the stress ex-
ceeds their elastic limits. The resulting plastic strains are denoted
by ep

ij. The surfaces of two bodies are assumed to be smooth. It
should be noted that a similar numerical procedure has been used
to solve the elasto-plastic contact of homogeneous bodies with
rough surfaces (Chen et al., 2007). Hence, this model can be readily
extended to treat rough surfaces without increasing the numerical
complexity.

In order to simplify the problem, the sphere is treated as an
elastic homogeneous body. The coating is assumed to be perfectly
bonded to the substrate without interface slipping and locally
detaching. Surface adhesion is not considered in this model (i.e.,
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the normal tensile traction is not allowed at the interface). A dry
contact is governed by the following equations:

W ¼
Z 1

�1

Z 1

�1
pðx; yÞ � dxdy ð1Þ

hðx; yÞ ¼ hiðx; yÞ þ u3ðx; yÞ � d ð2Þ

where p is the contact pressure, u3 the normal displacement of con-
tact bodies, hi the initial surface geometry (hi approximately equals
(x2 + y2)/2R when the sphere radius R is much larger than the contact
area dimensions), and h and d are the surface gap and the rigid body
approach, respectively. The interfacial interaction results in a contact
area Ac , where pressures are positive and the surface gap vanishes:

pðx; yÞ > 0; hðx; yÞ ¼ 0; ðx; yÞ 2 Ac ð3Þ

In the non-contact area,

pðx; yÞ ¼ 0; hðx; yÞ > 0; ðx; yÞ R Ac ð4Þ
2.2. Equivalent inclusion method for layered medium

The presence of the coating layer disturbs the contact deforma-
tion, stress field, and further plasticity. The domains of layer, sub-
strate, and the plasticity can be denoted by Xc, Xs, and Wp,
respectively (Fig. 2). The elastic moduli of layer and substrate
materials, Cc

ijkl and Cs
ijkl, are given as

Cm
ijkl ¼ kmdijdkl þ lmðdikdjl þ dildjkÞ ðm ¼ c or sÞ ð5Þ

where km and lm are the Lamé’s constants with km = Emmm/
(1 + mm)(1 � 2mm) and lm = Em/2(1 + mm), and dij is the Kronecker
delta function. In light of the Hooke’s law, the stresses in Xc can
be expressed as

rij ¼ Cc
ijklðekl � ep

klÞ in Xc ð6Þ

Here, ekl is the total strain caused by the external contact loading,
and simply equals the elastic strain in a plasticity-free domain
(i.e., ep

kl ¼ 0 in Xc \Wp).
Eigenstrain is a term referring the inelastic strain, such as ther-

mal strain, plastic strain, and misfit strain, while eigenstress is the
stress disturbance caused by the eigenstrain distribution. The EIM
was used to study the disturbance of the stress field in an infinitely
extended matrix containing an inhomogeneous inclusion, which
has material constants different from those of the surrounding ma-
trix and may have its own eigenstrains (Mura, 1982). With this
method, the layer is replaced by a homogenous inclusion that
occupies the coating space Xc and has a fictitious (equivalent)
Fig. 2. Equivalent inclusion method to solve the coating-induced stress disturbance (Xc ;

elastically deformed material, respectively).
eigenstrain e�ij. Thus, the stress disturbance due to the material
inhomogeneity of the layer is modeled by the eigenstress due to
eigenstrain inside the virtual inclusion. The elastic strains in the
inclusion can then be written as ekl � ep

kl � e�kl. Because the Hooke’s
law still holds, the stresses in the inclusion are

rij ¼ Cs
ijklðekl � ep

kl � e�klÞ in Xc ð7Þ

The necessary and sufficient conditions for the equivalence of
the stresses in the above two problems of layered body and inclu-
sion are given as (Fig. 2)

rij ¼ Cc
ijklðekl � ep

klÞ ¼ Cs
ijklðekl � ep

kl � e�klÞ in Xc ð8Þ

Elimination of ðekl � ep
kl) in Eq. (8) leads to the following relationship

between the equivalent eigenstrains and total stresses:

Cs
ijklC

c�1

klabrab � rij ¼ Cs
ijkle

�
kl in Xc ð9Þ

where Cc�1

ijkl ¼ �dijdklmc=Ec þ ðdikdjl þ dildjkÞ=4lc is the elastic compli-
ance of the coating material; subscripts (i, j, k, l,a,b) range over 1,
2, 3, and the index summation convention holds. As shown in Sec-
tion 2.3, the subsurface eigenstresses can be obtained as a function
of equivalent eigenstrains e�ij when the eigenstrains are in a homo-
geneous material. Thus, Eq. (9) is an implicit equation with respect
to unknown e�ij. A numerical iteration method is used to determine
e�ij, which will be discussed in Section 2.6.

