J. Differential Equations 247 (2009) 2688-2704

Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Global solvability for first order real linear partial differential operators

José R. dos Santos Filho^{a,*,1}, Maurício Fronza da Silva^{b,2}

^a Departamento de Matemática, Universidade Federal de São Carlos, SP, Brazil ^b Departamento de Matemática, Universidade Federal de Santa Maria, RS, Brazil

ARTICLE INFO

Article history: Received 22 September 2007 Revised 12 August 2009 Available online 9 September 2009

MSC: 35A05 35F05

Keywords: First order partial differential operators Global solvability

ABSTRACT

F. Treves, in [17], using a notion of convexity of sets with respect to operators due to B. Malgrange and a theorem of C. Harvey, characterized globally solvable linear partial differential operators on $C^{\infty}(X)$, for an open subset X of \mathbb{R}^n .

Let P = L + c be a linear partial differential operator with real coefficients on a C^{∞} manifold *X*, where *L* is a vector field and *c* is a function. If *L* has no critical points, J. Duistermaat and L. Hörmander, in [2], proved five equivalent conditions for global solvability of *P* on $C^{\infty}(X)$.

Based on Harvey–Treves's result we prove sufficient conditions for the global solvability of *P* on $C^{\infty}(X)$, in the spirit of geometrical Duistermaat–Hörmander's characterizations, when *L* is zero at precisely one point. For this case, additional non-resonance type conditions on the value of *c* at the equilibrium point are necessary. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a C^{∞} manifold Hausdorff with a countable basis of open sets and $P: C^{\infty}(X) \to C^{\infty}(X)$ a linear partial differential operator. P is said to be globally solvable, or solvable, on $C^{\infty}(X)$ when $P(C^{\infty}(X)) = C^{\infty}(X)$.

B. Malgrange [9, p. 295] in 1955 introduced the notion of *P*-convexity and showed it to be equivalent to the global solvability of *P* on $C^{\infty}(X)$, when *P* has constant coefficients and *X* is an open

* Corresponding author.

0022-0396/\$ – see front matter $\ \textcircled{}$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jde.2009.08.017

E-mail addresses: santos@dm.ufscar.br (J.R. dos Santos Filho), mfronza@smail.ufsm.br (M.F. da Silva).

¹ This work was partially supported by FAPESP.

² This work was partially supported by CNPq.

subset of \mathbb{R}^n . When *P* has variable coefficients, he showed that *P*-convexity is a necessary condition for the global solvability of *P* on $C^{\infty}(X)$.

Let X be an *n*-dimensional C^{∞} manifold Hausdorff space with countable basis. Take \mathcal{F} to be a local coordinate system (X_{κ}, κ) for X. The space of distributions $\mathscr{D}'(X)$ is defined in the following way (see [7, p. 144]), for every κ consider a distribution $u_{\kappa} \in \mathscr{D}'(\kappa(X_{\kappa}))$ such that

$$u_{\kappa'} = u_{\kappa} \circ (\kappa \circ \kappa'^{-1}) \quad \text{in } \kappa'(X_{\kappa} \cap X_{\kappa'}),$$

in this case, (u_{κ}) is called a *distribution* on *X*. The set of all distributions in *X* is denoted by $\mathscr{D}'(X)$. Similarly we define the space of compact support distribution $\mathscr{E}'(X)$.

Denote $M \subseteq X$ if M is a compact subset of X and tP the formal transpose of P. In this article supp(u) denotes the support and singsupp(u) denotes the singular support of the distribution u. We say that X is P-convex for supports if $\forall K \subseteq X$, $\exists K' \subseteq X$ such that

$$u \in \mathscr{E}'(X)$$
, $\operatorname{supp}({}^t Pu) \subset K \Rightarrow \operatorname{supp}(u) \subset K'$.

In a similar way we define the *P*-convexity for singular supports.

In 1967, F. Treves [17, p. 60] and C. Harvey [5, p. 700] using the *P*-convexity for supports, gave a general characterization of globally solvable linear partial differential operators on $C^{\infty}(X)$.

Unless otherwise mentioned, from now on P = L + c will be a linear partial differential operator with real coefficients in $C^{\infty}(X)$, where *L* is a vector field and *c* is a function. In 1972, when *L* has no critical points, J. Duistermaat and L. Hörmander (see [2, p. 212]) gave five equivalent conditions for global solvability of *P* on $C^{\infty}(X)$. They used the notions of global transversal of *L* on *X* and of convexity of *X* with respect to the trajectories of *L*. In [6], J. Hounie extended one of these characterizations for *L* complex.

In order to state our main theorem we recall some definitions and results.

We say that X is *convex with respect to the trajectories* of L if $\forall K \in X, \exists K' \in X$ such that any compact interval of trajectory of L with endpoints in K, is contained in K' (see [2, p. 208]).

If *L* has a critical point at the origin and $c \in \mathbb{C}$, V. Guillemin and D. Schaeffer [3, p. 175] gave, in 1977, sufficient conditions for the equation Pu = f to have a C^{∞} solution in a neighborhood of zero, for an arbitrary $f \in C^{\infty}(\mathbb{R}^n)$ flat at the origin. We remark that in [3] and [11] results on propagation of singularities for operators of type P = L + c are presented.

Suppose that x_0 is a critical point of *L*. Let $\lambda_1, \lambda_2, \ldots, \lambda_{n'}, \lambda_{n'+1}, \ldots, \lambda_n$ be the eigenvalues of $DL(x_0)$, where $\lambda_1, \lambda_2, \ldots, \lambda_{n'}$ are the real eigenvalues and $\lambda_{n'+1}, \ldots, \lambda_n$ are non-real eigenvalues.

For c = 0, from S. Sternberg [15, p. 629], see also E. Nelson [10, p. 50] and V. Guillemin and D. Schaeffer [3, p. 175], we have: If

$$\lambda_j \neq \sum_{k=1}^n m_k \lambda_k, \quad j = 1, 2, \dots, n, \ m_1, \dots, m_n \in \mathbb{N}, \quad \sum_{k=1}^n m_k \geqslant 2,$$
(NRC 1)

then given $f \in C^{\infty}(\mathbb{R}^n)$ flat at x_0 , $\exists u \in C^{\infty}(\mathbb{R}^n)$ such that Pu = f in a neighborhood of x_0 .

Observe that the condition (NRC 1) implies that every eigenvalue of $DL(x_0)$ has nonzero real part, that is, x_0 is a *hyperbolic critical point* for *L*.

If $c(x_0) = 0$ then, since $Lu(x_0) = 0$, we have $Pu(x_0) = 0$ hence the operator P is not C^{∞} -solvable at any neighborhood of x_0 . Therefore we consider the following non-resonance condition

$$-c(x_0) \neq \sum_{j=1}^n m_j \operatorname{Re} \lambda_j, \quad \forall m_1, \dots, m_{n'} \in \mathbb{N}, \ \forall m_{n'+1}, \dots, m_n \in 2\mathbb{N}.$$
(NRC 2)

Our main result is:

Theorem 1. Let P = L + c be a first order differential operator with coefficients in $C^{\infty}(X, \mathbb{R})$ with a critical point at x_0 . If

(a) (NRC 1) and (NRC 2) are valid,

(b) no orbit of L on $X \setminus \{x_0\}$ is relatively compact in X, and

(c) X is convex with respect to the trajectories of L

then

P is solvable on $C^{\infty}(X)$.

Also in this paper we consider the relationship between *P*-convexity and convexity with respect to the trajectories of *L* for P = L + c, see Proposition 1.

This paper is organized in the following way. In Section 2 we present results concerning the relationship between *P*-convexity for supports, *P*-convexity for singular supports and convexity with respect to the trajectories of *L* when *L* is a real vector field. In Section 3 we prove Theorem 1.

2. *L*-convexity for supports, *L*-convexity for singular supports and convexity with respect to the trajectories

In this section we use propagation of singularities and of supports to characterize, in geometrical terms, the *L*-convexity for supports and singular supports. From these characterizations, we obtain in our setting the equivalence between those conditions.

The main result of this section is:

Proposition 1. Let L be a real vector field on X. The following conditions are equivalent:

- (a) X is L-convex for singular supports.
- (b) (b.1) $\exists \widetilde{K} \Subset X$ such that no orbit of $L|_{X \setminus \widetilde{K}}$ is relatively compact, and (b.2) X is convex with respect to the trajectories of L.

Let L be a non-singular real vector field on X. If one of the following conditions holds:

- (i) X is any open set of \mathbb{R}^n and L has constant coefficients, or
- (ii) X is a simply connected open subset of \mathbb{R}^2 ,

then condition (b.1) holds with $\tilde{K} = \emptyset$, because the orbits are lines in case (i) and because of the Poincaré–Bendixson theorem in case (ii). Therefore, under conditions (i) or (ii) above, from Proposition 1 we have (a) \Leftrightarrow (b.2).

