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F. Treves, in [17], using a notion of convexity of sets with respect
to operators due to B. Malgrange and a theorem of C. Harvey,
characterized globally solvable linear partial differential operators
on C*®(X), for an open subset X of R".
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Based on Harvey-Treves's result we prove sufficient conditions for
the global solvability of P on C°(X), in the spirit of geometrical
Duistermaat-H6rmander’s characterizations, when L is zero at
precisely one point. For this case, additional non-resonance type
conditions on the value of ¢ at the equilibrium point are necessary.
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1. Introduction

Let X be a C*° manifold Hausdorff with a countable basis of open sets and P :C*®(X) — C*®(X)
a linear partial differential operator. P is said to be globally solvable, or solvable, on C°°(X) when

P(C*(X)) = C¥(X).

B. Malgrange [9, p. 295] in 1955 introduced the notion of P-convexity and showed it to be equiv-
alent to the global solvability of P on C*°(X), when P has constant coefficients and X is an open

* Corresponding author.

E-mail addresses: santos@dm.ufscar.br (J.R. dos Santos Filho), mfronza@smail.ufsm.br (M.F. da Silva).

1 This work was partially supported by FAPESP.
2 This work was partially supported by CNPq.

0022-0396/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.,jde.2009.08.017


https://core.ac.uk/display/81165201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:santos@dm.ufscar.br
mailto:mfronza@smail.ufsm.br
http://dx.doi.org/10.1016/j.jde.2009.08.017

J.R. dos Santos Filho, M.F. da Silva / ]. Differential Equations 247 (2009) 2688-2704 2689

subset of R". When P has variable coefficients, he showed that P-convexity is a necessary condition
for the global solvability of P on C*°(X).

Let X be an n-dimensional C* manifold Hausdorff space with countable basis. Take F to be a
local coordinate system (X,,«) for X. The space of distributions 2’(X) is defined in the following
way (see [7, p. 144]), for every « consider a distribution u, € 2’ (x (X,)) such that

Ue =uco(kok’™) ink'(Xe N Xy,

in this case, (u,) is called a distribution on X. The set of all distributions in X is denoted by 2'(X).
Similarly we define the space of compact support distribution &”(X).

Denote M € X if M is a compact subset of X and ‘P the formal transpose of P. In this article
supp(u) denotes the support and singsupp(u) denotes the singular support of the distribution u. We
say that X is P-convex for supports if VK € X, 3K’ € X such that

ue &' (X), supp(‘Pu)CcK = supp(u)CK'.

In a similar way we define the P-convexity for singular supports.

In 1967, E. Treves [17, p. 60] and C. Harvey [5, p. 700] using the P-convexity for supports, gave a
general characterization of globally solvable linear partial differential operators on C*°(X).

Unless otherwise mentioned, from now on P =L 4 ¢ will be a linear partial differential operator
with real coefficients in C°°(X), where L is a vector field and c is a function. In 1972, when L has no
critical points, ]. Duistermaat and L. Hérmander (see [2, p. 212]) gave five equivalent conditions for
global solvability of P on C®°(X). They used the notions of global transversal of L on X and of convex-
ity of X with respect to the trajectories of L. In [6], J. Hounie extended one of these characterizations
for L complex.

In order to state our main theorem we recall some definitions and results.

We say that X is convex with respect to the trajectories of L if VK @ X, 3K’ € X such that any compact
interval of trajectory of L with endpoints in K, is contained in K’ (see [2, p. 208]).

If L has a critical point at the origin and c € C, V. Guillemin and D. Schaeffer [3, p. 175] gave, in
1977, sufficient conditions for the equation Pu = f to have a C* solution in a neighborhood of zero,
for an arbitrary f € C*°(R") flat at the origin. We remark that in [3] and [11] results on propagation
of singularities for operators of type P = L + ¢ are presented.

Suppose that x¢ is a critical point of L. Let A1,A2,..., Ay, Ayry1, ..., Ay be the eigenvalues of
DL(xp), where A1, A2, ..., Ay are the real eigenvalues and Ay 41, ..., An are non-real eigenvalues.

For ¢ =0, from S. Sternberg [15, p. 629], see also E. Nelson [10, p. 50] and V. Guillemin and
D. Schaeffer [3, p. 175], we have: If

n n
MFEY M J=1.2,.0m, . mpeN, Y my>2, (NRC 1)
k=1 k=1

then given f € C*°(R") flat at xo, Ju € C*°(R") such that Pu = f in a neighborhood of xg.

Observe that the condition (NRC 1) implies that every eigenvalue of DL(xp) has nonzero real part,
that is, X is a hyperbolic critical point for L.

If c(xp) = 0 then, since Lu(xp) = 0, we have Pu(xp) =0 hence the operator P is not C°-solvable
at any neighborhood of xg. Therefore we consider the following non-resonance condition

n
—c(xo) # Y _mjRehj, ¥my,....my €N, Ymyq,....my€2N. (NRC 2)
j=1

Our main result is:
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Theorem 1. Let P = L + c be a first order differential operator with coefficients in C°*° (X, R) with a critical
point at xo. If

(a) (NRC 1) and (NRC 2) are valid,
(b) no orbit of L on X \ {xo} is relatively compact in X, and
(c) X is convex with respect to the trajectories of L

then
P is solvable on C*°(X).

Also in this paper we consider the relationship between P-convexity and convexity with respect
to the trajectories of L for P =L + c, see Proposition 1.

This paper is organized in the following way. In Section 2 we present results concerning the re-
lationship between P-convexity for supports, P-convexity for singular supports and convexity with
respect to the trajectories of L when L is a real vector field. In Section 3 we prove Theorem 1.