A fast Fourier transform (FFT) based contact algorithm is used to
improve the computational efficiency in this model. Application of
FFT extends the data series (stress, strain, or displacement) period-
ically to form an infinite series, which may cause an alias (periodic)
error for a non-periodic problem (e.g., a point contact with local-
ized contact area). Liu et al. (2000) proposed an efficient method
with zero-padding and wrap-around order techniques to avoid this
periodic error (only the contributions from the excitations in the
target domain are taken in account). However, the issue brought
by this method is that the fictitious inclusion outside the target do-
main can not be captured. Thus, the actual problem solved by this
model (based on the approach of Liu et al. (2000)) is that of a block
embedded in the substrate, where the block is of the same material
as the layer and the horizontal dimensions of block are the same as
those of the simulation domain. Neglecting the coating outside the
simulation domain will cause unexpected error on the stress field
especially at the domain boundary. However, a sufficiently large
simulation domain (about 8 times the contact radius based on
the following validation cases) can make this error negligible
because the layer structure outside the domain has trivial influence
on the elastic field near the load application region. For a periodic
Xs; Wp; Wp are the domains of coating, substrate, plastically deformed material, and
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problem (e.g., nominally flat-on-flat surface contact), the periodic
boundary condition of this kind of problem naturally fulfills the
requirement of periodic extension of the FFT algorithm. Thus, the
periodic error can be completely circumvented.

2.3. Calculation of subsurface stress

Subsurface stress calculation is a necessary step towards the
understanding of plastic deformation evolution. In a layered elas-
to-plastic contact body, subsurface stresses are composed of three
parts: (1) the contact stress due to surface pressure p and shear
traction s, (2) the residual stress due to plastic strain ep

ij, and (3)
the disturbance stress due to equivalent eigenstrain e�ij. The stres-
ses caused by ep

ij and e�ij are essentially eigenstresses.
Elastic contact stresses rð1Þij at ( x,y,z) in a homogeneous half-

space of the substrate material caused by arbitrarily distributed
surface pressure p(x0,y0) and shear traction s(x0,y0) along the x-axis
can be calculated using the followed two dimensional integrals:

rð1Þij ðx; y; zÞ ¼
Z 1

�1

Z 1

�1
Tn

ijðx� x0; y� y0; zÞ þ lf � T
t
ijðx� x0; y� y0; zÞ

h i
� pðx0; y0Þdx0 dy0 ð10Þ

Here, Coulomb friction s(x0,y0) = lf � p(x0,y0) is assumed in Eq. (10)
with a friction coefficient lf. Tn

ij and Tt
ij are the Green’s functions

of the stresses due to the unit concentrated normal and tangential
forces at the surface origin (Johnson, 1985), which are listed in
Appendix.

The domain of interest is meshed using small cubic elements of
the same size 2D1 � 2D2 � 2D3. N1, N2, and N3 are the element
numbers along the x, y, and z directions, respectively. Pressure in
each discrete surface patch is treated as constant and given by
the value at the face center of patch. p[a,b] is the pressure of the ele-
ment centered at (2aD1,2bD2). Stresses and strains in each subsur-
face cubic element are also treated to be constant; rð1Þij½a;b;c�

denote the
elastic stresses at point (2aD1,2bD2,2cD3), which are chosen to
represent the stresses of the element centered at this point. The
elastic contact stresses at the discrete elements can be written as

rð1Þij½a;b;c� ¼
XN1�1

n¼0

XN2�1

w¼0

Bn
ij½a�n;b�w;c� þ lf � B

t
ij½a�n;b�w;c�

� �
p½n;w�

ð0 6 a 6 N1 � 1; 0 6 b 6 N2 � 1Þ

where

BJ
ij½a�n;b�w;c� ¼

Z ð2nþ1ÞD1

ð2n�1ÞD1

Z ð2wþ1ÞD2

ð2w�1ÞD2

TJ
ijð2aD1 � x0;2bD2 � y0;2cD3Þdx0dy0

ðJ ¼ n and tÞ: ð11Þ

In Eq. (11), the indefinite double integrals of Tn
ij and Tt

ij (also see
Appendix) used to calculate the influence coefficients Bn

ij½a�n;b�w;c�
and Bt

ij½a�n;b�w;c� were derived by Love (1929).
Jacq et al. (2002) developed an approach of calculating the

residual stresses due to plastic strain based on the original work
of Chiu (1978), who derived eigenstress solutions of a single cuboi-
dal inclusion with uniform eigenstrains in a homogeneous semi-
infinite body. The approach of Jacq et al. (2002) is used here to
determine eigenstresses caused by plastic strain (rð2Þij ) and equiva-
lent eigenstrain (rð3Þij ). Eigenstresses of the element centered at
(2aD1,2bD2,2cD3) can be expressed as

rð2Þij½a;b;c� ¼
XN1�1

n¼0

XN2�1

w¼0

XN3�1

u¼0

Aijkl½a�n;b�w;u;c�ep
kl½n;w;u�

rð3Þij½a;b;c� ¼
XN1�1

n¼0

XN2�1

w¼0

XNc�1

f¼0

Aijkl½a�n;b�w;f;c�e�kl½n;w;f�

ð0 6 a 6 N1 � 1; 0 6 b 6 N2 � 1; 0 6 c 6 N3 � 1Þ

ð12Þ
where Aijkl[a�n,b�w,f,c] are the influence coefficients, whose detailed
formulas are given by Jacq et al. (2002), and Nc is the number of ele-
ments in the coating domain Xc along the z direction.