Observe that if $L \equiv 0$ then every manifold X is convex with respect to the trajectories of L but X is not L-convex for singular supports. If $X \subset \mathbb{R}^2$ is not simply connected then (b.2) \neq (a), for example take $X = \mathbb{R}^2 \setminus \{0\}$ and $L = x_2\partial_1 - x_1\partial_2$.

In [14], H. Seifert proposed the following question, which is known as Seifert's Conjecture: Does every smooth vector field on the 3-dimensional sphere have a periodic orbit? This conjecture was proved to be false for C^1 vector fields by P. Schweitzer (see [13]) and latter in the C^{∞} case by K. Kuperberg (see [8]). In contrast with (ii), the second author in [16] starting from an example for which the statement of the conjecture is true, constructed a real non-singular vector field on \mathbb{R}^3 such that (b.2) \neq (a).

2.1. Proof of Proposition 1

We will introduce some definitions concerning vector fields. Let *L* be a real vector field on a manifold *X* and γ the associated flow. For each $x \in X$, we denote the maximal interval of definition

2690

of the orbit passing through *x* by $I_x = (\omega_-(x), \omega_+(x))$ and the orbit (or trajectory) of *x* by $\Gamma_x = \{\gamma(t, x); t \in I_x\}$. Also denote $\Gamma_x^+ = \{\gamma(t, x); 0 \le t < \omega_+(x)\}$ and $\Gamma_x^- = \{\gamma(t, x); \omega_-(x) < t \le 0\}$. When $\omega_+(x) = +\infty$ (resp. $\omega_-(x) = -\infty$) we define

 $\omega(x) = \{ y \in X, \ \gamma(t_j, x) \to y \text{ for some sequence } t_j \to +\infty \}$

(resp. $\alpha(x) = \{y \in X, \gamma(t_j, x) \to y \text{ for some sequence } t_j \to -\infty\}.$)

We say that $\{x_0\} \subset X$ is a *local attractor* of *L* when there exist a neighborhood *U* of x_0 such that $\lim_{t\to\omega_+(x)} \gamma(t, x) = x_0$, $\forall x \in U$. In this case, the *basin of attraction* of $\{x_0\}$ is defined by $\mathcal{B}(x_0) = \{x \in X; \lim_{t\to\omega_+(x)} \gamma(t, x) = x_0\}$. When $\mathcal{B}(x_0) = X$ we say that $\{x_0\}$ is a global attractor.

To prove Proposition 1 we will need some preliminary results, namely Lemma 1 to Lemma 3. Choose a sequence $\{K_i\}_{i=1}^{\infty}$ of compact subsets of X such that

$$\bigcup K_j = X, \quad K_j \subset K_{j+1}^{\circ}, \quad j = 1, 2, \dots, \quad \text{and} \quad \forall K \Subset X, \ \exists j_0 \in \mathbb{N} \quad \text{such that} \quad K \subset K_{j_0}.$$
(1)

Here A° denotes the interior of the subset $A \subset X$.

If K is a compact subset of X then we denote by $C^{\infty}(K)$ the quotient of $C^{\infty}(X)$ by the space consisting of elements vanishing of infinite order on K. Then $C^{\infty}(K)$ is a Fréchet space and the family of seminorms given by

$$p_j(\dot{\phi}) = \inf_{\phi \in \dot{\phi}} \sum_{|\alpha| \leq j} \sup_{K_j} \left| \partial^{\alpha} \phi \right|, \quad \dot{\phi} \in C^{\infty}(K), \ j = 0, 1, 2, \dots,$$

is a basis of continuous seminorms of $C^{\infty}(K)$. Here $\dot{\phi}$ denotes the class of $\phi \in C^{\infty}(X)$ in $C^{\infty}(K)$. Denote $B_{p_i} = \{\phi \in C^{\infty}(K); p_j(\dot{\phi}) < 1\}$. Then $\forall j \in \mathbb{N}, \exists C > 0$ such that

$$L\left(\frac{1}{C}B_{p_{j+1}}\right) \subset B_{p_j}.$$
(2)

This implies the continuity of *L* on $C^{\infty}(K)$.

We use the identification $(C^{\infty}(K))' = \mathscr{E}'(K)$, where $\mathscr{E}'(K)$ denotes the space of distributions on X with compact support contained in K. Using this identification we prove the following result, see Theorem 6.4.1 of [2].

Lemma 1. If $K \subseteq X$ and $\overline{L(C^{\infty}(K))} = C^{\infty}(K)$ then $\exists \phi \in C^{\infty}(X)$ such that $L^2 \phi > 0$ on K.

Proof. Choose $j \in \mathbb{N}$ such that $K \subset K_j$ and consider $\phi_1 \in C^{\infty}(X)$ satisfying $\phi_1 = 1$ on K. From the hypothesis it follows that there exist $\dot{\phi}_2, \dot{\phi} \in C^{\infty}(K)$ such that

$$L\dot{\phi}_2 - \dot{\phi}_1 \in \frac{1}{4}B_{p_j},\tag{3}$$

and $L\dot{\phi} - \dot{\phi}_2 \in \frac{1}{4C} B_{p_{j+1}}$ (here C > 0 is given by (2)). From (2) we obtain

$$L(L\dot{\phi} - \dot{\phi}_2) \in \frac{1}{4}B_{p_j}.$$
(4)

Since $L^2\dot{\phi} - \dot{\phi}_1 = L(L\dot{\phi} - \dot{\phi}_2) + L\dot{\phi}_2 - \dot{\phi}_1$, from (3) and (4) we obtain $L^2\dot{\phi} - \dot{\phi}_1 \in \frac{1}{2}B_{p_j}$. Hence $\exists \psi \in L^2\dot{\phi} - \dot{\phi}_1$ such that $\sum_{|\alpha| \leq j} \sup_{K_i} |\partial^{\alpha}\psi| \leq \frac{3}{4}$, in particular $\sup_{K_i} |\psi| \leq \frac{3}{4}$.

But $K \subset K_j$ and $L^2 \phi - \phi_1 = \psi$ on K, therefore $\sup_K |L^2 \phi - \phi_1| \leq \frac{3}{4}$. Since $\phi_1 = 1$ on K it follows that $L^2 \phi \geq \frac{1}{4}$ on K. \Box

Denote $\mathscr{D}'(X)$ the space of the distributions on *X*.

Remark 1. Let *L* be a real non-singular vector field on *X* and $c \in C^{\infty}(X)$. If $u \in \mathscr{D}'(X)$ and (L+c)u = 0 by the Flow Box theorem it follows that supp(u) is invariant under the flow of *L*.

Lemma 2. If Γ is a relatively compact orbit of the real vector field L then

- (i) $\exists u \in \mathscr{E}'(X)$ such that ${}^{t}Lu = 0$ and $\operatorname{supp}(u) = \overline{\Gamma}$. So $\operatorname{singsupp}(u) = \Gamma$, if Γ is a periodic orbit.
- (ii) For each orbit Λ satisfying $\Lambda \cap \partial \overline{\Gamma} \neq \emptyset$, $\exists u \in \mathscr{E}'(X)$ such that ${}^tLu = 0$ and $\operatorname{supp}(u) = \operatorname{singsupp}(u) = \overline{\Lambda} \subset \overline{\Gamma}$.

Proof. We will divide the proof in four steps. From Steps 1 and 2 we will have (i) and from Steps 3 and 4 will follow (ii).

Step 1. If Γ is a periodic orbit then $\exists u \in \mathscr{E}'(X)$ such that ${}^tLu = 0$ and $\operatorname{supp}(u) = \operatorname{singsupp}(u) = \Gamma$. In fact, if Γ is a critical point then we may take u to be Dirac distribution. If Γ is a periodic orbit define

$$u(\phi) = \int_{a}^{b} \phi \circ \gamma(s) \, ds, \quad \phi \in C^{\infty}(X), \tag{5}$$

where $a \neq b$, $\gamma(a) = \gamma(b)$ and γ is the integral curve whose image is Γ . It is easy to see that $supp(u) = \Gamma$. Since

$$WF(u) = \{(x, \xi) \in T^*(X); x \in \Gamma, \xi \neq 0 \text{ and } L(x, \xi) = 0\}$$

(see Example 8.2.5 of [7]) we have singsupp $(u) = \Gamma$.

Step 2. If Γ is a non-periodic orbit then $\exists u \in \mathscr{E}'(X)$ such that ${}^tLu = 0$ and $\operatorname{supp}(u) = \overline{\Gamma}$.

In fact, from Lemma 1 and a result concerning solvability on compact subsets due to Duistermaat– Hörmander (see Theorem 6.4.1 of [2]) we have $\overline{L(C^{\infty}(\overline{\Gamma}))} \neq C^{\infty}(\overline{\Gamma})$. The Hahn–Banach theorem implies that there exists $0 \neq u \in \mathscr{E}'(\overline{\Gamma})$ such that u = 0 on $L(C^{\infty}(X))$. Since ${}^{t}Lu = 0$ and L is non-singular in a neighborhood of Γ , using Remark 1 we obtain $\operatorname{supp}(u) = \overline{\Gamma}$.