2. L-convexity for supports, L-convexity for singular supports and convexity with respect to the
trajectories

In this section we use propagation of singularities and of supports to characterize, in geometrical
terms, the L-convexity for supports and singular supports. From these characterizations, we obtain in
our setting the equivalence between those conditions.

The main result of this section is:

Proposition 1. Let L be a real vector field on X. The following conditions are equivalent:

(a) Xis L-convex for singular supports.
(b) (b.1) 3K € X such that no orbit ofL|X\,; is relatively compact, and
(b.2) X is convex with respect to the trajectories of L.

Let L be a non-singular real vector field on X. If one of the following conditions holds:

(i) X is any open set of R" and L has constant coefficients, or
(ii) X is a simply connected open subset of R2,

then condition (b.1) holds with K = ¢, because the orbits are lines in case (i) and because of the
Poincaré-Bendixson theorem in case (ii). Therefore, under conditions (i) or (ii) above, from Proposi-
tion 1 we have (a) & (b.2).

Observe that if L = 0 then every manifold X is convex with respect to the trajectories of L but X
is not L-convex for singular supports. If X C R? is not simply connected then (b.2) % (a), for example
take X =R2\ {0} and L = x3; — X1 d2.

In [14], H. Seifert proposed the following question, which is known as Seifert’s Conjecture: Does
every smooth vector field on the 3-dimensional sphere have a periodic orbit? This conjecture was
proved to be false for C! vector fields by P. Schweitzer (see [13]) and latter in the C* case by
K. Kuperberg (see [8]). In contrast with (ii), the second author in [16] starting from an example for
which the statement of the conjecture is true, constructed a real non-singular vector field on R3 such
that (b.2) % (a).

2.1. Proof of Proposition 1

We will introduce some definitions concerning vector fields. Let L be a real vector field on a
manifold X and y the associated flow. For each x € X, we denote the maximal interval of definition
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of the orbit passing through x by Iy = (w—(X), w4 (x)) and the orbit (or trajectory) of x by I'y =
{y (t,x); telx}. Also denote I;" ={y(t,x); 0<t<wi(®)}and I, ={y(t,x); wo_(x) <t<O0}L
When w; (x) = 400 (resp. w_(x) = —oo) we define

wx) ={y € X, y(tj,x) > y for some sequence t; — +oc}

(resp. a(x) ={y € X, y(tj,x) — y for some sequence tj; — —o0}.)

We say that {xo} C X is a local attractor of L when there exist a neighborhood U of xg such
that lim¢_,«, (v ¥ (t,X) =X, Yx € U. In this case, the basin of attraction of {xo} is defined by B(xg) =
{x € X; lime, (x) Y (t, X) =x0}. When B(xg) = X we say that {xo} is a global attractor.

To prove Proposition 1 we will need some preliminary results, namely Lemma 1 to Lemma 3.
Choose a sequence {Kj}j"ol of compact subsets of X such that

UKj=X, chKj-’H, j=1,2,..., and VKe€X, djoeN suchthat K CKj. (1)

Here A° denotes the interior of the subset A C X.

If K is a compact subset of X then we denote by C°°(K) the quotient of C*°(X) by the space
consisting of elements vanishing of infinite order on K. Then C°°(K) is a Fréchet space and the
family of seminorms given by

pj() = , $eC®K), j=0,1,2,...,

o
D suplog

inf
90 i< Ki

is a basis of continuous seminorms of C*°(K). Here ¢ denotes the class of ¢ € C®(X) in C®(K).
Denote Bp; ={¢ € C*(K); pj(¢) <1}). Then Vj e N, 3C > 0 such that

1
L(EBpj+1> C By, )

This implies the continuity of L on C*°(K).

We use the identification (C*°(K)) = &’(K), where &’(K) denotes the space of distributions on
X with compact support contained in K. Using this identification we prove the following result, see
Theorem 6.4.1 of [2].

Lemma 1. If K € X and L(C®(K)) = C*®(K) then 3¢ € C*®(X) such that L*¢ > 0 on K.

Proof. Choose j € N such that K C K and consider ¢; € C*°(X) satisfying ¢1 =1 on K. From the
hypothesis it follows that there exist ¢, ¢ € C°°(K) such that

L¢2_¢1€ZBPJ" (3)
and L — ¢ € 4B, (here C > 0 is given by (2)). From (2) we obtain
L(L¢—¢2)€ZBpj~ (4)
Since L% — ¢y = L(L — ¢2) + Lz — ¢1. from (3) and (4) we obtain L?¢ — ¢y € 3B,,. Hence
3y € L2 — ¢y such that 3, < supg, [8°¥] < 3, in particular supg, [¥| < 3.

But K C Kj and L?¢ — ¢y = on K, therefore supy |L?¢ — ¢1| < 3. Since ¢y =1 on K it follows
that L2¢ > % on K. O
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Denote 2'(X) the space of the distributions on X.

Remark 1. Let L be a real non-singular vector field on X and c € C*®(X). Ifu e 2'(X) and (L+c)u=0
by the Flow Box theorem it follows that supp(u) is invariant under the flow of L.

Lemma 2. If I" is a relatively compact orbit of the real vector field L then

(i) Ju e &' (X) such that'Lu =0 and supp(u) = T. So singsupp(u) = I', if I" is a periodic orbit.
(ii) For each orbit A satisfying ANJI" #,3u € &' (X) such that 'Lu = 0 and supp(u) = singsupp(u) =
ACT.

Proof. We will divide the proof in four steps. From Steps 1 and 2 we will have (i) and from Steps 3
and 4 will follow (ii).

