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F. Treves, in [17], using a notion of convexity of sets with respect
to operators due to B. Malgrange and a theorem of C. Harvey,
characterized globally solvable linear partial differential operators
on C∞(X), for an open subset X of R

n .
Let P = L + c be a linear partial differential operator with real
coefficients on a C∞ manifold X , where L is a vector field and
c is a function. If L has no critical points, J. Duistermaat and
L. Hörmander, in [2], proved five equivalent conditions for global
solvability of P on C∞(X).
Based on Harvey–Treves’s result we prove sufficient conditions for
the global solvability of P on C∞(X), in the spirit of geometrical
Duistermaat–Hörmander’s characterizations, when L is zero at
precisely one point. For this case, additional non-resonance type
conditions on the value of c at the equilibrium point are necessary.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a C∞ manifold Hausdorff with a countable basis of open sets and P : C∞(X) → C∞(X)

a linear partial differential operator. P is said to be globally solvable, or solvable, on C∞(X) when
P (C∞(X)) = C∞(X).

B. Malgrange [9, p. 295] in 1955 introduced the notion of P -convexity and showed it to be equiv-
alent to the global solvability of P on C∞(X), when P has constant coefficients and X is an open

* Corresponding author.
E-mail addresses: santos@dm.ufscar.br (J.R. dos Santos Filho), mfronza@smail.ufsm.br (M.F. da Silva).

1 This work was partially supported by FAPESP.
2 This work was partially supported by CNPq.
0022-0396/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2009.08.017

https://core.ac.uk/display/81165201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:santos@dm.ufscar.br
mailto:mfronza@smail.ufsm.br
http://dx.doi.org/10.1016/j.jde.2009.08.017


J.R. dos Santos Filho, M.F. da Silva / J. Differential Equations 247 (2009) 2688–2704 2689
subset of R
n. When P has variable coefficients, he showed that P -convexity is a necessary condition

for the global solvability of P on C∞(X).
Let X be an n-dimensional C∞ manifold Hausdorff space with countable basis. Take F to be a

local coordinate system (Xκ , κ) for X . The space of distributions D ′(X) is defined in the following
way (see [7, p. 144]), for every κ consider a distribution uκ ∈ D ′(κ(Xκ )) such that

uκ ′ = uκ ◦ (
κ ◦ κ ′−1) in κ ′(Xκ ∩ Xκ ′),

in this case, (uκ ) is called a distribution on X . The set of all distributions in X is denoted by D ′(X).

Similarly we define the space of compact support distribution E ′(X).
Denote M � X if M is a compact subset of X and t P the formal transpose of P . In this article

supp(u) denotes the support and singsupp(u) denotes the singular support of the distribution u. We
say that X is P -convex for supports if ∀K � X , ∃K ′ � X such that

u ∈ E ′(X), supp
(t P u

) ⊂ K ⇒ supp(u) ⊂ K ′.

In a similar way we define the P -convexity for singular supports.
In 1967, F. Treves [17, p. 60] and C. Harvey [5, p. 700] using the P -convexity for supports, gave a

general characterization of globally solvable linear partial differential operators on C∞(X).
Unless otherwise mentioned, from now on P = L + c will be a linear partial differential operator

with real coefficients in C∞(X), where L is a vector field and c is a function. In 1972, when L has no
critical points, J. Duistermaat and L. Hörmander (see [2, p. 212]) gave five equivalent conditions for
global solvability of P on C∞(X). They used the notions of global transversal of L on X and of convex-
ity of X with respect to the trajectories of L. In [6], J. Hounie extended one of these characterizations
for L complex.

In order to state our main theorem we recall some definitions and results.
We say that X is convex with respect to the trajectories of L if ∀K � X,∃K ′ � X such that any compact

interval of trajectory of L with endpoints in K , is contained in K ′ (see [2, p. 208]).
If L has a critical point at the origin and c ∈ C, V. Guillemin and D. Schaeffer [3, p. 175] gave, in

1977, sufficient conditions for the equation P u = f to have a C∞ solution in a neighborhood of zero,
for an arbitrary f ∈ C∞(Rn) flat at the origin. We remark that in [3] and [11] results on propagation
of singularities for operators of type P = L + c are presented.