Step 3. If Λ is a non-periodic orbit then (ii) holds.

In fact, using the invariance of the sets $\alpha(x)$ and $\omega(x)$ under the flow and the hypothesis $\Lambda \cap \partial \overline{\Gamma} \neq \emptyset$ we obtain $\overline{\Lambda} \subset \overline{\Gamma}$. From (i) it follows that $\exists u \in \mathscr{E}'(X)$ such that ${}^{t}Lu = 0$ and $\operatorname{supp}(u) = \overline{\Lambda}$. We will prove that singsupp $(u) = \overline{\Lambda}$. From propagation of singularities (see Theorem 6.1.1 of [2]) it is sufficient to prove that

$$\Lambda \cap \operatorname{singsupp}(u) \neq \emptyset. \tag{6}$$

Let $\lambda : \mathbb{R} \to X$ be the integral curve whose image is Λ and $\psi \in C^{\infty}(X)$ such that $-{}^{t}L = L + \psi$. For each bounded interval $I \subset \mathbb{R}$, from Flow Box theorem $\exists \phi \in C^{\infty}(X)$ such that $L\phi = \psi$ in a neighborhood of $\lambda(I)$.

If $\Lambda \cap \text{singsupp}(u) = \emptyset$ then u is a continuous function on Λ . Since $\text{supp}(u) = \overline{\Lambda} \subset \overline{\Gamma}$ it follows that

$$u = 0 \quad \text{on } \partial \overline{\Gamma}. \tag{7}$$

Moreover, since *u* is a C^{∞} -function in a neighborhood of $\lambda(I)$ we have

$$\left(\left(e^{\phi}u\right)\circ\lambda\right)'(s)=L\left(e^{\phi}u\right)\circ\lambda(s)=\left(e^{\phi}(L\phi)u+e^{\phi}Lu\right)\circ\lambda(s),\quad\forall s\in I.$$

But $L\phi = \psi$ in a neighborhood of $\lambda(I)$ and ${}^{t}Lu = 0$, then

$$((e^{\phi}u)\circ\lambda)'(s)=0, \quad \forall s\in I.$$

We proved that for any bounded interval $I \subset \mathbb{R}$, $\exists \phi \in C^{\infty}(X)$ such that $e^{\phi}u$ is a constant function on $\lambda(I)$. Since $\sup p(u) = \overline{\Lambda}$ we obtain $u \neq 0$ on Λ . This is a contradiction with (7), since $\Lambda \cap \partial \overline{\Gamma} \neq \emptyset$. The proof of (6) is finished.

Step 4. If Λ is a periodic orbit then (ii) holds.

In fact, if Λ is a critical point then the result follows from Step 1. Otherwise, consider a < b such that $\lambda(a) = \lambda(b)$. In this case, take $I = (a - \epsilon, b + \epsilon)$, where $\epsilon > 0$ is sufficiently small. The proof follows in the same way as the proof of Step 3. \Box

We say that $\Gamma := \gamma([a, b])$ is a *non-periodic interval of trajectory* of *L* when Γ is homeomorphic to the interval $[0, 1] \subset \mathbb{R}$.

Lemma 3. If $\Gamma = \gamma([a, b])$ is a non-periodic interval of trajectory of L then there exists $u \in \mathscr{E}'(X)$ such that

$$supp(u) = singsupp(u) = \Gamma$$

and

$$\operatorname{supp}({}^{t}Pu) = \operatorname{singsupp}({}^{t}Pu) = \{\gamma(a), \gamma(b)\}$$

Proof. As in (5) define

$$\nu(\phi) = \int_{a}^{b} \phi \circ \gamma(s) \, ds, \quad \phi \in C^{\infty}(X).$$

It is easy to see that $supp(v) = singsupp(v) = \Gamma$ and

$${}^{t}L\nu = \delta_{\gamma(b)} - \delta_{\gamma(a)}.$$

Here $\delta_{\gamma(a)}$, $\delta_{\gamma(b)}$ are the Dirac distributions supported on $\gamma(a)$ and $\gamma(b)$, respectively. Since $\gamma(a) \neq \gamma(b)$ we obtain

$$\operatorname{supp}({}^{t}Lv) = \{\gamma(a), \gamma(b)\}.$$
(8)

From the Flow Box theorem, it follows that $\exists \phi \in C^{\infty}(X)$ such that $L\phi = c$ in a neighborhood Γ . Defining $u = e^{\phi}v$ we obtain ${}^{t}Pu = e^{\phi} \cdot {}^{t}Lv + e^{\phi}(c - L\phi)v$. Since $c = L\phi$ in a neighborhood Γ and $\operatorname{supp}(v) = \Gamma$ we have ${}^{t}Pu = e^{\phi} \cdot {}^{t}Lv$. From (8) we obtain the result. \Box

Proof of Proposition 1. For each $K \subseteq X$ define

$$C_K = \{\Gamma; \Gamma \text{ is a compact interval of trajectory with endpoints in } K\}.$$
 (9)

Let $\{K_i\}$ be a sequence of compact subsets of X with the properties (1).

Proof of (a) \Rightarrow (b.1). By taking $K = \emptyset$ in the definition of the *P*-convexity for singular supports we have that $\exists K' \Subset X$ with the following property:

$$u \in \mathscr{E}'(X), \quad {}^{t}Lu = 0 \quad \Rightarrow \quad \operatorname{singsupp}(u) \subset K'.$$
 (10)

We will prove that (b.1) holds with $\widetilde{K} = K'$. In fact, suppose that there exists an orbit Γ such that $\overline{\Gamma} \in X \setminus K'$. If Γ is a periodic orbit then from Lemma 2(i) there exists $u \in \mathscr{E}'(X)$ such that ${}^{t}Lu = 0$ and singsupp $(u) = \Gamma$. This contradicts (10). In case Γ is a non-periodic orbit then we have a contradiction with (10) because of Lemma 2(ii).

Proof of (a) \Rightarrow (b.2). If (b.2) is false then $\exists K \Subset X$ and a sequence of integral curves $\gamma_j : [a_j, b_j] \rightarrow X$ such that $\Gamma_j := \gamma_j([a_j, b_j]) \in C_K$ but $\Gamma_j \not\subset K_j, \forall j \in \mathbb{N}$.

Choose an open subset V_K of X such that $K \subset V_K$ and $\overline{V_K} \Subset X$. Consider $j_0 \in \mathbb{N}$ such that $j \ge j_0 \Rightarrow \overline{V_K} \subset K_{j_0}$. Observe that Γ_j is not a critical point of L when $j \ge j_0$.

Suppose that $j \ge j_0$ and Γ_j is a periodic orbit of *L*. Since V_K is an open subset of $X, \exists c_j \in (a_j, b_j)$ such that $\gamma_j([a_j, c_j])$ is a non-periodic interval of trajectory, $\gamma_j([a_j, c_j]) \not\subset K_j$ and $\gamma_j(a_j), \gamma_j(c_j) \in V_K$.

For each $j \ge j_0$ define $\Gamma'_j = \Gamma_j$ if Γ_j is a non-periodic interval of trajectory and $\Gamma'_j = \gamma_j([a_j, c_j])$, otherwise. From Lemma 3, $\exists u_j \in \mathscr{E}'(X)$ such that $\operatorname{singsupp}({}^tLu_j) \subset V_K$ and $\operatorname{singsupp}(u_j) = \Gamma'_j \not\subset K_j$. Hence X is not convex for singular supports.

Proof of (b) \Rightarrow (a). If X is not convex for singular supports then $\exists K \Subset X$ with the following property:

$$\forall K' \subseteq X, \exists u \in \mathscr{E}'(X)$$
 such that singsupp ${t \choose u} \subset K$ but singsupp $(u) \not\subset K'$. (11)

Let \widetilde{K} be as in (b.1) and choose an open subset $V_{\widetilde{K}}$ of X such that $\widetilde{K} \subset V_{\widetilde{K}}$ and $\overline{V_{\widetilde{K}}} \subseteq X$. Define $K_0 = K \cup \overline{V_{\widetilde{K}}}$. From (b.2) we have that $\exists K'_0 \in X$ such that

$$\Gamma \in \mathcal{C}_{K_0} \quad \Rightarrow \quad \Gamma \subset K'_0. \tag{12}$$

Property (11) implies there exist $u_0 \in \mathscr{E}'(X)$ and $x \in X$ such that

$$\operatorname{singsupp}(^{t}Lu_{0}) \subset K \tag{13}$$

and $x \in \text{singsupp}(u_0) \setminus K'_0$. Hence $\Gamma_x^+ \cap K_0 = \emptyset$ or $\Gamma_x^- \cap K_0 = \emptyset$. In fact, if $\Gamma_x^+ \cap K_0 \neq \emptyset$ and $\Gamma_x^- \cap K_0 \neq \emptyset$ then, from (12), we have $x \in K'_0$. This is a contradiction. Then we may suppose that $K_0 \cap \Gamma_x^+ = \emptyset$. Since $K \subset K_0$ we obtain $K \cap \Gamma_x^+ = \emptyset$. Using (13) and propagation of singularities we obtain $\Gamma^+ \subset \text{singsupp}(u_0)$. Hence $\overline{\Gamma_x^+} \in X$. But using (b.1) we have that Γ_x^+ is not relatively compact. \Box

Using the ideas of the proof of Proposition 1 we prove that the *L*-convexity for supports is equivalent to condition (b) of Proposition 1, when L is a real vector field. Then we have:

Remark 2. Let L be a real vector field on X. Then X is L-convex for supports if, and only if, X is L-convex for singular supports.