Step 1. If I is a periodic orbit then Ju € &’(X) such that ‘Lu =0 and supp(u) = singsupp(u) = I".
In fact, if I" is a critical point then we may take u to be Dirac distribution. If I" is a periodic orbit
define

b
u(¢>)=/¢>oy(5)ds, ¢ € C(X), (5)

where a # b, y(a) = y(b) and y is the integral curve whose image is I'. It is easy to see that
supp(u) = I'. Since

WFu) ={(x.&) e T*(X); xe I, § #0and L(x,£) =0}

(see Example 8.2.5 of [7]) we have singsupp(u) =T

Step 2. If I" is a non-periodic orbit then Ju € &’ (X) such that {Lu =0 and supp(u) =T.

In fact, from Lemma 1 and a result concerning solvability on compact subsets due to Duistermaat-
Hormander (see Theorem 6.4.1 of [2]) we have L(C(I")) # C°°(I'). The Hahn-Banach theorem
implies that there exists 0 # u € &' (I") such that u =0 on L(C“(X))._Since ‘Lu=0 and L is non-
singular in a neighborhood of I', using Remark 1 we obtain supp(u) =1".

Step 3. If A is a non-periodic orbit then (ii) holds.

In fact, using the invariance of the sets a(x) and w(x) under the flow and the hypothesis ANJI" #
@ we obtain A c I". From (i) it follows that Ju € &’(X) such that {Lu =0 and supp(u) = A. We will
prove that singsupp(u) = A. From propagation of singularities (see Theorem 6.1.1 of [2]) it is sufficient
to prove that

A N singsupp(u) # . (6)
Let A:R — X be the integral curve whose image is A and ¥ € C*(X) such that —‘L = L + . For
each bounded interval I C R, from Flow Box theorem 3¢ € C°°(X) such that L¢ = ¢ in a neighbor-
hood of A(I). o
If ANsingsupp(u) =% then u is a continuous function on A. Since supp(u) = A C I it follows
that
u=0 ondrl. (7)

Moreover, since u is a C*°-function in a neighborhood of A(I) we have

((e?u) 0 1) (s) = L(e®u) o A(s) = (e? (Lp)u +e?Lu) o A(s), Vsel.
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But L¢ = in a neighborhood of A(I) and ‘Lu =0, then
((e?u)0n) (s)=0, Vsel.
We proved that for any bounded interval I ¢ R, 3¢ € C®(X) such that e®u is a constant function

on A(I). Since supp(u) = A we obtain u # 0 on A. This is a contradiction with (7), since ANJT" # @.
The proof of (6) is finished.

Step 4. If A is a periodic orbit then (ii) holds.

In fact, if A is a critical point then the result follows from Step 1. Otherwise, consider a < b such
that A(a) = A(b). In this case, take I = (a — €,b + €), where € > 0 is sufficiently small. The proof
follows in the same way as the proof of Step 3. O

We say that I := y([a, b]) is a non-periodic interval of trajectory of L when I" is homeomorphic to
the interval [0, 1] C R.

Lemma 3. If I" = y ([a, b]) is a non-periodic interval of trajectory of L then there exists u € &’(X) such that
supp(u) = singsupp(u) =I"
and
supp(* Pu) = singsupp(* Pu) = {y (@), y (b)}.

Proof. As in (5) define

b
V(¢)=/¢OV(S)dS, ¢ € C(X).

It is easy to see that supp(v) = singsupp(v) = I and
Lv=5y0) — by (-

Here 8y ), 8, are the Dirac distributions supported on y(a) and y (b), respectively. Since y (a) #
y (b) we obtain

supp('Lv) = {y @,y (b)}. (8)
From the Flow Box theorem, it follows that 3¢ € C°°(X) such that L¢ = ¢ in a neighborhood I.

Defining u = e®v we obtain ‘Pu =e? - fLv + e?(c — Lp)v. Since ¢ = L¢ in a neighborhood I' and
supp(v) = I we have {Pu=e? .fLv. From (8) we obtain the result. O

Proof of Proposition 1. For each K € X define
Ckx = {I'; I is a compact interval of trajectory with endpoints in K}. 9)

Let {K;} be a sequence of compact subsets of X with the properties (1).

Proof of (a) = (b.1). By taking K =@ in the definition of the P-convexity for singular supports we
have that 3K’ € X with the following property:

ue&'(X), 'Lu=0 = singsupp(u) C K'. (10)



2694 J.R. dos Santos Filho, M.F. da Silva / ]. Differential Equations 247 (2009) 2688-2704

We will prove that (b.1) holds with K =K' In fact, suppose that there exists an orbit I” such that
I’ € X\ K'. If I' is a periodic orbit then from Lemma 2(i) there exists u € &’ (X) such that {Lu =0 and
singsupp(u) = I'. This contradicts (10). In case I" is a non-periodic orbit then we have a contradiction
with (10) because of Lemma 2(ii).

Proof of (a) = (b.2). If (b.2) is false then 3K € X and a sequence of integral curves y;:[aj, b;] — X
such that I'j := yj([aj, bj]) € Cx but I'; ¢ Kj,VjeN.

Choose an open subset Vi of X such that K ¢ Vg and Vi € X. Consider jo € N such that j >
jo=VkC Kj,. Observe that I'j is not a critical point of L when j > jo.

Suppose that j > jo and I is a periodic orbit of L. Since Vk is an open subset of X, 3c;j € (aj, bj)
such that y;([aj, ¢;]) is a non-periodic interval of trajectory, y;([aj, ¢;]) ¢ K; and y;(a;), yj(c;) € V.

For each j > jo define I“j’ =T if I'j is a non-periodic interval of trajectory and Fj’ =yj(aj, c;l),
otherwise. From Lemma 3, Ju; € &’(X) such that singsupp(‘Luj) C Vg and singsupp(u;) = 1“].’ Z K;.
Hence X is not convex for singular supports.