Assume that the deformation is small and within the limit of
linear elasticity theory. Superposition principle is still applicable
here. The total stresses can be expressed as the summation of
the contact stresses and eigenstresses:

rij½a;b;c� ¼ rð1Þij½a;b;c� þ rð2Þij½a;b;c� þ rð3Þij½a;b;c� ð13Þ
2.4. Calculation of surface normal displacement

The surface normal displacement can be decomposed as fol-
lows: (1) the elastic displacement due to surface normal pressure,
and (2) the eigen-displacement due to subsurface eigenstrains. The
elastic normal displacement at (x,y) on a homogeneous half-space
can be associated with distributed pressure p(x0,y0) and shear trac-
tion s(x0,y0) = lf � p(x0,y0) along the x-axis using the Boussinesq
integral:

uð1Þ3 ðx; yÞ ¼
Z 1

�1

Z 1

�1
Gpðx� x0; y� y0Þ þ lf � G

tðx� x0; y� y0Þ
h i

� pðx0; y0Þdx0 dy0

where Gpðx; yÞ ¼ 1
pE�

ffiffiffiffiffiffiffiffiffi
x2þy2
p , Gtðx; yÞ ¼ x

pleðx2þy2Þ,

1
E�
¼ ð1� m2

s Þ
Es

þ ð1� m2
bÞ

Eb
and

1
le
¼ ð1þ msÞð1� 2msÞ

2Es
� ð1þ mbÞð1� 2mbÞ

2Eb
ð14Þ

Here, Gp and Gs are the Green’s functions, and E* and le are the
equivalent Young’s modulus and shear modulus. The surface of
interest is discretized into N1 � N2 rectangular elements, each of
which has a size of 2D1 � 2D2. Pressure and displacement in each
discrete patch are treated as constant and given by the values at
the center of patch. p[a,b], s[a,b], and uð1Þ3½a;b� denote pressure, shear
traction, and elastic displacement of the element centered at
(2aD1,2bD2), respectively. The discrete formula of elastic displace-
ment becomes

uð1Þ3½a;b� ¼
XN1�1

n¼0

XN2�1

w¼0

Dp
½a�n;b�w� þ lf � D

t
½a�n;b�w�

� �
p½n;w�

ð0 6 a 6 N1 � 1; 0 6 b 6 N2 � 1Þ

where

DJ
½a�n;b�w� ¼

Z ð2nþ1ÞD1

ð2n�1ÞD1

Z ð2wþ1ÞD2

ð2w�1ÞD2

GJð2aD1 � x0;2bD2 � y0Þdx0 dy0

ðJ ¼ n and tÞ ð15Þ

Here, Dp
½a�n;b�w� and Dt

½a�n;b�w� are the influence coefficients, and the

closed-form indefinite integrals of the Green’s functions Gp and Gt

are given asZZ
Gpðx; yÞdxdy ¼ 1

pE�
x ln yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
þ y ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �h i
ZZ

Gtðx; yÞdxdy ¼ 1
ple

y ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
þ x tan�1ðy=xÞ

h i
ð16Þ

Two sources cause the surface eigen-displacement: plastic
strain ep

ij and equivalent eigenstrain e�ij. Jacq et al. (2002) derived
the exact solution of normal displacement using the reciprocal
theorem specifically for the volume-conserved plastic strain.
Following the procedure of Jacq et al. (2002), the normal eigen-
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displacement of a homogeneous half-space at the surface point
(x,y) caused by a general eigenstrain can be expressed as a volume
integral:

uð2Þ3 ðx; yÞ ¼
1
P

Z 1

�1

Z 1

�1

Z 1

�1
e��ij ðx0; y0; z0Þrn

ijðx0 � x; y0 � y; z0Þdx0 dy0 dz0

ð17Þ

Here, e��ij ¼ e�ij þ ep
ij are the total eigenstrains (plastic plus equiva-

lent). rn
ijðx0 � x; y0 � y; z0) are the elastic stresses at (x0,y0,z0) caused

by the concentrated normal force P at the surface point (x,y). Note
that there are nine component products in the integrand due to
the summation convention. Consider the same cubic element sys-
tem used in Section 2.3. e��ij½a;b;c� denote the eigenstrains at the point
of (2aD1,2bD2,2cD3), which are chosen to represent the uniform
eigenstrains of the cubic element centered at this point. uð2Þ3½a;b� de-
notes the normal eigen-displacement at (2aD1,2bD2). Thus, Eq.
(17) can be discretized as