The proof of the following remark is analogous to the case $c \equiv 0$ proved in Proposition 1.

Remark 3. Let *L* be a real vector field on *X* and $c \in C^{\infty}(X)$. Define P = L + c. Consider the condition (b) of Proposition 1 and the following condition: (a') *X* is *P*-convex for singular supports. Then (b) \Rightarrow (a') and (a') \Rightarrow (b.2). Moreover, if $c \in C_0^{\infty}(X)$ then (a') \Rightarrow (b.1).

3. Proof of Theorem 1

First we remark that any hyperbolic linear vector field on \mathbb{R}^n satisfies the hypotheses (b) and (c) of Theorem 1. Since condition (NRC 1) implies that x_0 is a hyperbolic critical point of L, the following results imply Theorem 1.

Lemma 4. With $X = \mathbb{R}^n$, suppose (a) holds. Then $\forall f \in C^{\infty}(\mathbb{R}^n)$, $\exists u \in C^{\infty}(\mathbb{R}^n)$ such that Pu = f in a neighborhood of zero.

Theorem 2. Suppose that x_0 is a hyperbolic critical point. If (b) and (c) are true then $\forall f \in C^{\infty}(X)$ such that f = 0 in a neighborhood of x_0 , $\exists u \in C^{\infty}(X)$, with u = 0 in a neighborhood of x_0 , such that Pu = f.

Observe that Theorem 2 holds for any smooth complex function c defined on X.

3.1. Proof of Lemma 4

Before the proof of Lemma 4 we will prove the following preliminary result:

Lemma 5. Suppose that $X = \mathbb{R}^n$ and $x_0 = 0$. Condition (NRC 2) is equivalent to the property: $\forall f \in C^{\infty}(\mathbb{R}^n)$, $\exists u \in C^{\infty}(\mathbb{R}^n)$ such that Pu - f is flat at the origin.

Proof. We denote by $Pu \sim f$ when Pu - f is flat at the origin. Write $L = \sum_{j=1}^{n} a_j \partial_j$ and consider formal Taylor expansions of u, a_j and c at x = 0:

$$\sum_{\alpha} \frac{\partial^{\alpha} u(0)}{\alpha !} x^{\alpha},$$
$$\sum_{\alpha} \frac{\partial^{\alpha} a_j(0)}{\alpha !} x^{\alpha}, \quad j = 1, 2, \dots, n,$$
$$\sum_{\alpha} \frac{\partial^{\alpha} c(0)}{\alpha !} x^{\alpha},$$

respectively. Then $Pu \sim f$ is equivalent to

$$\sum_{j,k} \alpha_k \partial_k a_j(0) \partial^{\alpha+e_j-e_k} u(0) + c(0) \partial^{\alpha} u(0) + R_{\alpha} = \partial^{\alpha} f(0), \quad \forall \alpha \in \mathbb{N}^n,$$
(14)

where e_j is the unit vector of \mathbb{R}^n with 1 in the *j*th position. The term R_α depends only on the derivatives of *u* of order ≤ 1 evaluated at the origin and has the following property: if $\partial^\beta u(0) = 0$, $\forall \beta \in \mathbb{N}^n$ such that $|\beta| \leq |\alpha| - 1$, then $R_\alpha = 0$, where $|\alpha| = \sum_{j=1}^n \alpha_j$, $\forall \alpha \in \mathbb{N}^n$.

 $Pu \sim f$ is equivalent to a sequence of linear systems

$$(B^m + c(0)I)u^m = f^m + v^{m-1}, \quad m \in \mathbb{N}.$$
 (15)

Consider $\Lambda_n^m = \{\alpha \in \mathbb{N}^n; |\alpha| = m\}$ and $M = \sharp \Lambda_n^m$. For each $m \in \mathbb{N}$, B^m is a real matrix $M \times M$ which depends on DL(0) and on the choice of an ordering of Λ_n^m . The components of $u^m \in \mathbb{C}^M$ (resp. $f^m \in \mathbb{C}^M$) are the derivatives of u (resp. f) of order m evaluated at the origin. If $m \ge 1$ then the vector $v^{m-1} \in \mathbb{C}^M$ corresponds to the term R_α of (14). Define $v^0 = 0 \in \mathbb{R}$. The vector v^{m-1} depends only on the derivatives of u of order $\le m - 1$ and this vector has the following property:

$$\partial^{\alpha} u(0) = 0, \quad \forall \alpha \in \mathbb{N}^n \text{ satisfying } |\alpha| \leq m-1 \quad \Rightarrow \quad v^{m-1} = 0.$$
 (16)

Using the real Jordan form for a choice of ordering of Λ_n^m we prove that

Spec
$$B^m \cap \mathbb{R} = \left\{ \sum_{j=1}^n m_j \operatorname{Re} \lambda_j; \ m_1, m_2, \dots, m_{n'} \in \mathbb{N} \text{ and } m_{n'+1}, m_{n'+2}, \dots, m_n \in 2\mathbb{N} \right\}.$$
 (17)

Here Spec A denotes the set of the eigenvalues of the matrix A. Using (16) and (17) we conclude that the systems (15) can be solved recursively for u^0, u^1, \ldots , if, and only if, (NRC 2) holds.

Proof of Lemma 4. In view of Lemma 5 it is sufficient to prove that $\forall f \in C^{\infty}(\mathbb{R}^n)$ with f flat at the origin, $\exists u \in C^{\infty}(\mathbb{R}^n)$ such that Pu = f in a neighborhood of the origin.

From (NRC 2) we obtain $c(0) \neq 0$. Define $P_1 = \frac{1}{c}P$ in a neighborhood of the origin. Then $P_1 =$ $L_1 + 1$, where $L_1 = \frac{1}{c}L$. Since L(0) = 0 we have

$$DL_1(0) = \frac{1}{c(0)}DL(0).$$

Then (NRC 1) holds for L_1 . From Sternberg's result there exists a change of coordinates which carries P_1 into P_2 corresponding to

$$\frac{1}{c(0)}DL(0)+1.$$

From Guillemin–Schaeffer's result we conclude the proof of Lemma 4.

3.2. Preliminaries for Theorem 2

Here, we will prove some preliminary results. Let L be a real vector field on \mathbb{R}^2 . Suppose that the origin is a local attractor of L and $\{0\}$ is the unique critical point of L. Under these conditions, from Proposition 1 and since, for the case, convexity with respect of supports and singular support are the same, the result of dos Santos Filho [12, p. 263] can be written as, the origin is a global attractor of L if, and only if, $\mathbb{R}^2 \setminus \{0\}$ is convex with respect to the trajectories of L. We begin this section with a version of this result for an arbitrary manifold.

Lemma 6. Suppose that X is a connected manifold and that $\{x_0\}$ is a local attractor of L. If

(i) $\overline{\Gamma_x^+} \Subset X \Rightarrow \omega(x) = \{x_0\}$, and (ii) X is convex with respect to the trajectories of L

then

 $\{x_0\}$ is a global attractor of L.

Proof. We will see that the boundary $\partial \mathcal{B}(x_0)$ of the basin of attraction $\mathcal{B}(x_0)$ is empty. Suppose there exists $x \in \partial \mathcal{B}(x_0)$. Since $\{x_0\}$ is a local attractor of L, $\mathcal{B}(x_0)$ is an open subset of X. Hence

 $\overline{\Gamma_x^+} \cap \mathcal{B}(x_0) = \emptyset$ then $x_0 \notin \overline{\Gamma_x^+}$. From (i) it follows that Γ_x^+ is not relatively compact orbit of *L*. Consider neighborhoods U_x of *x* and U_{x_0} of x_0 such that $\overline{U_x}, \overline{U_{x_0}} \in X$. Take $K = \overline{U_{x_0}} \cup \overline{U_x}$. It is easy to see that for such *K* there is no compact *K'* satisfying the condition for convexity with respect to the trajectories of L, so (ii) is not true. \Box

If x_0 is a hyperbolic critical point local attractor for L, then the conditions (i) and (ii) of Lemma 6 are necessary for $\{x_0\}$ to be a global attractor of *L*.