Proof of (b) = (a). If X is not convex for singular supports then 3K € X with the following prop-
erty:

VK'€X, Jue &' (X) suchthat singsupp(‘Lu) C K but singsupp(u) ¢ K’ (11)

Let K be as in (b.1) and choose an open subset Vg of X such that Kc V% and Vg € X. Define
Ko=KU V_,? From (b.2) we have that 3K € X such that

reCg, = T CKj. (12)
Property (11) implies there exist ug € &'(X) and x € X such that
; t
singsupp(‘Lug) C K (13)
and x € singsupp(uo) \ K{. Hence I';"NKo =¥ or Iy NKo =¢. In fact, if I';" N Ko # ¥ and Iy NKo # ¥
then, from (12), we have x € K(/). This is a contradiction. Then we may suppose that Ko N I';" = ¢.
Since K C Ko we obtain K N I';” = @. Using (13) and propagation of singularities we obtain I"" C

singsupp(up). Hence 1? € X. But using (b.1) we have that ;" is not relatively compact. O

Using the ideas of the proof of Proposition 1 we prove that the L-convexity for supports is equiv-
alent to condition (b) of Proposition 1, when L is a real vector field. Then we have:

Remark 2. Let L be a real vector field on X. Then X is L-convex for supports if, and only if, X is
L-convex for singular supports.

The proof of the following remark is analogous to the case ¢ =0 proved in Proposition 1.
Remark 3. Let L be a real vector field on X and ¢ € C*°(X). Define P =L + c. Consider the condition
(b) of Proposition 1 and the following condition: (a’) X is P-convex for singular supports. Then (b) =
(a") and (a') = (b.2). Moreover, if ¢ € C3°(X) then (a') = (b.1).
3. Proof of Theorem 1

First we remark that any hyperbolic linear vector field on R" satisfies the hypotheses (b) and (c)

of Theorem 1. Since condition (NRC 1) implies that xg is a hyperbolic critical point of L, the following
results imply Theorem 1.
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Lemma 4. With X = R", suppose (a) holds. Then V f € C*(R"), Ju € C*°(R") such that Pu = f in a neigh-
borhood of zero.

Theorem 2. Suppose that xq is a hyperbolic critical point. If (b) and (c) are true then V f € C*°(X) such that
f =0in aneighborhood of xg, Ju € C*°(X), with u = 0 in a neighborhood of xg, such that Pu = f.

Observe that Theorem 2 holds for any smooth complex function ¢ defined on X.
3.1. Proof of Lemma 4

Before the proof of Lemma 4 we will prove the following preliminary result:

Lemma 5. Suppose that X = R" and xo = 0. Condition (NRC 2) is equivalent to the property: ¥ f € C*°(R"),
Ju € C*°(R") such that Pu — f is flat at the origin.

Proof. We denote by Pu ~ f when Pu — f is flat at the origin. Write L = Z'}:l a;jdj and consider
formal Taylor expansions of u, a; and ¢ at x=0:

!

3 w0 o

3% (0
ZAXQ, j=1,2,...,n,

respectively. Then Pu ~ f is equivalent to

> udhaj(0)d* % u(0) + ¢(0)d*u(0) + Ry = 3% f(0), Vo eN", (14)
jk
where e; is the unit vector of R" with 1 in the jth position. The term R, depends only on the
derivatives of u of order < 1 evaluated at the origin and has the following property: if 3#u(0) =0,

VB € N" such that |B| < || — 1, then Ry =0, where || = Z’}ﬂ aj, Vo e N
Pu ~ f is equivalent to a sequence of linear systems

(B"+cOu™ = f"+v" 1 meN. (15)
Consider A]' ={o € N*; || =m} and M = fA]. For each m € N, B™ is a real matrix M x M which
depends on DL(0) and on the choice of an ordering of Aj'. The components of u™ € CM (resp.
f™ e CM)y are the derivatives of u (resp. f) of order m evaluated at the origin. If m > 1 then the

vector v"~1 € CM corresponds to the term Ry of (14). Define v® =0 € R. The vector v"~! depends
only on the derivatives of u of order <m — 1 and this vector has the following property:

%u(0) =0, Vo eN'satisfying|o|<m—1 = v 1=0. (16)
Using the real Jordan form for a choice of ordering of A we prove that

n
SpecB"NR = ijReAj; m1,m2,...,mn/eNandmn/H,mn/H,...,mnGZN}. (17)
j=1
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Here Spec A denotes the set of the eigenvalues of the matrix A. Using (16) and (17) we conclude that
the systems (15) can be solved recursively for u®, u?, ..., if, and only if, (NRC 2) holds. O

Proof of Lemma 4. In view of Lemma 5 it is sufficient to prove that Vf € C°°(R") with f flat at the
origin, Ju € C*°(R™) such that Pu = f in a neighborhood of the origin.
From (NRC 2) we obtain c(0) # 0. Define P1 = %P in a neighborhood of the origin. Then P; =

L1+ 1, where Ly = L. Since L(0) =0 we have

1
DL;(0) = @DL(O).

Then (NRC 1) holds for L. From Sternberg’s result there exists a change of coordinates which carries
P into P, corresponding to

1
%DL(O) +1.

From Guillemin-Schaeffer’s result we conclude the proof of Lemma 4. O

3.2. Preliminaries for Theorem 2

Here, we will prove some preliminary results. Let L be a real vector field on R%. Suppose that the
origin is a local attractor of L and {0} is the unique critical point of L. Under these conditions, from
Proposition 1 and since, for the case, convexity with respect of supports and singular support are the
same, the result of dos Santos Filho [12, p. 263] can be written as, the origin is a global attractor of
L if, and only if, R?\ {0} is convex with respect to the trajectories of L. We begin this section with a
version of this result for an arbitrary manifold.

Lemma 6. Suppose that X is a connected manifold and that {xo} is a local attractor of L. If

(i) I € X = o = (x}, and
(ii) X is convex with respect to the trajectories of L

then
{xo} is a global attractor of L.