Suppose that x0 is a critical point of L. Let λ1, λ2, . . . , λn′ , λn′+1, . . . , λn be the eigenvalues of
DL(x0), where λ1, λ2, . . . , λn′ are the real eigenvalues and λn′+1, . . . , λn are non-real eigenvalues.

For c = 0, from S. Sternberg [15, p. 629], see also E. Nelson [10, p. 50] and V. Guillemin and
D. Schaeffer [3, p. 175], we have: If

λ j 
=
n∑

k=1

mkλk, j = 1,2, . . . ,n, m1, . . . ,mn ∈ N,

n∑
k=1

mk � 2, (NRC 1)

then given f ∈ C∞(Rn) flat at x0, ∃u ∈ C∞(Rn) such that P u = f in a neighborhood of x0.

Observe that the condition (NRC 1) implies that every eigenvalue of DL(x0) has nonzero real part,
that is, x0 is a hyperbolic critical point for L.

If c(x0) = 0 then, since Lu(x0) = 0, we have P u(x0) = 0 hence the operator P is not C∞-solvable
at any neighborhood of x0. Therefore we consider the following non-resonance condition

−c(x0) 
=
n∑

j=1

m j Reλ j, ∀m1, . . . ,mn′ ∈ N, ∀mn′+1, . . . ,mn ∈ 2N. (NRC 2)

Our main result is:
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Theorem 1. Let P = L + c be a first order differential operator with coefficients in C∞(X,R) with a critical
point at x0 . If

(a) (NRC 1) and (NRC 2) are valid,
(b) no orbit of L on X \ {x0} is relatively compact in X, and
(c) X is convex with respect to the trajectories of L

then

P is solvable on C∞(X).

Also in this paper we consider the relationship between P -convexity and convexity with respect
to the trajectories of L for P = L + c, see Proposition 1.

This paper is organized in the following way. In Section 2 we present results concerning the re-
lationship between P -convexity for supports, P -convexity for singular supports and convexity with
respect to the trajectories of L when L is a real vector field. In Section 3 we prove Theorem 1.

2. L-convexity for supports, L-convexity for singular supports and convexity with respect to the
trajectories

In this section we use propagation of singularities and of supports to characterize, in geometrical
terms, the L-convexity for supports and singular supports. From these characterizations, we obtain in
our setting the equivalence between those conditions.

The main result of this section is:

Proposition 1. Let L be a real vector field on X . The following conditions are equivalent:

(a) X is L-convex for singular supports.
(b) (b.1) ∃K̃ � X such that no orbit of L|X\K̃ is relatively compact, and

(b.2) X is convex with respect to the trajectories of L.

Let L be a non-singular real vector field on X . If one of the following conditions holds:

(i) X is any open set of R
n and L has constant coefficients, or

(ii) X is a simply connected open subset of R
2,

then condition (b.1) holds with K̃ = ∅, because the orbits are lines in case (i) and because of the
Poincaré–Bendixson theorem in case (ii). Therefore, under conditions (i) or (ii) above, from Proposi-
tion 1 we have (a) ⇔ (b.2).

Observe that if L ≡ 0 then every manifold X is convex with respect to the trajectories of L but X
is not L-convex for singular supports. If X ⊂ R

2 is not simply connected then (b.2) 
⇒ (a), for example
take X = R

2 \ {0} and L = x2∂1 − x1∂2.

In [14], H. Seifert proposed the following question, which is known as Seifert’s Conjecture: Does
every smooth vector field on the 3-dimensional sphere have a periodic orbit? This conjecture was
proved to be false for C1 vector fields by P. Schweitzer (see [13]) and latter in the C∞ case by
K. Kuperberg (see [8]). In contrast with (ii), the second author in [16] starting from an example for
which the statement of the conjecture is true, constructed a real non-singular vector field on R

3 such
that (b.2) 
⇒ (a).