uð2Þ3½a;b� ¼
XN1�1

n¼0

XN2�1

w¼0

XN3�1

f¼0

Des
ij½n�a;w�b;f�e

��
ij½n;w;f�

ð0 6 a 6 N1 � 1; 0 6 b 6 N2 � 1Þ

where

Des
ij½n�a;w�b;f� ¼

Z ð2nþ1ÞD1

ð2n�1ÞD1

Z ð2wþ1ÞD2

ð2w�1ÞD2

Z ð2fþ1ÞD3

ð2f�1ÞD3

Tn
ijðx0 � 2aD1; y0

� 2bD2; z0Þdx0 dy0 dz0 ð18Þ

Here, Des
ij½n�a;w�b;f� are the influence coefficients, and the indefinite tri-

ple integrals of Tn
ij are given in Appendix. Note that the equation

rn
ij ¼ P � Tn

ij is used in deriving Eq. (18) from Eq. (17).
Finally, the total normal displacement is the eigen-displace-

ment plus the elastic one:

u3½a;b� ¼ uð1Þ3½a;b� þ uð2Þ3½a;b� ð19Þ
2.5. Plasticity consideration

In this study, both the layer and substrate materials are assume
to behave as elastic-perfectly plastic bodies without strain harden-
ing. rYc and rYs denote yield strengths of coating and substrate,
respectively. The J-2 criterion for material yield initiation (valid
for most metal materials) is given as

f ¼ rVM � rYc in Xc

f ¼ rVM � rYs in Xs
ð20Þ

Here, rVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Sij : Sij=2

p
is the von Mises equivalent stress, and

Sij = rij � rkkdij/3 the deviatoric stress. Yielding occurs when the
von Mises equivalent stress exceeds the material yield strength.
The elastic-perfectly plasticity model well represents the plastic re-
sponses of many engineering metallic materials under simple load-
ing scenarios, such as normal indentation. If the reverse plasticity
due to unloading and plastic accumulation due to repeated contacts
are of interest, a more realistic strain hardening law needs to be
used. The semi-analytical models (SAM) of elasto-plastic contact
have been developed to analyze contacts of materials with different
hardening behaviors, including the linear, power, isotropic, and ki-
netic laws (Jacq et al., 2002; Wang and Keer, 2005; Chen et al.,
2008b). Sharing the same numerical framework for the plasticity
loop with SAM, the present coating indentation model is capable
of handling different hardening law of plasticity.
2.6. Numerical procedure

Plasticity is nonlinear and depends on the loading history.
Therefore, an incremental loading process has to be simulated to
capture the plastic strain accumulation. The entire loading process
is divided into NL quasi-static steps, and each step has a constant
load. Each load step starts from the normal contact problem, where
the half-space is assumed to be homogeneous and plasticity-free.
From Eqs. (2) and (15), the contact equation can be written as

0 ¼ hi½a;b� � dþ
XN1�1

n¼0

XN2�1

w¼0

Dp
½a�n;b�w� þ lf Dt

½a�n;b�w�

� �
p½n;w� in Ac ð21Þ

This linear equation system with an unknown pressure distribution
can be solved by the single-loop CGM (Polonsky and Keer, 1999).
The DC-FFT algorithm proposed by Liu et al. (2000) is also intro-
duced to enhance the computational efficiency.

Once the contact pressure is obtained from the contact solution,
the subsurface contact stress field can be evaluated by Eq. (11). The
J-2 criterion is used to identify the trial plastic domain where the
von Mises stress exceeds the local yield strength. The actual
increment of the effective plastic strain dk is the value that returns
the J-2 yield function to zero, i.e., f(k + dk) = 0; k ¼

P
dk ¼P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dep
ijde

p
ij=3

q� �
is the effective accumulative plastic strain. Here,

the Newton–Raphson method is used to solve dk (Chen et al.,
2008b). Increments of the plastic strain tensor dep

ij can then be cal-
culated by the general flow rule:

dep
ij ¼ dk

3Sij

2rVM
ð22Þ

Next, the equivalent eigenstrains e�ij caused by the material
inhomogeneity are determined using the EIM. Substitution of Eq.
(13) into Eq. (9) yields