Proof. We will see that the boundary 9B(xg) of the basin of attraction B(xg) is empty. Suppose
there exists x € B(xp). Since {xg} is a local attractor of L, B(xp) is an open subset of X. Hence
I;F N B(xp) = then xo ¢ I'y". From (i) it follows that I;" is not relatively compact orbit of L.

Consider neighborhoods Uy of x and Uy, of xg such that Uy, U_X0 € X. Take K = U_,(0 U Uy. It is easy
to see that for such K there is no compact K’ satisfying the condition for convexity with respect to
the trajectories of L, so (ii) is not true. O

If xo is a hyperbolic critical point local attractor for L, then the conditions (i) and (ii) of Lemma 6
are necessary for {xp} to be a global attractor of L.

Definition 1. A global transversal of L on X is a codimension one immersed submanifold X' of X such
that for all x € X there exists a unique t € R such that y=y(t,x) € ¥ and T, (X) @ L(y) =Ty (X).

Here Ty(M) denotes the tangent space of the manifold M at the point x € M. Definition 1 is similar
to the definition used in [1, p. 15]. Now, we state some simple remarks regarding this notion.
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Remark 4. Let X' be a global transversal of L on X.

(i) Let T:X — R given by: for each x € X, t(x) is such that y(t(x),x) € X. Then t € C*(X,R).
(ii) M={(t,y); ye X, tely}is an open subset of R x X. h:M — X defined by h(t,y) =y (t,y) is
a C*®-diffeomorphism which carries % into L.

From Remark 4(ii) and Duistermaat-Hérmander’s theorem (see Theorem 6.4.2 of [2]) we get that
the existence of a global transversal of L on X is equivalent to the global solvability of L on C*°(X).
The next remark follows from Hartman’s theorem (see Theorem 7.1 of [4]).

Remark 5. Let xo be a hyperbolic critical point of L. If {xg} is a global attractor of L then any global
transversal of L on X \ {xo} is a compact subset of X \ {Xo}.

Sketch of the proof: Take a “sphere S centered at x¢” and contained at the neighborhood of xq
preluded in Hartman'’s theorem. Then, we define the mapping T from S to X which takes any point
of S to the unique point of X that belongs to the trajectory of L that passes through xg. By contin-
uous dependence, the injective mapping T is continuous. Therefore T(S) C ¥ is compact. But by the
hypothesis of xy being a global attractor we have that, for any point y of X, the trajectory starting
at y must go into the Hartman’s neighborhood therefore must intercept S. Then T is onto, hence
X =T(S) is compact.

In the lemma below we construct a global transversal in the attractor case.

Lemma 7. Let xo be a hyperbolic critical point of L. If {xo} is a global attractor of L then for all neighborhood
V of xo, there exists a global transversal X of L on X \ {Xo} such that ¥ C V \ {xo}.

Proof. Since {xo} is a global attractor, it follows that {x¢} is the unique relatively compact orbit of L.
From Hartman’s theorem it follows that there exists a neighborhood U of xo such that U \ {xp} is
convex with respect to the trajectories of L and U C V. Now, Duistermaat-Hérmander’s theorem
implies that exists a global transversal X of L on U \ {xp}. Since {xo} is a global attractor of L then ¥
is a global transversal of L on X \ {xo}. O

The next result shows that an appropriated perturbation of a global transversal is still a global
transversal.

Lemma 8. Let X be a global transversal of L on X and x € C*°(X,R) such that w_(y) < x(¥) < w4+ (),
Vy € X. The image of the mapping o : ¥ — X given by o (y) =y (x(¥), ) is a global transversal of L on X.

Proof. From Remark 4(ii) we may suppose that X =M and L = % The result holds easily for this
case. O

3.3. Proof of Theorem 2

Let s be the number of the eigenvalues of DL(xg) with negative real part. To prove Theorem 2 we
consider two cases:

e Case A: s € {0,n} (attractor or repellent case).
e Case B: s ¢ {0,n} (saddle point case).

3.3.1. Proof of Case A
Suppose s =n (the case s =0 is analogous). From Lemma 6 it follows that {xo} is a global attractor
of L. Let U be a neighborhood of xy such that f =0 on U and

xeU = I cu. (18)
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Choose a neighborhood V of xp such that V ¢ U and 6 € C*°(X) such that
6=0 onV and 6=1 onC(CU. (19)

From Remark 5 and Lemma 7 there exists a compact global transversal ¥ of L on X \ {xo} con-
tained in V \ {xo}. From the Method of Characteristics it follows that 3y € C*°(X \ {x0}) such that
Ly =c6 on X\ {xo} and ¥ =0 in a neighborhood of xo. Then we may suppose ¥ € C*°(X) and
Ly =c6 on X.

In the same way, using (18) we obtain ¢ € C*°(X) such that Lp =e¥ f on X and

$=0 onU. (20)
Hence
P(ge V)= f+ce Vo1 —0).
From (19) and (20) it follows ¢ (1 — 6) = 0. Therefore, by taking u = ¢e~¥ we have Pu= f.

3.3.2. Preliminaries for Case B
We define the stable (resp. unstable) manifold of L at xy by

Ws(x0)={xeX; . lim )y(t,x):x()]

—wy (X

(resp. W (xp) = {x € X; lim;—¢_(x ¥ (t,X) =Xo}), which is a C*° immersed submanifold of X. Take
X5 =X\ W5(xp) and X" =X\ W¥(xp).

If X% (resp. X") is a global transversal of L on X* (resp. X"), we denote X5 (X°) ={y(t,y);y € X°,
£t > 0} (resp. X4L.(X") ={y(t,y); y € X!, £t > 0}) subsets of X* (resp. X").