2.1. Proof of Proposition 1

We will introduce some definitions concerning vector fields. Let L be a real vector field on a
manifold X and γ the associated flow. For each x ∈ X , we denote the maximal interval of definition
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of the orbit passing through x by Ix = (ω−(x),ω+(x)) and the orbit (or trajectory) of x by Γx =
{γ (t, x); t ∈ Ix}. Also denote Γ +

x = {γ (t, x); 0 � t < ω+(x)} and Γ −
x = {γ (t, x); ω−(x) < t � 0}.

When ω+(x) = +∞ (resp. ω−(x) = −∞) we define

ω(x) = {
y ∈ X, γ (t j, x) → y for some sequence t j → +∞}

(resp. α(x) = {y ∈ X, γ (t j, x) → y for some sequence t j → −∞}.)
We say that {x0} ⊂ X is a local attractor of L when there exist a neighborhood U of x0 such

that limt→ω+(x) γ (t, x) = x0, ∀x ∈ U . In this case, the basin of attraction of {x0} is defined by B(x0) =
{x ∈ X; limt→ω+(x) γ (t, x) = x0}. When B(x0) = X we say that {x0} is a global attractor.

To prove Proposition 1 we will need some preliminary results, namely Lemma 1 to Lemma 3.
Choose a sequence {K j}∞j=1 of compact subsets of X such that⋃

K j = X, K j ⊂ K ◦
j+1, j = 1,2, . . . , and ∀K � X, ∃ j0 ∈ N such that K ⊂ K j0 . (1)

Here A◦ denotes the interior of the subset A ⊂ X .

If K is a compact subset of X then we denote by C∞(K ) the quotient of C∞(X) by the space
consisting of elements vanishing of infinite order on K . Then C∞(K ) is a Fréchet space and the
family of seminorms given by

p j(φ̇) = inf
φ∈φ̇

∑
|α|� j

sup
K j

∣∣∂αφ
∣∣, φ̇ ∈ C∞(K ), j = 0,1,2, . . . ,

is a basis of continuous seminorms of C∞(K ). Here φ̇ denotes the class of φ ∈ C∞(X) in C∞(K ).

Denote B p j = {φ ∈ C∞(K ); p j(φ̇) < 1}. Then ∀ j ∈ N,∃C > 0 such that

L

(
1

C
B p j+1

)
⊂ B p j . (2)

This implies the continuity of L on C∞(K ).

We use the identification (C∞(K ))′ = E ′(K ), where E ′(K ) denotes the space of distributions on
X with compact support contained in K . Using this identification we prove the following result, see
Theorem 6.4.1 of [2].

Lemma 1. If K � X and L(C∞(K )) = C∞(K ) then ∃φ ∈ C∞(X) such that L2φ > 0 on K .

Proof. Choose j ∈ N such that K ⊂ K j and consider φ1 ∈ C∞(X) satisfying φ1 = 1 on K . From the
hypothesis it follows that there exist φ̇2, φ̇ ∈ C∞(K ) such that

Lφ̇2 − φ̇1 ∈ 1

4
B p j , (3)

and Lφ̇ − φ̇2 ∈ 1
4C B p j+1 (here C > 0 is given by (2)). From (2) we obtain

L(Lφ̇ − φ̇2) ∈ 1

4
B p j . (4)

Since L2φ̇ − φ̇1 = L(Lφ̇ − φ̇2) + Lφ̇2 − φ̇1, from (3) and (4) we obtain L2φ̇ − φ̇1 ∈ 1
2 B p j . Hence

∃ψ ∈ L2φ̇ − φ̇1 such that
∑

|α|� j supK j
|∂αψ | � 3

4 , in particular supK j
|ψ | � 3

4 .