L : rð1Þ½a;b;c� þ rð2Þ½a;b;c� þ rð3Þ½a;b;c�

� �
¼ e�½a;b;c� in Xc

L ¼ Cc�1
� Cs�1

ð23Þ

Here, the tensor form is used to simplify the formula; Cs, Cc, and L
are the fourth order tensors of material constant, and r and e are
the second order tensors. Considering the expressions of eigen-
stresses in Eq. (12), we have

e�½a;b;c� � L :
XN1�1

n¼0

XN2�1

w¼0

XNc�1

f¼0

A½a�n;b�w;f;c� : e�½n;w;f�

¼ L : rð1Þ½a;b;c� þ L :
XN1�1

n¼0

XN2�1

w¼0

XN3�1

u¼0

A½a�n;b�w;u;c� : ep
½n;w;u�

ð0 6 a; n 6 N1 � 1; 0 6 b;

w 6 N2 � 1; 0 6 u 6 N3 � 1; 0 6 c; f 6 NcÞ ð24Þ

where A is the fourth order tensor of the influence coefficient.
Eq. (24) is a linear system with 6N1N2Nc equations and 6N1N2Nc

unknown eigenstrains e�ij½a;b;c� in elements within the coating
domain. An iterative numerical approach based on the conjugate
gradient algorithm is applied to obtain equivalent eigenstrains
(Zhou et al., under review). Solving the eigenstresses in a half-space
can be accelerated by a three-dimensional FFT method proposed by
Zhou et al. (2009).

Inserting the plastic strain and the equivalent eigenstrain into
Eq. (18), one can calculate the surface normal eigen-displacement.
The eigen-displacement in turn alters the surface contact geometry
and the contact pressure distribution. Therefore, the interfacial
contact has to be solved again to update the contact pressure. A
closed-loop linking the variations of the contact pressure, plastic
strain, and surface geometry is developed. This loop is repeated
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until the difference between the eigen-displacements of two adja-
cent iterative steps is less than the prescribed error tolerance. Once
the convergence reaches, the normal load is increased and the next
load step begins. The flowchart of the entire numerical procedure
is shown in Fig. 3.

3. Results of elastic indentation of a layered substrate

The elastic solution of contact pressure between a spherical in-
denter and a layered half-space was developed by O’Sullivan and
King (1988) in terms of a series of basic functions, which was also
utilized to calculate the subsurface stress field in the layer and sub-
strate based on the explicit frequency response functions. In order
to verify the accuracy of the present model, the numerical results
of the present model are compared with those from the O’ Sullivan
and King’s solutions (see Fig. 4). Here, a0 and p0 are Hertz solutions
of the contact radius and peak pressure, which are obtained for a
homogenous half-space of the substrate material. The coating
thickness, t, is taken to be a0, and Poisson ratios of layer and sub-
strate are 0.3. The simulation domain of (8a0 � 8a0 � 2.5a0) is
meshed into 128 � 128 � 40 cubic elements. Fig. 4(a) shows pres-
sure profiles beneath the indenter for the cases with different Ec/Es.
The increase in the coating modulus increases the contact pressure
and reduces the contact area. Stress profiles of r11 along the depth
at the origin are given in Fig. 4(b). In the case of a stiffer coating,
r11 becomes tensile at the coating-substrate interface. Fig. 4(c)
gives the interfacial shear stress r13 along x-axis. Excellent agree-
ments can be found between the present numerical results and
the solutions given by O’Sullivan and King (1988). Another note-
worthy point is that shear stress r13 at the boundary of simulation
domain predicted by the present model matches well with that gi-
ven by O’Sullivan and King (1988). It indicates that the domain
sizes used in this study are large enough to avoid the boundary er-
ror induced by neglecting the layer structure outside the simula-
tion domain.

In order to demonstrate the mesh size effect, different mesh
densities are used to compute the elastic indentation of a substrate
with a stiffer coating, and the results of von Mises stress rVM along
the depth inside the coating are presented in Fig. 5. Increasing the
mesh density may improve the quality of simulation results
(smoothly capture the stress variation) and decrease the numerical
error. The fine mesh 128 � 128 � 40 yields a stress profile closely
matching with the analytical solution given by O’Sullivan and King
(1988), and it is sufficiently accurate for the numerical studies per-
formed in this paper.

Fig. 6 shows the simulation results of the stiffer coating case (Ec/
Es = 2) when the Coulomb friction is taken into account. Contact
pressure distributions beneath the indenter and von Mises stress
rVM profiles along the depth are given in Fig. 6(a) and (b), respec-
tively. A strong interaction between pressure and shear traction is
indicated in Fig. 6(a). Increase in the shear traction can elevate the
peak contact pressure and shift its position towards the trailing
edge of the contact area. With increasing friction coefficient, a sig-
nificant rise in the von Mises stress inside the coating is identified
as well. However, the effect of shear traction on von Mises stress in
the substrate is trivial. In this case, the shear traction is assumed to
be linearly proportional to the local pressure. However, the real
distribution of shear traction can be determined through solving
the tangential contact equation, in which the surface tangential
displacements due to eigenstrain and contact stresses are of pri-
mary interest.