The main result of this section is:

Proposition 2. Let U1 be a neighborhood of {x¢}. There exists a neighborhood U of {xo}, with U C U4, global
transversal X7 and X5 of L on X*, and global transversal X} and X of L on X" such that:

(i) Z¥ C XL(ZY) and 5 C X5.(55),
(i) X¥(Z¥)UWU(xo) C X5.(¥5)UU, and
(iii) Yf € C*°(X) such that f =0 on X* (X5) U W*(xp) U U (resp. X{{.(Z}) U W¥(x0)), Ju € C*°(X) such
that Lu = f and u =0 on U (resp. u =0 on X} (X]) U WH(0)).

For the proof of Proposition 2, we do not use that Tx(X?3) ®L(x) = Tx(X), Vx € X7, similarly for X7
In order to prove Proposition 2 we will use some preliminary results, here Lemma 9 to Lemma 13.

Lemma 9.

(i) W3 (x0) N WH(x0) = {xo}.
(ii) WS(xg) (resp. W (xg)) is a closed subset of X.

Proof. (i) If x € W5(xg) N Wl(xg) then a(x) = w(x) = {Xo}. Hence I'y € X. From (b) it follows that
X = Xp.

(ii) If W¥(xo) is not closed in X then there exists a sequence {x;} C W*(xg) converging to some
x € X\ W5(xg). Hence xp ¢ w(x). Since w(x) is invariant under the flow, from (b) it follows that I is
not relatively compact. Using the same arguments of the proof of Lemma 6 we obtain the result. O

From Lemma 9(ii) we have:
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Remark 6. X° (resp. X") is an open subset of X. Therefore X3 (X*) and X® (X*) (resp. X% (X") and
X" (X")) are open subsets of X.

Moreover:
Lemma 10. X® (resp. X") is convex with respect to the trajectories of L.

Proof. Suppose that X* is not convex with respect to the trajectories of L, then there exist K € X,
a sequence {I'j} of compact intervals of trajectories of L with endpoints in K and a sequence {x;}
such that

XJ'EF]'\K]‘, VjEN, (21)

here {K;} is a sequence of compact subsets of X* satisfying the properties (1). From hypothesis (c) of
Theorem 2 it follows that 3K’ € R" such that {x;} C K’. Hence there exist x € X and a subsequence
{xj,} C {x;j} such that x;, — x. Without loss of generality, we may suppose that x; — x. Observe that
from (21) we have

x € WS(xp). (22)

We will divide the rest of the proof in two cases.

Case x # Xg.

In this case take a sequence {Cy} of compact subsets of X satisfying the properties (1). Since
X # xo, from (b) it follows that Vk € N, 3y € I'y \ Ci. Using (22) we obtain [x, y,] N K = @, then from
Flow Box theorem there exists a neighborhood V of [, y,] such that L|y, is conjugated to 9, and
Vi N K =49. Since x; — x it follows that 3j, € N with the following property: Vj > ji, 3zj € I'j \ Ci.
Then (c) fails.

Case x = Xg.

From the proof of the previous case it is sufficient to prove that there exist w € W*(xp), with
w # Xp, and a sequence w; — w such that wj e I'j;, Vj e N.

Since K N W3(xg) =@ and xo € W5(xg) there exists a neighborhood V of xg satisfying KNV =@.

From Hartman'’s theorem we have there exists an open subset U of X such that xo € U c V and
U \ W5(xo) is convex with respect to the trajectories of L.

Consider a neighborhood W of xg such that W Cc U and dW is homeomorphic to the sphere
s"=1. Choose jo € N such that j > jo = x;j € W. Since the endpoints of I'j are contained in K, from
the continuity of I it follows that there exist wj, w; € I'j N W such that xj € [wj, W;-]. From a
compactness argument there exist subsequences {w;,} C {w;} and {w’jk} C {w;.} such that wj, — w

and w}k — w'. It is sufficient to prove that
weWS(xg) or w eW5(xg). (23)

If w¢ W3(xo) and w’ ¢ W*(xp) then the sequences {wj,} and {W;-k} are contained in a compact
subset of dW \ W5(xp). Hence U \ W*(xg) is not convex with respect to the trajectories of L. O

Using Lemma 10 we obtain:

Remark 7. X% (X°) and X* (2°) (resp. X4 (") and X" (X)) are convex with respect to the trajecto-
ries of L.

Let XS be a global transversal of L on X5. Observe that W' (xg) and X' are immersed submanifold
of X and X is transversal to W"(xg). Then we have:
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Remark 8. If X% is a global transversal of L on X° (resp. X" is a global transversal of L on X") then
K := XN W¥(xp) (resp. K := X" N W?3(xp)) is a global transversal of L|wux, on W"(xo) \ {xo} (resp.
of Llwsx,) on W3(xg) \ {xo}), furthermore K € X.

Hartman’s theorem is used to prove:

Lemma 11. If X° (resp. X") is a global transversal of L on X* (resp. on X") then X5 (X%) U W*5(0) (resp.
XL (ZY) U WH(0)) is an open subset of X.

Proof. From Remark 6 is sufficient to prove that Vx € W*(xg) there exists a neighborhood V, of x
such that V; C X5 (X%) U W*(xp). In the other hand from the continuity of y it is sufficient to prove
that there exists a neighborhood Vg of x¢ such that

Vo C X2 (2%) UW?(xp). (24)

Consider the function 7 : X* — R given by Remark 4(i) and take K = X5 N W!(xg). We will divide
the rest of the proof in two steps.

Step 1. There exists an open subset Uy of X such that xo € Up and Ug N W¥(xp) \ {Xo} C X5 (X¥).

In fact, since K € X (see Remark 8), there exists an open subset Uy of X such that xo € Uy,
UoN K =@, Ug satisfies the conclusion of Hartman’s theorem and Ug is convex with respect to the
trajectories of L.