But K ⊂ K j and L2φ − φ1 = ψ on K , therefore supK |L2φ − φ1| � 3
4 . Since φ1 = 1 on K it follows

that L2φ � 1
4 on K . �
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Denote D ′(X) the space of the distributions on X .

Remark 1. Let L be a real non-singular vector field on X and c ∈ C∞(X). If u ∈ D ′(X) and (L +c)u = 0
by the Flow Box theorem it follows that supp(u) is invariant under the flow of L.

Lemma 2. If Γ is a relatively compact orbit of the real vector field L then

(i) ∃u ∈ E ′(X) such that t Lu = 0 and supp(u) = Γ . So singsupp(u) = Γ, if Γ is a periodic orbit.
(ii) For each orbit Λ satisfying Λ ∩ ∂Γ 
= ∅,∃u ∈ E ′(X) such that t Lu = 0 and supp(u) = singsupp(u) =

Λ ⊂ Γ .

Proof. We will divide the proof in four steps. From Steps 1 and 2 we will have (i) and from Steps 3
and 4 will follow (ii).

Step 1. If Γ is a periodic orbit then ∃u ∈ E ′(X) such that t Lu = 0 and supp(u) = singsupp(u) = Γ.

In fact, if Γ is a critical point then we may take u to be Dirac distribution. If Γ is a periodic orbit
define

u(φ) =
b∫

a

φ ◦ γ (s)ds, φ ∈ C∞(X), (5)

where a 
= b, γ (a) = γ (b) and γ is the integral curve whose image is Γ. It is easy to see that
supp(u) = Γ. Since

WF(u) = {
(x, ξ) ∈ T ∗(X); x ∈ Γ, ξ 
= 0 and L(x, ξ) = 0

}
(see Example 8.2.5 of [7]) we have singsupp(u) = Γ.

Step 2. If Γ is a non-periodic orbit then ∃u ∈ E ′(X) such that t Lu = 0 and supp(u) = Γ .

In fact, from Lemma 1 and a result concerning solvability on compact subsets due to Duistermaat–

Hörmander (see Theorem 6.4.1 of [2]) we have L(C∞(Γ )) 
= C∞(Γ ). The Hahn–Banach theorem
implies that there exists 0 
= u ∈ E ′(Γ ) such that u = 0 on L(C∞(X)). Since t Lu = 0 and L is non-
singular in a neighborhood of Γ, using Remark 1 we obtain supp(u) = Γ .

Step 3. If Λ is a non-periodic orbit then (ii) holds.
In fact, using the invariance of the sets α(x) and ω(x) under the flow and the hypothesis Λ∩∂Γ 
=

∅ we obtain Λ ⊂ Γ . From (i) it follows that ∃u ∈ E ′(X) such that t Lu = 0 and supp(u) = Λ. We will
prove that singsupp(u) = Λ. From propagation of singularities (see Theorem 6.1.1 of [2]) it is sufficient
to prove that

Λ ∩ singsupp(u) 
= ∅. (6)

Let λ : R → X be the integral curve whose image is Λ and ψ ∈ C∞(X) such that −t L = L + ψ. For
each bounded interval I ⊂ R, from Flow Box theorem ∃φ ∈ C∞(X) such that Lφ = ψ in a neighbor-
hood of λ(I).

If Λ ∩ singsupp(u) = ∅ then u is a continuous function on Λ. Since supp(u) = Λ ⊂ Γ it follows
that

u = 0 on ∂Γ . (7)

Moreover, since u is a C∞-function in a neighborhood of λ(I) we have((
eφu

) ◦ λ
)′
(s) = L

(
eφu

) ◦ λ(s) = (
eφ(Lφ)u + eφ Lu

) ◦ λ(s), ∀s ∈ I.
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But Lφ = ψ in a neighborhood of λ(I) and t Lu = 0, then((
eφu

) ◦ λ
)′
(s) = 0, ∀s ∈ I.