4. Results of elasto-plastic indentation of a layered substrate

4.1. Model validation

Michler et al. (1999) measured the load–displacement curve for
an indentation experiment of a 10 lm-radius diamond indenter on
a tooling steel substrate coated with a 3.5 lm diamond-like carbon
(DLC) layer, where only the steel substrate involves obvious plastic
deformation (the DLC layer has a relatively high hardness of about
25 GPa (Michler et al., 1999) and can be considered to be purely
elastic in the mechanical model). The present model is applied to
simulate this experiment for the purpose of model validation.
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The elastic constants of the DLC layer (Ec = 87 GPa and mc = 0.22) re-
ported by Cho et al. (1999) were used. All material properties used
in the simulation are listed in Fig. 7 for clarity. The load–displace-
ment curves from the experiment (Michler et al., 1999) and the
present model are plotted in Fig. 7. The numerical result from
the present model well matches the experiment measurement. It
should be noted that the indentation behaviors may be altered
by the presence of pre-existing strains, which may occur during
the coating or surface finishing processes. Extensive experimental
and numerical studies have been conducted to explore the rela-
tionship between the load–displacement response of nano-inden-
tation and the pre-existing stress field (Bolshakov et al., 1996;
Suresh and Giannakopoulos, 1998; Carlsson and Larsson, 2001;
Giannakopoulos, 2003). Although the results shown in Fig. 7 did
not include the effect of such residual strains, pre-existing strains
can be taken into account in the present model as initial eigen-
strains, which can be readily incorporated into ep

kl in Eqs. (6)–(9).
4.2. Parametric study: Young’s modulus of the layer

In the following parametric studies, coating’s thickness t is com-
parable with or less than the contact radius; and both the layer and
the substrate have elastic-perfectly plastic behaviors subjected to
plastic strain accumulation. Poisson ratios of them are 0.3. The
sphere is assumed to be rigid. Young’s modulus and yield strength
of the substrate are fixed at Es = 200 GPa and rYs = 350 MPa. The
maximum normal load is W/Wc = 30, where Wc is the transitional
load indicating the onset of an elasto-plastic contact if the ball is
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loaded against the homogeneous half-space of the substrate mate-
rial (Johnson, 1985). The value of Wc is given by

Wc ¼
1:6prYsð Þ3

6
R
E�

� �2

ð25Þ

Here, R is the sphere radius. In the following results, the displace-
ments are normalized by a0, the stresses and pressure by p0, and
the normal loads by Wc. a0 and p0 are Hertz solutions of contact ra-
dius and peak pressure when the indenter is loaded against the sub-
strate without coating and the normal load is 20Wc. The simulation
domain sizes and the mesh number are the same as those used in
the cases in Section 3. Each simulation case includes 20 loading
steps as well as 20 unloading steps. ‘Hard’ and ‘soft’ are used to de-
scribe the magnitude of yield strength (hardness), and ‘stiff’ and
‘compliant’ the magnitude of Young’s modulus.

A set of simulations are first conducted for the cases with fixed
substrate Young’s modulus and varied layer modulus, and simula-
tion results are presented in Figs. 8–11. Here, the ratio between
yield strengths of the layer and the substrate is rYc/rYs = 1.5, and
the coating thickness is t = 0.5a0. For the purpose of model compar-
ison, the commercial finite element (FE) software, Abaqus, was also
utilized to simulate the same indentation problems on the layered
materials. The deformed half-space is meshed using Abaqus C3D4
elements, whose sizes are exactly the same to those used by the
present model in the potential contact region. Both numerical
models were run on a computer with 2.4 GHz CPU and 2G memory.
It took about 2 hours for the present model to complete the simu-
lation of one case, while about 14 hours for the Abaqus FE model.
Evolutions of contact pressure from both the present model and
FEM are presented in Fig. 8 with respect to increasing normal load.
An appreciably good agreement is found between the pressure pro-
files obtained from the two methods, which also serves as a proof
to the accuracy of the present model.

Under a lighter load (W/Wc = 3), the pressure profiles resemble
the Hertz solutions, and the central peak pressure in the stiffer
coating case (Ec/Es = 2) is larger than that in the more compliant
coating case (Ec/Es = 0.5). Under a heavier load (W/Wc = 30), the
pressure has a relatively flat profile in the compliant coating case
while the pressure has a concave shape with a reduced value at
the contact center and a uplifted value at the edge in the stiffer
coating case. Similar conclusions were also reported in the previ-
ous research works (Kennedy and Ling, 1974; Komvopoulos,
1989; Kral and Komvopoulos, 1996). The overall load bearing
capacity is not improved obviously through the usage of a stiffer
coating. The numerical test predicts that the dimensionless contact
areas Ac=pa2

0 are 2.001, 1.841, and 1.682 for the cases of Ec/Es = 0.5,
1, and 2, respectively.