It is enough to prove that t(y) > 0, Yy € Ug N W"(xp) \ {Xo}. From Uy N K =@ we have 7(y) #0.
Suppose that 7(y) < 0. Since xq is a hyperbolic critical point of L and xq is a global attractor of —L
on WU (xp), there exists an open subset A of W (xg), with xg € A C Ug N W'(xg), such that

t<0, zeA = y(t 2 €A (25)

Choose to < 0 such that y (to, ¥) € A. If T(y) < to, from (25) it follows that y (7 (y), y) € Up. This is
a contradiction, because Ug N K = @. Hence tyo < T(y) < 0. Since Uy is convex with respect to the
trajectories of L, these inequalities imply y (7 (¥), ¥) € Up and this is a contradiction with KNUy = 0.
Therefore we have t(y) > 0.

Step 2. There exists a neighborhood Vg of xy with the property (24).

In fact, from Hartman’s theorem there exists a subset X’ of X such that X/ C Ug \ {xo} and X’ is
homeomorphic to S"~!. Define A = X’ N W¥(xo). From Lemma 9(ii) we have A € X. From Step 1 it
follows that there exists a neighborhood VA of A such that

Va C X (Z%)NUo. (26)

Using (26), Hartman’s theorem and the compactness of A we prove that there exists a neighbor-
hood Vg of x¢ such that Vo \ W?(xp) C X* (X%). This inclusion implies the statement of Step 2. O

From these lemmas we will construct global transversal of L on X* with special properties. Denote
[x, y] the interval of trajectory of L with endpoints x and y.

Lemma 12. Let U1 be a neighborhood of {xo}. Then there exists an open set U, with xy € U C U1, satisfying the
conclusion of the Hartman’s theorem with U convex with respect to the trajectories of L, and global transversal
X3 and X5 of L on X® such that:

(i) Z5N W (xo) C U,
(i) X7 C X5.(%3), and
(i) xe 25,y e I;F NnU =[x, y] C U.
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Proof. From the hypothesis (b) of Theorem 2, Lemma 10 and Duistermaat-Hérmander’s theorem it
follows that there exists a global transversal X7 of L on X*. From Lemma 11 there exists an open
subset U of X, with xp € U C Uy such that: U C X2 (X)) U W3(xg), U satisfies the conclusion of
Hartman’s theorem and U is convex with respect to the trajectories of L. Observe that U has the
additional property:

yex;, yt,yeU = t<O0. (27)

We will divide the rest of the proof in four steps.

Step 1. There exist T € R and an open subset Wy of X3, with K C Wy, such that
yeWo = w_(y)<T<0 (28)
and
yeWo = y(T.y).,y(T/2,y)eU. (29)

In fact, consider an open subset V of X such that W"(xg) C V and w_(y) = —oo, Vy € V. Take
K = Z‘é N WH(xg). For each y € K take t, < 0 such that y(t,y) € U, Vt <ty,. From compactness
of K there exists T < 0 such that t < T = y(t,y) € U, Yy € K. By continuity of y it follows that
there exists an open subset Vo of X such that K c Vo Cc V and y(T,y),y(T/2,y) € U, Vy € V. Set
Wo=VgN 28.

Step 2. There exist a sequence {tj}]°-°=1 C R and a locally finite cover {Wj}s?i1 of X7 such that
yeW; = 0<tj<wi(y). (30)

In fact, for each y € X§ choose ty, € R and a neighborhood V) of y such that 0 <ty < w, (),
Vy € Vy. Consider a locally finite refinement {Wj}l‘?il of the cover {Vy, N 2‘5}},625. For each j>1

choose Vy such that W; C Vy, N X3 and define t; =t,. Hence Step 2 follows.
Consider o € C* (X3, R) such that 0 < ug < 1, o =1 in a neighborhood of K and supp(ug) C
Wpy. Let {,u.j}j?il be a partition of unity subordinated to the cover {Wj};’i]. Consider the functions

X1, X2 € C*(X§, R) given by

T oo
x1=Spo+(1—po) Y tjuj and xo=Tpo.
j=1
Then we have the following result:

Step 3. For each j =1, 2, the image EJS. of the function
gj : 25 — X*
y= v (X, y)

is a global transversal of L on X5.

In fact, from (28) it follows that w_(y) < x2(¥) < w4 (y), y € X. In the same way, from (28) and
(30) we have w_(y) < x1(¥) < w4 (y),y € X§. From Lemma 8 it follows that X7 and X3 are global
transversal of L on X5.

Step 4. The statements (i), (i) and (iii) hold, if X7 and X3 are given as in Step 3.
In fact, to prove (i), observe that for each x € ¥§ N W"(xo), 3y € K such that x=y (x1(y), y) be-
cause X7 is a global transversal of L on X* and W"(xp) is invariant under the flow. Since pg(y) =1
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and from (29) it follows that x € U. So proof of (i) is concluded. Observe that (ii) follows from
X2 < X1-

For (iii), first we observe that for each x € E; and y € I’j’ N U, we can take t > 0 such that
y(t,x) =y. Since U is convex with respect to the trajectories of L, it is sufficient to prove that x € U.

Choose z € X§ such that y(x2(2),z) =x. We will prove that ze Wy. If z¢ Wy then x2(z) =0.
But y = y(t + x2(2),z) we have y = y(t,z). Therefore from (27) it follows that t < 0. This is a
contradiction. Then we have z € Wy.

Since T < x2(z) <t+ x2(2) and U is convex with respect to the trajectories L, from (29) and
yeU we have xeU. O

Also we have:

Lemma 13. Let U be the neighborhood of xo and X3 the global transversal of L on X* given by Lemma 12.
There exist global transversal X} and X of L on X" such that:

(i) Z¥Y N W3(x) C U,
(i) 23 c X{L(2Y), and
(iii) =} = =5 onCU.
Proof. In the same way as the proof of Lemma 12 we have that there exists a global transversal X} of

L on X" such that K := X NW?*(xp) C U. Consider the function 7 : X* — R given by y (t(y), y) € Xj.
We will divide the rest of the proof in three steps.