We proved that for any bounded interval I ⊂ R, ∃φ ∈ C∞(X) such that eφu is a constant function
on λ(I). Since supp(u) = Λ we obtain u 
= 0 on Λ. This is a contradiction with (7), since Λ ∩ ∂Γ 
= ∅.

The proof of (6) is finished.

Step 4. If Λ is a periodic orbit then (ii) holds.
In fact, if Λ is a critical point then the result follows from Step 1. Otherwise, consider a < b such

that λ(a) = λ(b). In this case, take I = (a − ε,b + ε), where ε > 0 is sufficiently small. The proof
follows in the same way as the proof of Step 3. �

We say that Γ := γ ([a,b]) is a non-periodic interval of trajectory of L when Γ is homeomorphic to
the interval [0,1] ⊂ R.

Lemma 3. If Γ = γ ([a,b]) is a non-periodic interval of trajectory of L then there exists u ∈ E ′(X) such that

supp(u) = singsupp(u) = Γ

and

supp
(t P u

) = singsupp
(t P u

) = {
γ (a), γ (b)

}
.

Proof. As in (5) define

v(φ) =
b∫

a

φ ◦ γ (s)ds, φ ∈ C∞(X).

It is easy to see that supp(v) = singsupp(v) = Γ and

t Lv = δγ (b) − δγ (a).

Here δγ (a) , δγ (b) are the Dirac distributions supported on γ (a) and γ (b), respectively. Since γ (a) 
=
γ (b) we obtain

supp
(t Lv

) = {
γ (a), γ (b)

}
. (8)

From the Flow Box theorem, it follows that ∃φ ∈ C∞(X) such that Lφ = c in a neighborhood Γ.

Defining u = eφ v we obtain t P u = eφ · t Lv + eφ(c − Lφ)v. Since c = Lφ in a neighborhood Γ and
supp(v) = Γ we have t P u = eφ · t Lv. From (8) we obtain the result. �
Proof of Proposition 1. For each K � X define

C K = {Γ ;Γ is a compact interval of trajectory with endpoints in K }. (9)

Let {K j} be a sequence of compact subsets of X with the properties (1).

Proof of (a) ⇒ (b.1). By taking K = ∅ in the definition of the P -convexity for singular supports we
have that ∃K ′ � X with the following property:

u ∈ E ′(X), t Lu = 0 ⇒ singsupp(u) ⊂ K ′. (10)
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We will prove that (b.1) holds with K̃ = K ′. In fact, suppose that there exists an orbit Γ such that
Γ � X \ K ′. If Γ is a periodic orbit then from Lemma 2(i) there exists u ∈ E ′(X) such that t Lu = 0 and
singsupp(u) = Γ. This contradicts (10). In case Γ is a non-periodic orbit then we have a contradiction
with (10) because of Lemma 2(ii).

Proof of (a) ⇒ (b.2). If (b.2) is false then ∃K � X and a sequence of integral curves γ j : [a j,b j] → X
such that Γ j := γ j([a j,b j]) ∈ C K but Γ j 
⊂ K j,∀ j ∈ N.

Choose an open subset V K of X such that K ⊂ V K and V K � X . Consider j0 ∈ N such that j �
j0 ⇒ V K ⊂ K j0 . Observe that Γ j is not a critical point of L when j � j0.

Suppose that j � j0 and Γ j is a periodic orbit of L. Since V K is an open subset of X,∃c j ∈ (a j,b j)

such that γ j([a j, c j]) is a non-periodic interval of trajectory, γ j([a j, c j]) 
⊂ K j and γ j(a j), γ j(c j) ∈ V K .

For each j � j0 define Γ ′
j = Γ j if Γ j is a non-periodic interval of trajectory and Γ ′

j = γ j([a j, c j]),
otherwise. From Lemma 3, ∃u j ∈ E ′(X) such that singsupp(t Lu j) ⊂ V K and singsupp(u j) = Γ ′

j 
⊂ K j .