Definition 1. A global transversal of L on X is a codimension one immersed submanifold Σ of X such that for all $x \in X$ there exists a unique $t \in \mathbb{R}$ such that $y = \gamma(t, x) \in \Sigma$ and $T_y(\Sigma) \oplus L(y) = T_y(X)$.

Here $T_x(M)$ denotes the tangent space of the manifold M at the point $x \in M$. Definition 1 is similar to the definition used in [1, p. 15]. Now, we state some simple remarks regarding this notion.

- (i) Let $\tau: X \to \mathbb{R}$ given by: for each $x \in X$, $\tau(x)$ is such that $\gamma(\tau(x), x) \in \Sigma$. Then $\tau \in C^{\infty}(X, \mathbb{R})$.
- (ii) $M = \{(t, y); y \in \Sigma, t \in I_y\}$ is an open subset of $\mathbb{R} \times \Sigma$. $h: M \to X$ defined by $h(t, y) = \gamma(t, y)$ is a C^{∞} -diffeomorphism which carries $\frac{\partial}{\partial t}$ into *L*.

From Remark 4(ii) and Duistermaat–Hörmander's theorem (see Theorem 6.4.2 of [2]) we get that the existence of a global transversal of *L* on *X* is equivalent to the global solvability of *L* on $C^{\infty}(X)$. The next remark follows from Hartman's theorem (see Theorem 7.1 of [4]).

Remark 5. Let x_0 be a hyperbolic critical point of *L*. If $\{x_0\}$ is a global attractor of *L* then any global transversal of *L* on $X \setminus \{x_0\}$ is a compact subset of $X \setminus \{x_0\}$.

Sketch of the proof: Take a "sphere *S* centered at x_0 " and contained at the neighborhood of x_0 preluded in Hartman's theorem. Then, we define the mapping *T* from *S* to Σ which takes any point of *S* to the unique point of Σ that belongs to the trajectory of *L* that passes through x_0 . By continuous dependence, the injective mapping *T* is continuous. Therefore $T(S) \subset \Sigma$ is compact. But by the hypothesis of x_0 being a global attractor we have that, for any point *y* of Σ , the trajectory starting at *y* must go into the Hartman's neighborhood therefore must intercept *S*. Then *T* is onto, hence $\Sigma = T(S)$ is compact.

In the lemma below we construct a global transversal in the attractor case.

Lemma 7. Let x_0 be a hyperbolic critical point of *L*. If $\{x_0\}$ is a global attractor of *L* then for all neighborhood *V* of x_0 , there exists a global transversal Σ of *L* on $X \setminus \{x_0\}$ such that $\Sigma \subset V \setminus \{x_0\}$.

Proof. Since $\{x_0\}$ is a global attractor, it follows that $\{x_0\}$ is the unique relatively compact orbit of *L*. From Hartman's theorem it follows that there exists a neighborhood *U* of x_0 such that $U \setminus \{x_0\}$ is convex with respect to the trajectories of *L* and $U \subset V$. Now, Duistermaat–Hörmander's theorem implies that exists a global transversal Σ of *L* on $U \setminus \{x_0\}$. Since $\{x_0\}$ is a global attractor of *L* then Σ is a global transversal of *L* on $X \setminus \{x_0\}$. \Box

The next result shows that an appropriated perturbation of a global transversal is still a global transversal.

Lemma 8. Let Σ be a global transversal of L on X and $\chi \in C^{\infty}(\Sigma, \mathbb{R})$ such that $\omega_{-}(y) < \chi(y) < \omega_{+}(y)$, $\forall y \in \Sigma$. The image of the mapping $\sigma : \Sigma \to X$ given by $\sigma(y) = \gamma(\chi(y), y)$ is a global transversal of L on X.

Proof. From Remark 4(ii) we may suppose that X = M and $L = \frac{\partial}{\partial t}$. The result holds easily for this case. \Box

3.3. Proof of Theorem 2

Let *s* be the number of the eigenvalues of $DL(x_0)$ with negative real part. To prove Theorem 2 we consider two cases:

- Case A: $s \in \{0, n\}$ (attractor or repellent case).
- Case B: $s \notin \{0, n\}$ (saddle point case).

3.3.1. Proof of Case A

Suppose s = n (the case s = 0 is analogous). From Lemma 6 it follows that $\{x_0\}$ is a global attractor of *L*. Let *U* be a neighborhood of x_0 such that f = 0 on *U* and

$$x \in U \quad \Rightarrow \quad \Gamma_x^+ \subset U. \tag{18}$$

Choose a neighborhood V of x_0 such that $\overline{V} \subset U$ and $\theta \in C^{\infty}(X)$ such that

$$\theta = 0 \quad \text{on } V \quad \text{and} \quad \theta = 1 \quad \text{on } \mathbb{C}U.$$
 (19)

From Remark 5 and Lemma 7 there exists a compact global transversal Σ of L on $X \setminus \{x_0\}$ contained in $V \setminus \{x_0\}$. From the Method of Characteristics it follows that $\exists \psi \in C^{\infty}(X \setminus \{x_0\})$ such that $L\psi = c\theta$ on $X \setminus \{x_0\}$ and $\psi = 0$ in a neighborhood of x_0 . Then we may suppose $\psi \in C^{\infty}(X)$ and $L\psi = c\theta$ on X.

In the same way, using (18) we obtain $\phi \in C^{\infty}(X)$ such that $L\phi = e^{\psi}f$ on X and

$$\phi = 0 \quad \text{on } U. \tag{20}$$

Hence

$$P(\phi e^{-\psi}) = f + c e^{-\psi} \phi(1-\theta).$$

From (19) and (20) it follows $\phi(1 - \theta) = 0$. Therefore, by taking $u = \phi e^{-\psi}$ we have Pu = f.

3.3.2. Preliminaries for Case B

We define the stable (resp. unstable) manifold of L at x_0 by

$$W^{s}(x_{0}) = \left\{ x \in X; \lim_{t \to \omega_{+}(x)} \gamma(t, x) = x_{0} \right\}$$

(resp. $W^{u}(x_{0}) = \{x \in X; \lim_{t \to \omega_{-}(x)} \gamma(t, x) = x_{0}\}$), which is a C^{∞} immersed submanifold of X. Take $X^{s} = X \setminus W^{s}(x_{0})$ and $X^{u} = X \setminus W^{u}(x_{0})$.

If Σ^s (resp. Σ^u) is a global transversal of L on X^s (resp. X^u), we denote $X^s_{\pm}(\Sigma^s) = \{\gamma(t, y); y \in \Sigma^s, \pm t > 0\}$ (resp. $X^u_{\pm}(\Sigma^u) = \{\gamma(t, y); y \in \Sigma^u, \pm t > 0\}$) subsets of X^s (resp. X^u_{\pm}).

The main result of this section is:

Proposition 2. Let U_1 be a neighborhood of $\{x_0\}$. There exists a neighborhood U of $\{x_0\}$, with $U \subset U_1$, global transversal Σ_1^s and Σ_2^s of L on X^s , and global transversal Σ_1^u and Σ_2^u of L on X^u such that:

- (i) $\Sigma_2^u \subset X_+^u(\Sigma_1^u)$ and $\Sigma_1^s \subset X_+^s(\Sigma_2^s)$,
- (ii) $X_{+}^{\tilde{u}}(\Sigma_{1}^{u}) \cup W^{\tilde{u}}(x_{0}) \subset X_{+}^{s}(\Sigma_{1}^{s}) \cup U$, and
- (iii) $\forall f \in C^{\infty}(X)$ such that f = 0 on $X_{-}^{s}(\Sigma_{2}^{s}) \cup W^{s}(x_{0}) \cup U$ (resp. $X_{+}^{u}(\Sigma_{1}^{u}) \cup W^{u}(x_{0})$), $\exists u \in C^{\infty}(X)$ such that Lu = f and u = 0 on U (resp. u = 0 on $X_{+}^{u}(\Sigma_{1}^{u}) \cup W^{u}(0)$).

For the proof of Proposition 2, we do not use that $T_x(\Sigma_1^s) \oplus L(x) = T_x(X)$, $\forall x \in \Sigma_1^s$, similarly for Σ_1^u . In order to prove Proposition 2 we will use some preliminary results, here Lemma 9 to Lemma 13.

Lemma 9.

(i) $W^{s}(x_{0}) \cap W^{u}(x_{0}) = \{x_{0}\}.$

(ii) $W^{s}(x_{0})$ (resp. $W^{u}(x_{0})$) is a closed subset of X.

Proof. (i) If $x \in W^s(x_0) \cap W^u(x_0)$ then $\alpha(x) = \omega(x) = \{x_0\}$. Hence $\overline{\Gamma_x} \in X$. From (b) it follows that $x = x_0$.