Step 1. There exists an open subset Wg of X such that K ¢ Wo C U and

yeWo = y(t(y).y)eUl. (31)

In fact, consider a subset X’ of U \ {0} homeomorphic to S"~!. Here the homeomorphism is
given by Hartman's theorem. Take A = X’ N WY (xp). Using Lemma 12(i) it follows that there exists a
neighborhood VA of A such that

yeV = y(t(y).y)el. (32)

Moreover, using the compactness of A and Hartman’s theorem we prove that there exists a neigh-
borhood Vg of xy with the following property:

yeVo\W?*0) = 3JteR suchthat y(t,y)eV. (33)

From (32), (33) and from the continuity of y Step 1 follows.

Consider u € C*° (XY, R) such that 0 < <1, =1 in a neighborhood of K and supp(u) C Wo.
Since X is an immersed submanifold of X, we have ‘L’|E[l]4\K € C®(ZF\K). Let xq:X§ — X" be the
function given by x; = (1 — ,u.)‘l:|);g\,<. Then we have that x; € C® (XY, R).

Step 2. The image X}' of the function

o1: 2§ — X"
y=v(nw.y)
is a global transversal of L on X" which satisfies (i).
In fact, from Lemma 8, ¥} is a global transversal of L on X". Since it =1 on K we have X} N

W3(0) =K, hence X' " W*(0) C U. Then Step 2 follows.
The existence of X2 with the property is proved in the same way as in the proof of Lemma 12(iii).
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Step 3. The statement (iii) holds.
In fact, we will prove that

zinlucxf (34)

and
¥ nlucxy. (35)
To prove (34), take x € X' N CU and choose y € X§ such that ¥ (x1(y),y) =x. If y € Wq then

from (31) and |x1(y)| < |t(y)| result x € U. This is a contradiction. From y ¢ Wy it follows that
x1(y) =7(y). Hence x € X and the proof of (34) is finished. In the same way we prove (35). O

Proof of Proposition 2. Proof of (i). Use Lemma 12(ii) and Lemma 13(ii), respectively.

Proof of (ii). From Lemma 12(i) it follows that W*"(xp) C X% (¥}) UU, and Lemma 13(iii) implies
XU (DM C XS.(Z5H U U.

Proof of (iii). Use the Method of Characteristics, Lemma 12(iii) (resp. Lemma 13(ii)) and
Lemma 11. O

3.3.3. Proof of Case B
Let Uy be a neighborhood of x¢ such that f =0 on Uy. With the notation of Proposition 2, we
will prove Case B in two steps.

Step 1. Vf € C°°(X) such that f =0 on U, Juq € C*°(X) such that Puy = f on U U X5 (X}).
In fact, from Proposition 2(i) and Lemma 10 choose 6; € C*°(X) such that

61=0 onX’ (Z)UW*(x) and 6 =1 onX’(X}). (36)

By the Method of Characteristics and Lemma 11, 3y C°°(X) such that Ly = c6;. From Proposi-
tion 2(iii), 3¢1C°°(X) such that L¢; =61 fe¥! and Lo = 6; fe¥! and

¢1=0 onU. (37)
Hence
P(p1e ") =61 f +ce Vg1 (1—0y).
Since f =0 on U, from (36) and (37) it follows that on X% (¥3) UU we have
$1(1—-61)=0 and 6;f=f.

Therefore, by taking u; = ¢1e~¥1 Step 1 follows.

Step 2. Vf € C*°(X) such that f =0 on U U X’ (X¥}), 3u € C*°(X) such that Pu= f on X.
In fact, from Proposition 2(i) and Lemma 11, choose 6, € C*°(X) such that

6,=0 onX{(Z¥)UW"(x) and 6,=1 onX"(Z}).
Therefore, Iy, € C*°(X) such that Ly, = c6s. Since f =0 on U U X5 (X3), from Proposition 2(ii)-(iii)

it follows that 3¢, € C>°(X) such that Lgp, = fe¥2 and ¢, =0 on U U X5.(29).
Hence

P(g2e™"2) = f +ce V2gn(1 — 6y),
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and
$2(1—62)=0 on X’ (Z})UUUXL(Z]).
Therefore, taking u = ¢e~¥2 Step 2 follows.

Remark 9. The hypotheses (NRC 2) and (c) are necessary for global solvability of P on C°°(X) from
Lemma 5; and Remark 2, Theorem 4 of [9], respectively.

When L is a linear vector field on R", it is easy to see that (b) and (c) of Theorem 1 are verified.
In this case, the hypothesis of linearization (NRC 1) is dropped and we have that P = L + ¢ is globally
solvable on C°°(R") if, and only if, (NRC 2) holds. In particular, the condition (NRC 1) is not necessary
for global solvability.

Now, we present a family of operators for which the condition (b) is necessary for global solvabil-
ity. Take p(x) = Z']‘:o a jxj , be a real polynomial. Let L be the vector field on R? given by

L=x1(1—X1)d1 +X28(x1,%)d, (X1,%) € R?,

where g € C°(R2). Notice that (0, 0), (1, 0) are critical points and (0, 1) x {0} is a relatively compact
orbit of L. Take the operator P = L + ¢ with ¢ € C®°(R?) satisfying

c(x1,0)=px1), xR
Under these hypotheses we have (see [16, p. 59]): If
ap¢7Z and aj¢{1,2,...}, j=1,2,...,n,

then Ju € &’ € (R?) such that {Pu =0 and supp(u) = [0, 1] x {0}. Hence P is not globally solvable on
C®(R?).
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