The boundaries of plastic regions in the plane of y = 0 developed
at different normal loads for the cases of Ec/Es = 0.5 and 2 are plot-
ted in Fig. 9. Only one half of the plane is shown due to symmetry.
In the contact body with a more compliant layer, the plastic defor-
mation initiates just below the coating-substrate interface and
then propagates to the coating, while in the body with a stiffer
coating, the plastic deformation initiates in the coating under a
smaller indentation load. Increase in the layer modulus expands
the size of plastic region in the coating. The contact pressure and
subsurface stresses are enhanced by a stiffer coating if only a
purely elastic contact is considered. However, the maximum stress
in an elasto-plastic layer is limited by the layer yield strength,
which is fixed in these cases; thus more material needs to deform
plastically to accommodate the external load. In the case with a
stiffer coating, the plastic region expands and reaches the surface,
which may cause unexpected plasticity wear; more plastically de-
formed material under the surface makes the surface contact more
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conformal, which may explain why the pressure in the stiffer coat-
ing case drops in the center of contact area and the overall load
bearing capacity is barely improved (see Fig. 8(b)). The sizes of
plastic regions in the substrate under W = 30Wc for the two cases
with different layer moduli are almost the same.

The von Mises stress contours under the maximum indentation
load (W = 30Wc) for the more compliant and stiffer coating cases
are given in Fig. 10(a) and (b), respectively. Here, the von Mises
stress is normalized by the yield strength of substrate, rYs. In the
elastic solutions of the layered body contact problems discussed
by O’Sullivan and King (1988), the maximum von Mises stress
developed in a more compliant layer is lower than that in a stiffer
layer. However, in the elasto-plastic solutions predicted by the
present model, it is found that the maximum von Mises stresses
in the layer are the same for the two cases because the von Mises
stress in the layer are bounded by the layer yield strength (fixed in
the two cases). This is consistent with the elastic-perfectly plastic
material property used in these simulations. Similarly, the maxi-
mum von Mises stresses in the substrate are found to be the same
in the two cases as well. Fig. 11 presents the load–displacement
curves for three cases with the varied layer modulus, where the
slopes of loading and unloading curves from a stiffer coating case
are larger than those from a more compliant coating case; the body
with a stiffer coating has a shallower indentation depth at the end
of loading. However, the depths of the residual impressions are al-
most the same for these three cases. It is shown that increasing
modulus of the layer reinforces the stiffness of a layered body
but hardly improves its hardness (or strength).

4.3. Parametric study: yield strength of the layer

Fig. 12 shows the comparisons of simulation results from five
cases with varied yield strength of the layer, i.e., rYc/rYs = 0.75, 1,
1.5, 2, and 4. Here, the Young’s moduli of the layer and substrate
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are set to be equal, and the coating thickness is t = 0.5a0. Fig. 12(a)
shows the pressure profiles along the x-axis under the maximum
load, which indicates that the increase in the yield strength of layer
increases the contact pressure and reduces the real contact area
(the dimensionless contact areas Ac=pa2

0 are 2.095, 1.966, 1.841,
1.782, and 1.747 when the yield strength ratio rYc/rYs equals
0.75, 1, 1.5, 2, and 4, respectively). Fig. 12(b) gives the load–dis-
placement curves. Because the moduli of layer are the same in
these cases, the loading curves almost overlap under the light load,
but deviate apart under heavy loads due to different plastic re-
sponses of the layer; the slopes of unloading curves are approxi-
mately the same. After unloading is completed, the residual
impression is shallower in the case of a harder coating. The depth
of the residual impression drops from 0.007a0 in the case of rYc/
rYs = 0.75 to 0.0057a0 in the case of rYc/rYs = 4 (about 20% de-
crease). This part of the study has numerically reproduced the fact
that increasing the layer yield strength enhances the hardness of
the material system, which well matches the engineering practice
of using a hard coating to increase the load bearing capacity.

The plastic regions in the cross section (y = 0) under the normal
load of W = 30Wc are presented in Fig. 12(c), where five types of
lines represent the boundaries of plastic regions for the cases of
rYc/rYs = 0.75, 1, 1.5, 2, and 4, respectively. For the case with the
hardest coating (rYc/rYs = 4), plastic deformation only occurs in
the substrate because the high material strength keeps the layer
from yielding. This is consistent with the simulation results re-
ported by Komvopoulos (1989). For the case of rYc/rYs = 2, a plastic
region can be found in the layer beneath the contact surface, and
the boundary of plastic region has significant discontinuity at the
coating-substrate interface due to the large difference of material
strengths. A harder coating can support the higher stress value,
and therefore less material in the layer yields to resist the external
load, which suggests that increasing rYc improves the strength of a
layered body. Using a softer coating may obviously expand the
plastic region in the layer. For the case of rYc/rYs = 1.5, the plastic
region reaches the surface, and an elastic core surrounded by the
plastic region can be found just beneath the contact indenter. A
continuous boundary of the plastic region is detected in the case
of rYc/rYs = 1.0 (a homogeneous body). Further decreasing the layer
yield strength (rYc/rYs = 0.75) removes the central elastic core and
introduces a fully plastic state in the layer. It increases the possibil-
ity of wear caused by plastic deformation. In addition, increasing
the layer yield strength slightly expands the plastic region in the
substrate.