(ii) If $W^s(x_0)$ is not closed in X then there exists a sequence $\{x_j\} \subset W^s(x_0)$ converging to some $x \in X \setminus W^s(x_0)$. Hence $x_0 \notin \omega(x)$. Since $\omega(x)$ is invariant under the flow, from (b) it follows that $\overline{\Gamma_x^+}$ is not relatively compact. Using the same arguments of the proof of Lemma 6 we obtain the result. \Box

From Lemma 9(ii) we have:

2698

Remark 6. X^s (resp. X^u) is an open subset of X. Therefore $X^s_+(\Sigma^s)$ and $X^s_-(\Sigma^s)$ (resp. $X^u_+(\Sigma^u)$ and $X^u_-(\Sigma^u)$) are open subsets of X.

Moreover:

Lemma 10. X^{s} (resp. X^{u}) is convex with respect to the trajectories of L.

Proof. Suppose that X^s is not convex with respect to the trajectories of L, then there exist $K \subseteq X$, a sequence $\{\Gamma_j\}$ of compact intervals of trajectories of L with endpoints in K and a sequence $\{x_j\}$ such that

$$x_i \in \Gamma_j \setminus K_j, \quad \forall j \in \mathbb{N}, \tag{21}$$

here $\{K_j\}$ is a sequence of compact subsets of X^s satisfying the properties (1). From hypothesis (c) of Theorem 2 it follows that $\exists K' \in \mathbb{R}^n$ such that $\{x_j\} \subset K'$. Hence there exist $x \in X$ and a subsequence $\{x_{j_k}\} \subset \{x_j\}$ such that $x_{j_k} \to x$. Without loss of generality, we may suppose that $x_j \to x$. Observe that from (21) we have

$$x \in W^{s}(x_{0}). \tag{22}$$

We will divide the rest of the proof in two cases.

Case $x \neq x_0$.

In this case take a sequence $\{C_k\}$ of compact subsets of X satisfying the properties (1). Since $x \neq x_0$, from (b) it follows that $\forall k \in \mathbb{N}, \exists y_k \in \Gamma_x \setminus C_k$. Using (22) we obtain $[x, y_k] \cap K = \emptyset$, then from Flow Box theorem there exists a neighborhood V_k of $[x, y_k]$ such that $L|_{V_k}$ is conjugated to ∂_1 and $V_k \cap K = \emptyset$. Since $x_j \to x$ it follows that $\exists j_k \in \mathbb{N}$ with the following property: $\forall j > j_k, \exists z_j \in \Gamma_j \setminus C_k$. Then (c) fails.

Case $x = x_0$.

From the proof of the previous case it is sufficient to prove that there exist $w \in W^s(x_0)$, with $w \neq x_0$, and a sequence $w_j \rightarrow w$ such that $w_j \in \Gamma_j, \forall j \in \mathbb{N}$.

Since $K \cap W^s(x_0) = \emptyset$ and $x_0 \in W^s(x_0)$ there exists a neighborhood V of x_0 satisfying $K \cap V = \emptyset$.

From Hartman's theorem we have there exists an open subset U of X such that $x_0 \in U \subset V$ and $U \setminus W^s(x_0)$ is convex with respect to the trajectories of L.

Consider a neighborhood W of x_0 such that $W \subset U$ and ∂W is homeomorphic to the sphere S^{n-1} . Choose $j_0 \in \mathbb{N}$ such that $j > j_0 \Rightarrow x_j \in W$. Since the endpoints of Γ_j are contained in K, from the continuity of Γ_j it follows that there exist $w_j, w'_j \in \Gamma_j \cap \partial W$ such that $x_j \in [w_j, w'_j]$. From a compactness argument there exist subsequences $\{w_{j_k}\} \subset \{w_j\}$ and $\{w'_{j_k}\} \subset \{w'_j\}$ such that $w_{j_k} \to w$ and $w'_{j_k} \to w'$. It is sufficient to prove that

$$w \in W^s(x_0)$$
 or $w' \in W^s(x_0)$. (23)

If $w \notin W^{s}(x_{0})$ and $w' \notin W^{s}(x_{0})$ then the sequences $\{w_{j_{k}}\}$ and $\{w'_{j_{k}}\}$ are contained in a compact subset of $\partial W \setminus W^{s}(x_{0})$. Hence $U \setminus W^{s}(x_{0})$ is not convex with respect to the trajectories of L. \Box

Using Lemma 10 we obtain:

Remark 7. $X_{-}^{s}(\Sigma^{s})$ and $X_{-}^{s}(\Sigma^{s})$ (resp. $X_{+}^{u}(\Sigma^{u})$ and $X_{-}^{u}(\Sigma^{u})$) are convex with respect to the trajectories of *L*.

Let Σ^s be a global transversal of L on X^s . Observe that $W^u(x_0)$ and Σ^s are immersed submanifold of X and Σ^s is transversal to $W^u(x_0)$. Then we have:

Remark 8. If Σ^s is a global transversal of L on X^s (resp. Σ^u is a global transversal of L on X^u) then $K := \Sigma^s \cap W^u(x_0)$ (resp. $K := \Sigma^u \cap W^s(x_0)$) is a global transversal of $L|_{W^u(x_0)}$ on $W^u(x_0) \setminus \{x_0\}$ (resp. of $L|_{W^s(x_0)}$ on $W^s(x_0) \setminus \{x_0\}$), furthermore $K \in X$.

Hartman's theorem is used to prove:

Lemma 11. If Σ^s (resp. Σ^u) is a global transversal of L on X^s (resp. on X^u) then $X^s_-(\Sigma^s) \cup W^s(0)$ (resp. $X^u_+(\Sigma^u) \cup W^u(0)$) is an open subset of X.

Proof. From Remark 6 is sufficient to prove that $\forall x \in W^s(x_0)$ there exists a neighborhood V_x of x such that $V_x \subset X^s_{-}(\Sigma^s) \cup W^s(x_0)$. In the other hand from the continuity of γ it is sufficient to prove that there exists a neighborhood V_0 of x_0 such that

$$V_0 \subset X^s_{-}(\Sigma^s) \cup W^s(x_0). \tag{24}$$

Consider the function $\tau: X^s \to \mathbb{R}$ given by Remark 4(i) and take $K = \Sigma^s \cap W^u(x_0)$. We will divide the rest of the proof in two steps.

Step 1. There exists an open subset U_0 of X such that $x_0 \in U_0$ and $U_0 \cap W^u(x_0) \setminus \{x_0\} \subset X^s_-(\Sigma^s)$.

In fact, since $K \in X$ (see Remark 8), there exists an open subset U_0 of X such that $x_0 \in U_0$, $U_0 \cap K = \emptyset$, U_0 satisfies the conclusion of Hartman's theorem and U_0 is convex with respect to the trajectories of L.

It is enough to prove that $\tau(y) > 0$, $\forall y \in U_0 \cap W^u(x_0) \setminus \{x_0\}$. From $U_0 \cap K = \emptyset$ we have $\tau(y) \neq 0$. Suppose that $\tau(y) < 0$. Since x_0 is a hyperbolic critical point of L and x_0 is a global attractor of -L on $W^u(x_0)$, there exists an open subset A of $W^u(x_0)$, with $x_0 \in A \subset U_0 \cap W^u(x_0)$, such that

$$t \leq 0, \quad z \in A \quad \Rightarrow \quad \gamma(t, z) \in A.$$
 (25)

Choose $t_0 < 0$ such that $\gamma(t_0, y) \in A$. If $\tau(y) \leq t_0$, from (25) it follows that $\gamma(\tau(y), y) \in U_0$. This is a contradiction, because $U_0 \cap K = \emptyset$. Hence $t_0 < \tau(y) < 0$. Since U_0 is convex with respect to the trajectories of *L*, these inequalities imply $\gamma(\tau(y), y) \in U_0$ and this is a contradiction with $K \cap U_0 = \emptyset$. Therefore we have $\tau(y) > 0$.

Step 2. There exists a neighborhood V_0 of x_0 with the property (24).

In fact, from Hartman's theorem there exists a subset Σ' of X such that $\Sigma' \subset U_0 \setminus \{x_0\}$ and Σ' is homeomorphic to S^{n-1} . Define $\Delta = \Sigma' \cap W^u(x_0)$. From Lemma 9(ii) we have $\Delta \Subset X$. From Step 1 it follows that there exists a neighborhood V_{Δ} of Δ such that

$$V_{\Delta} \subset X^{s}_{-}(\Sigma^{s}) \cap U_{0}.$$
⁽²⁶⁾

Using (26), Hartman's theorem and the compactness of Δ we prove that there exists a neighborhood V_0 of x_0 such that $V_0 \setminus W^s(x_0) \subset X^s_{-}(\Sigma^s)$. This inclusion implies the statement of Step 2. \Box

From these lemmas we will construct global transversal of L on X^s with special properties. Denote [x, y] the interval of trajectory of L with endpoints x and y.