Hence X is not convex for singular supports.

Proof of (b) ⇒ (a). If X is not convex for singular supports then ∃K � X with the following prop-
erty:

∀K ′ � X, ∃u ∈ E ′(X) such that singsupp
(t Lu

) ⊂ K but singsupp(u) 
⊂ K ′. (11)

Let K̃ be as in (b.1) and choose an open subset V K̃ of X such that K̃ ⊂ V K̃ and V K̃ � X . Define
K0 = K ∪ V K̃ . From (b.2) we have that ∃K ′

0 � X such that

Γ ∈ C K0 ⇒ Γ ⊂ K ′
0. (12)

Property (11) implies there exist u0 ∈ E ′(X) and x ∈ X such that

singsupp
(t Lu0

) ⊂ K (13)

and x ∈ singsupp(u0)\ K ′
0. Hence Γ +

x ∩ K0 = ∅ or Γ −
x ∩ K0 = ∅. In fact, if Γ +

x ∩ K0 
= ∅ and Γ −
x ∩ K0 
= ∅

then, from (12), we have x ∈ K
′
0. This is a contradiction. Then we may suppose that K0 ∩ Γ +

x = ∅.

Since K ⊂ K0 we obtain K ∩ Γ +
x = ∅. Using (13) and propagation of singularities we obtain Γ + ⊂

singsupp(u0). Hence Γ +
x � X . But using (b.1) we have that Γ +

x is not relatively compact. �
Using the ideas of the proof of Proposition 1 we prove that the L-convexity for supports is equiv-

alent to condition (b) of Proposition 1, when L is a real vector field. Then we have:

Remark 2. Let L be a real vector field on X . Then X is L-convex for supports if, and only if, X is
L-convex for singular supports.

The proof of the following remark is analogous to the case c ≡ 0 proved in Proposition 1.

Remark 3. Let L be a real vector field on X and c ∈ C∞(X). Define P = L + c. Consider the condition
(b) of Proposition 1 and the following condition: (a′) X is P -convex for singular supports. Then (b) ⇒
(a′) and (a′) ⇒ (b.2). Moreover, if c ∈ C∞

0 (X) then (a′) ⇒ (b.1).

3. Proof of Theorem 1

First we remark that any hyperbolic linear vector field on R
n satisfies the hypotheses (b) and (c)

of Theorem 1. Since condition (NRC 1) implies that x0 is a hyperbolic critical point of L, the following
results imply Theorem 1.
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Lemma 4. With X = R
n, suppose (a) holds. Then ∀ f ∈ C∞(Rn), ∃u ∈ C∞(Rn) such that P u = f in a neigh-

borhood of zero.

Theorem 2. Suppose that x0 is a hyperbolic critical point. If (b) and (c) are true then ∀ f ∈ C∞(X) such that
f = 0 in a neighborhood of x0,∃u ∈ C∞(X), with u = 0 in a neighborhood of x0 , such that P u = f .

Observe that Theorem 2 holds for any smooth complex function c defined on X .

3.1. Proof of Lemma 4

Before the proof of Lemma 4 we will prove the following preliminary result:

Lemma 5. Suppose that X = R
n and x0 = 0. Condition (NRC 2) is equivalent to the property: ∀ f ∈ C∞(Rn),

∃u ∈ C∞(Rn) such that P u − f is flat at the origin.

Proof. We denote by P u ∼ f when P u − f is flat at the origin. Write L = ∑n
j=1 a j∂ j and consider

formal Taylor expansions of u, a j and c at x = 0:

∑
α

∂αu(0)

α! xα,

∑
α

∂αa j(0)

α! xα, j = 1,2, . . . ,n,

∑
α

∂αc(0)

α! xα,

respectively. Then P u ∼ f is equivalent to∑
j,k

αk∂ka j(0)∂α+e j−ek u(0) + c(0)∂αu(0) + Rα = ∂α f (0), ∀α ∈ N
n, (14)

where e j is the unit vector of R
n with 1 in the jth position. The term Rα depends only on the

derivatives of u of order � 1 evaluated at the origin and has the following property: if ∂βu(0) = 0,
∀β ∈ N

n such that |β| � |α| − 1, then Rα = 0, where |α| = ∑n
j=1 α j,∀α ∈ N

n.