Radial cracking and layer buckling may be associated with the
lateral stress developed in the layer perpendicular to the coating-
substrate interface. The normal stress profiles r11 along the depth
at the origin when W = 30Wc are presented in Fig. 12(d) for various
layer yield strengths. The normal stresses r11 near the contacting
surface are found to be compressive, and the absolute magnitude
of r11 increases with the layer yield strength. In the layer, r11

approximately keeps the constant value within the plastic region
(larger in a harder coating), and varies linearly with the depth in
the elastically deformed region. For the case of rYc/rYs = 4, r11 be-
comes tensile at the interface, which may facilitate the propagation
of cracks in the layer and orthogonal to the interface. In addition,
the yield strength of the layer has negligible effect on the stress
profiles of r11 in the substrate.

4.4. Parametric study: thickness of the layer

The effects of the layer thickness on the contact performances
are also investigated, and the simulation results from the cases of



Fig. 12. Comparisons of cases with different yield strength ratios rYc/rYs (Ec/Es = 1, t/a0 = 0.5): (a) contact pressure along the x-axis when W = 30Wc, (b) indentation depth
versus the applied load, (c) plastic regions in the plane of y = 0 when W = 30Wc (the dashed, dot-dashed, dotted, solid, and dot-dot-dashed lines are the boundaries of plastic
regions for cases of rYc/rYs = 0.75, 1, 1.5, 2, and 4, respectively), and (d) normal stress r11 along the depth at the origin when W = 30Wc.

Fig. 13. Comparisons of cases with different coating thicknesses t (rYc/rYs = 1.5, Ec/Es = 2): (a) contact pressure along the x-axis when W = 30Wc, and (b) indentation depth
versus the applied load.
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t/a0 = 0.5, 1, 1.5 are presented and compared in Fig. 13. In these
cases, the Young’s modulus ratio and the yield strength ratio are
fixed to be Ec/Es = 2 and rYc/rYs = 1.5 (the harder and stiffer coat-
ing), respectively. Fig. 13(a) gives the pressure distributions along
the x-axis under the maximum indentation load. The increase in
the coating thickness increases the pressure and shrinks the
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contact area (the dimensionless contact areas Ac=pa2
0 are 1.682,

1.493, and 1.349 when the dimensionless coating thickness t/a0

equals 0.5, 1, and 1.5, respectively). The load–displacement curves
are presented in Fig. 13(b), where increasing the layer thickness in-
creases the slopes of loading and unloading curves (higher stiff-
ness) and yields a shallower residual impression (higher strength).

Fig. 13 reveals that increasing the layer thickness may be an
effective approach to achieving the high hardness and high stiff-
ness for a body with a harder and stiffer coating. However, in real
engineering practices, coating thickness is also limited by cost
considerations.
5. Conclusions

A fast semi-analytical three-dimensional model is developed for
the elasto-plastic contact of layered materials, and used to analyze
the contact behaviors of a rigid ball over a layered elasto-plastic
half-space. This model treats the topmost layer as an inhomoge-
neous inclusion and introduces equivalent eigenstrains into the
layer to account for the stress disturbance due to material dissim-
ilarity of the layer and the substrate.

Excellent agreements are found between the numerical results
from the present model and those from an analytical solution, from
an experimental measurement, and from the finite element simu-
lation. These comparisons validate the propriety and accuracy of
this model. A group of contact simulations is performed with var-
ious layer parameters: elastic moduli, yield strengths, and thick-
nesses. Numerical analyses indicate that a harder coating can
reinforce the strength of a layered body and shrink the plastic re-
gion in layer; however, a coating with too high strength may
accompany a tensile lateral stress at the interface, which may lead
to crack propagation there. A stiffer coating enhances the stiffness
of the body while enlarging the plastic region in the layer. With a
harder or a stiffer coating, the peak pressure occurs near the con-
tact edge under a relatively heavy load W = 30Wc. For the purpose
of improving the load bearing capacity and reducing the potential
of plasticity wear, the layer with a higher hardness and a lower
Young’s modulus should be chosen.
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Appendix A

A.1. Stress solutions of a unit normal force at the surface origin of a
half-spaceðTn
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A.2. Stress solutions of a unit tangential force at the surface origin of a
half-space ðTt
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A.3. Indefinite double integrals of Tn
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A.4. Indefinite double integrals of Tt
ij about x and y
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A.5. Indefinite triple integrals of Tn
ij about x,y, and z
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