Lemma 12. Let U_1 be a neighborhood of $\{x_0\}$. Then there exists an open set U, with $x_0 \in U \subset U_1$, satisfying the conclusion of the Hartman's theorem with U convex with respect to the trajectories of L, and global transversal Σ_1^s and Σ_2^s of L on X^s such that:

(i) $\Sigma_1^s \cap W^u(x_0) \subset U$, (ii) $\Sigma_1^s \subset X_+^s(\Sigma_2^s)$, and (iii) $x \in \Sigma_2^s$, $y \in \Gamma_x^+ \cap U \Rightarrow [x, y] \subset U$. **Proof.** From the hypothesis (b) of Theorem 2, Lemma 10 and Duistermaat-Hörmander's theorem it follows that there exists a global transversal Σ_0^s of L on X^s . From Lemma 11 there exists an open subset U of X, with $x_0 \in U \subset U_1$ such that: $\tilde{U} \subset X^s_{-}(\Sigma^s_0) \cup W^s(x_0), U$ satisfies the conclusion of Hartman's theorem and U is convex with respect to the trajectories of L. Observe that U has the additional property:

$$y \in \Sigma_0^s, \quad \gamma(t, y) \in U \quad \Rightarrow \quad t < 0.$$
 (27)

We will divide the rest of the proof in four steps.

Step 1. There exist $T \in \mathbb{R}$ and an open subset W_0 of Σ_0^s , with $K \subset W_0$, such that

$$y \in W_0 \Rightarrow \omega_-(y) < T < 0$$
 (28)

and

$$y \in W_0 \implies \gamma(T, y), \gamma(T/2, y) \in U.$$
 (29)

In fact, consider an open subset V of X such that $W^u(x_0) \subset V$ and $\omega_-(y) = -\infty, \forall y \in V$. Take $K = \sum_{0}^{s} \cap W^{u}(x_{0})$. For each $y \in K$ take $t_{y} < 0$ such that $\gamma(t, y) \in U, \forall t \leq t_{y}$. From compactness of K there exists T < 0 such that $t \leq T \Rightarrow \gamma(t, y) \in U$, $\forall y \in K$. By continuity of γ it follows that there exists an open subset V_0 of X such that $K \subset V_0 \subset V$ and $\gamma(T, y), \gamma(T/2, y) \in U, \forall y \in V_0$. Set $W_0 = V_0 \cap \Sigma_0^s.$

Step 2. There exist a sequence $\{t_j\}_{i=1}^{\infty} \subset \mathbb{R}$ and a locally finite cover $\{W_j\}_{j=1}^{\infty}$ of Σ_0^s such that

$$y \in W_j \implies 0 < t_j < \omega_+(y).$$
 (30)

In fact, for each $y \in \Sigma_0^s$ choose $t_y \in \mathbb{R}$ and a neighborhood V_y of y such that $0 < t_y < \omega_+(y)$, $\forall y \in V_y$. Consider a locally finite refinement $\{W_j\}_{j=1}^{\infty}$ of the cover $\{V_y \cap \Sigma_0^s\}_{y \in \Sigma_0^s}$. For each $j \ge 1$ choose V_y such that $W_j \subset V_y \cap \Sigma_0^s$ and define $t_j = t_y$. Hence Step 2 follows.

Consider $\mu_0 \in C^{\infty}(\Sigma_0^s, \mathbb{R})$ such that $0 \leq \mu_0 \leq 1$, $\mu_0 = 1$ in a neighborhood of K and supp $(\mu_0) \subset \mathbb{R}$ W_0 . Let $\{\mu_j\}_{j=1}^{\infty}$ be a partition of unity subordinated to the cover $\{W_j\}_{j=1}^{\infty}$. Consider the functions $\chi_1, \chi_2 \in C^{\infty}(\Sigma_0^s, \mathbb{R})$ given by

$$\chi_1 = \frac{T}{2}\mu_0 + (1-\mu_0)\sum_{j=1}^{\infty} t_j\mu_j$$
 and $\chi_2 = T\mu_0$.

Then we have the following result:

Step 3. For each j = 1, 2, the image Σ_j^s of the function

$$\sigma_j \colon \Sigma_0^s \to X^s$$
$$y \mapsto \gamma \left(\chi_j(y), y \right)$$

is a global transversal of L on X^s.

In fact, from (28) it follows that $\omega_{-}(y) < \chi_{2}(y) < \omega_{+}(y)$, $y \in \Sigma_{0}^{s}$. In the same way, from (28) and (30) we have $\omega_{-}(y) < \chi_{1}(y) < \omega_{+}(y)$, $y \in \Sigma_{0}^{s}$. From Lemma 8 it follows that Σ_{1}^{s} and Σ_{2}^{s} are global transversal of L on X^s .

Step 4. The statements (i), (ii) and (iii) hold, if Σ_1^s and Σ_2^s are given as in Step 3. In fact, to prove (i), observe that for each $x \in \Sigma_1^s \cap W^u(x_0)$, $\exists y \in K$ such that $x = \gamma(\chi_1(y), y)$ because Σ_0^s is a global transversal of L on X^s and $W^u(x_0)$ is invariant under the flow. Since $\mu_0(y) = 1$

and from (29) it follows that $x \in U$. So proof of (i) is concluded. Observe that (ii) follows from $\chi_2 < \chi_1$.

For (iii), first we observe that for each $x \in \Sigma_2^s$ and $y \in \Gamma_x^+ \cap U$, we can take $t \ge 0$ such that $\gamma(t, x) = y$. Since *U* is convex with respect to the trajectories of *L*, it is sufficient to prove that $x \in U$.

Choose $z \in \Sigma_0^s$ such that $\gamma(\chi_2(z), z) = x$. We will prove that $z \in W_0$. If $z \notin W_0$ then $\chi_2(z) = 0$. But $y = \gamma(t + \chi_2(z), z)$ we have $y = \gamma(t, z)$. Therefore from (27) it follows that t < 0. This is a contradiction. Then we have $z \in W_0$.

Since $T \leq \chi_2(z) \leq t + \chi_2(z)$ and *U* is convex with respect to the trajectories *L*, from (29) and $y \in U$ we have $x \in U$. \Box

Also we have:

Lemma 13. Let U be the neighborhood of x_0 and Σ_2^s the global transversal of L on X^s given by Lemma 12. There exist global transversal Σ_1^u and Σ_2^u of L on X^u such that:

(i) $\Sigma_1^u \cap W^s(x_0) \subset U$, (ii) $\Sigma_2^u \subset X_+^u(\Sigma_1^u)$, and (iii) $\Sigma_1^u = \Sigma_1^s$ on $\mathbb{C}U$.

Proof. In the same way as the proof of Lemma 12 we have that there exists a global transversal Σ_u^u of L on X^u such that $K := \Sigma_u^u \cap W^s(x_0) \subset U$. Consider the function $\tau : X^s \to \mathbb{R}$ given by $\gamma(\tau(y), y) \in \Sigma_1^s$. We will divide the rest of the proof in three steps.

Step 1. There exists an open subset W_0 of Σ_0^u such that $K \subset W_0 \subset U$ and

$$y \in W_0 \Rightarrow \gamma(\tau(y), y) \in U.$$
 (31)

In fact, consider a subset Σ' of $U \setminus \{0\}$ homeomorphic to S^{n-1} . Here the homeomorphism is given by Hartman's theorem. Take $\Delta = \Sigma' \cap W^u(x_0)$. Using Lemma 12(i) it follows that there exists a neighborhood V_{Δ} of Δ such that

$$y \in V \Rightarrow \gamma(\tau(y), y) \in U.$$
 (32)

Moreover, using the compactness of Δ and Hartman's theorem we prove that there exists a neighborhood V_0 of x_0 with the following property:

$$y \in V_0 \setminus W^s(0) \implies \exists t \in \mathbb{R} \text{ such that } \gamma(t, y) \in V.$$
 (33)

From (32), (33) and from the continuity of γ Step 1 follows.

Consider $\mu \in C^{\infty}(\Sigma_0^u, \mathbb{R})$ such that $0 \leq \mu \leq 1$, $\mu = 1$ in a neighborhood of K and $\operatorname{supp}(\mu) \subset W_0$. Since Σ_0^u is an immersed submanifold of X, we have $\tau|_{\Sigma_0^u\setminus K} \in C^{\infty}(\Sigma_0^u\setminus K)$. Let $\chi_1: \Sigma_0^u \to X^u$ be the function given by $\chi_1 = (1 - \mu)\tau|_{\Sigma_0^u\setminus K}$. Then we have that $\chi_1 \in C^{\infty}(\Sigma_0^u, \mathbb{R})$.

Step 2. The image Σ_1^u of the function

$$\sigma_1: \Sigma_0^u \to X^u$$
$$y \mapsto \gamma \big(\chi_1(y), y \big)$$

is a global transversal of L on X^u which satisfies (i).

In fact, from Lemma 8, Σ_1^u is a global transversal of L on X^u . Since $\mu = 1$ on K we have $\Sigma_1^u \cap W^s(0) = K$, hence $\Sigma_1^u \cap W^s(0) \subset U$. Then Step 2 follows.

The existence of Σ_2^u with the property is proved in the same way as in the proof of Lemma 12(iii).

Step 3. The statement (iii) holds. In fact, we will prove that

$$\Sigma_1^u \cap \complement U \subset \Sigma_1^s \tag{34}$$

and

$$\Sigma_1^s \cap \complement U \subset \Sigma_1^u. \tag{35}$$

To prove (34), take $x \in \Sigma_1^u \cap CU$ and choose $y \in \Sigma_0^u$ such that $\gamma(\chi_1(y), y) = x$. If $y \in W_0$ then from (31) and $|\chi_1(y)| \leq |\tau(y)|$ result $x \in U$. This is a contradiction. From $y \notin W_0$ it follows that $\chi_1(y) = \tau(y)$. Hence $x \in \Sigma_1^s$ and the proof of (34) is finished. In the same way we prove (35). \Box

Proof of Proposition 2. Proof of (i). Use Lemma 12(ii) and Lemma 13(ii), respectively.

Proof of (ii). From Lemma 12(i) it follows that $W^{u}(x_0) \subset X^{s}_{+}(\Sigma^{s}_1) \cup U$, and Lemma 13(iii) implies $X^{u}_{+}(\Sigma^{u}_1) \subset X^{s}_{+}(\Sigma^{s}_1) \cup U$.

Proof of (iii). Use the Method of Characteristics, Lemma 12(iii) (resp. Lemma 13(ii)) and Lemma 11. \Box

3.3.3. Proof of Case B

Let U_1 be a neighborhood of x_0 such that f = 0 on U_1 . With the notation of Proposition 2, we will prove Case B in two steps.

Step 1. $\forall f \in C^{\infty}(X)$ such that f = 0 on U, $\exists u_1 \in C^{\infty}(X)$ such that $Pu_1 = f$ on $U \cup X^s_+(\Sigma^s_1)$. In fact, from Proposition 2(i) and Lemma 10 choose $\theta_1 \in C^{\infty}(X)$ such that

$$\theta_1 = 0 \quad \text{on } X^s_-(\Sigma^s_2) \cup W^s(x_0) \quad \text{and} \quad \theta_1 = 1 \quad \text{on } X^s_+(\Sigma^s_1). \tag{36}$$

By the Method of Characteristics and Lemma 11, $\exists \psi_1 C^{\infty}(X)$ such that $L\psi_1 = c\theta_1$. From Proposition 2(iii), $\exists \phi_1 C^{\infty}(X)$ such that $L\phi_1 = \theta_1 f e^{\psi_1}$ and $L\phi_1 = \theta_1 f e^{\psi_1}$ and

$$\phi_1 = 0 \quad \text{on } U. \tag{37}$$

Hence

$$P(\phi_1 e^{-\psi_1}) = \theta_1 f + c e^{-\psi_1} \phi_1 (1 - \theta_1).$$

Since f = 0 on U, from (36) and (37) it follows that on $X^{s}_{+}(\Sigma^{s}_{1}) \cup U$ we have

$$\phi_1(1-\theta_1)=0$$
 and $\theta_1f=f$.

Therefore, by taking $u_1 = \phi_1 e^{-\psi_1}$ Step 1 follows.

Step 2. $\forall f \in C^{\infty}(X)$ such that f = 0 on $U \cup X^s_+(\Sigma^s_1)$, $\exists u \in C^{\infty}(X)$ such that Pu = f on X. In fact, from Proposition 2(i) and Lemma 11, choose $\theta_2 \in C^{\infty}(X)$ such that

$$\theta_2 = 0$$
 on $X^u_+(\Sigma^u_2) \cup W^u(x_0)$ and $\theta_2 = 1$ on $X^u_-(\Sigma^u_1)$.

Therefore, $\exists \psi_2 \in C^{\infty}(X)$ such that $L\psi_2 = c\theta_2$. Since f = 0 on $U \cup X^s_+(\Sigma^s_1)$, from Proposition 2(ii)–(iii) it follows that $\exists \phi_2 \in C^{\infty}(X)$ such that $L\phi_2 = fe^{\psi_2}$ and $\phi_2 = 0$ on $U \cup X^s_+(\Sigma^s_1)$.

Hence

$$P(\phi_2 e^{-\psi_2}) = f + c e^{-\psi_2} \phi_2 (1 - \theta_2),$$

and

$$\phi_2(1-\theta_2) = 0 \quad \text{on } X^s_+(\Sigma^u_1) \cup U \cup X^u_-(\Sigma^u_1).$$

Therefore, taking $u = \phi_2 e^{-\psi_2}$ Step 2 follows.

Remark 9. The hypotheses (NRC 2) and (c) are necessary for global solvability of *P* on $C^{\infty}(X)$ from Lemma 5; and Remark 2, Theorem 4 of [9], respectively.

When *L* is a linear vector field on \mathbb{R}^n , it is easy to see that (b) and (c) of Theorem 1 are verified. In this case, the hypothesis of linearization (NRC 1) is dropped and we have that P = L + c is globally solvable on $C^{\infty}(\mathbb{R}^n)$ if, and only if, (NRC 2) holds. In particular, the condition (NRC 1) is not necessary for global solvability.

Now, we present a family of operators for which the condition (b) is necessary for global solvability. Take $p(x) = \sum_{i=0}^{n} a_i x^i$, be a real polynomial. Let *L* be the vector field on \mathbb{R}^2 given by

 $L = x_1(1 - x_1)\partial_1 + x_2g(x_1, x_2)\partial_2, \quad (x_1, x_2) \in \mathbb{R}^2,$

where $g \in C^{\infty}(\mathbb{R}^2)$. Notice that (0, 0), (1, 0) are critical points and $(0, 1) \times \{0\}$ is a relatively compact orbit of *L*. Take the operator P = L + c with $c \in C^{\infty}(\mathbb{R}^2)$ satisfying

$$c(x_1, 0) = p(x_1), \quad x_1 \in \mathbb{R}$$

Under these hypotheses we have (see [16, p. 59]): If

$$a_0 \notin \mathbb{Z}$$
 and $a_i \notin \{1, 2, \ldots\}, j = 1, 2, \ldots, n,$

then $\exists u \in \mathscr{E}' \in (\mathbb{R}^2)$ such that ${}^t P u = 0$ and $\operatorname{supp}(u) = [0, 1] \times \{0\}$. Hence *P* is not globally solvable on $C^{\infty}(\mathbb{R}^2)$.

References

- [1] P.L. Dattori da Siva, Resolubilidade Global para Campos Reais, Master Dissertation, DM, UFSCar, 1999.
- [2] J. Duistermaat, L. Hörmander, Fourier integral operators II, Acta Math. 128 (1972) 183-269.
- [3] V. Guillemin, D. Schaeffer, On a certain class of Fuchsian partial differential equations, Duke Math. J. 44 (1977) 157-199.
- [4] P. Hartman, Ordinary Differential Equations, John Wiley and Sons, 1964.
- [5] C. Harvey, On domination estimates and global existence, J. Math. Mech. 16 (7) (1967) 675-702.
- [6] J. Hounie, A note on global solvability of vector fields, Proc. Amer. Math. Soc. 94 (1) (1985) 61-64.
- [7] L. Hörmander, The Analysis of Linear Partial Differential Equations, vol. 1, Springer-Verlag, 1983.
- [8] K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. 140 (1994) 723-732.
- [9] B. Malgrange, Existence et approximation des solutions des équations aus dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955–1956) 271–355.
- [10] E. Nelson, Topics in Dynamics I: Flows, Princeton University Press, Princeton, 1969.
- [11] J.R. dos Santos Filho, Propagation of singularities through radial points, Comm. Partial Differential Equations 6 (1981) 399– 435.
- [12] J.R. dos Santos Filho, Injective mappings and solvable vector fields of Euclidean spaces, Topology Appl. 136 (2004) 261-274.
- [13] P. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. 100 (1974) 386-400.
- [14] H. Seifert, Closed integral curves in 3-spaces and isotopic two-dimensional deformation, Proc. Amer. Math. Soc. 1 (1950) 287–302.
- [15] S. Sternberg, The structure of local homeomorphisms II, Amer. J. Math. 80 (1958) 623-632.
- [16] M.F. da Silva, Resolubilidade Global para Operadores Diferenciais Reais de Ordem Um, PhD thesis in Mathematics, UFSCar, DM, 2006.
- [17] F. Treves, Locally Convex Spaces and Linear Partial Differential Equations, Grundlehren Math. Wiss., vol. 146, Springer-Verlag, 1967.

2704