P u ∼ f is equivalent to a sequence of linear systems(
Bm + c(0)I

)
um = f m + vm−1, m ∈ N. (15)

Consider Λm
n = {α ∈ N

n; |α| = m} and M = �Λm
n . For each m ∈ N, Bm is a real matrix M × M which

depends on DL(0) and on the choice of an ordering of Λm
n . The components of um ∈ C

M (resp.
f m ∈ C

M ) are the derivatives of u (resp. f ) of order m evaluated at the origin. If m � 1 then the
vector vm−1 ∈ C

M corresponds to the term Rα of (14). Define v0 = 0 ∈ R. The vector vm−1 depends
only on the derivatives of u of order � m − 1 and this vector has the following property:

∂αu(0) = 0, ∀α ∈ N
n satisfying |α| � m − 1 ⇒ vm−1 = 0. (16)

Using the real Jordan form for a choice of ordering of Λm
n we prove that

Spec Bm ∩ R =
{

n∑
j=1

m j Reλ j; m1,m2, . . . ,mn′ ∈ N and mn′+1,mn′+2, . . . ,mn ∈ 2N

}
. (17)
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Here Spec A denotes the set of the eigenvalues of the matrix A. Using (16) and (17) we conclude that
the systems (15) can be solved recursively for u0, u1, . . . , if, and only if, (NRC 2) holds. �
Proof of Lemma 4. In view of Lemma 5 it is sufficient to prove that ∀ f ∈ C∞(Rn) with f flat at the
origin, ∃u ∈ C∞(Rn) such that P u = f in a neighborhood of the origin.

From (NRC 2) we obtain c(0) 
= 0. Define P1 = 1
c P in a neighborhood of the origin. Then P1 =

L1 + 1, where L1 = 1
c L. Since L(0) = 0 we have

DL1(0) = 1

c(0)
DL(0).

Then (NRC 1) holds for L1. From Sternberg’s result there exists a change of coordinates which carries
P1 into P2 corresponding to

1

c(0)
DL(0) + 1.

From Guillemin–Schaeffer’s result we conclude the proof of Lemma 4. �
3.2. Preliminaries for Theorem 2

Here, we will prove some preliminary results. Let L be a real vector field on R
2. Suppose that the

origin is a local attractor of L and {0} is the unique critical point of L. Under these conditions, from
Proposition 1 and since, for the case, convexity with respect of supports and singular support are the
same, the result of dos Santos Filho [12, p. 263] can be written as, the origin is a global attractor of
L if, and only if, R

2 \ {0} is convex with respect to the trajectories of L. We begin this section with a
version of this result for an arbitrary manifold.

Lemma 6. Suppose that X is a connected manifold and that {x0} is a local attractor of L. If

(i) Γ +
x � X ⇒ ω(x) = {x0}, and

(ii) X is convex with respect to the trajectories of L

then

{x0} is a global attractor of L.

Proof. We will see that the boundary ∂B(x0) of the basin of attraction B(x0) is empty. Suppose
there exists x ∈ ∂B(x0). Since {x0} is a local attractor of L, B(x0) is an open subset of X . Hence

Γ +
x ∩ B(x0) = ∅ then x0 /∈ Γ +

x . From (i) it follows that Γ +
x is not relatively compact orbit of L.

Consider neighborhoods Ux of x and Ux0 of x0 such that Ux, Ux0 � X . Take K = Ux0 ∪ Ux. It is easy
to see that for such K there is no compact K ′ satisfying the condition for convexity with respect to
the trajectories of L, so (ii) is not true. �

If x0 is a hyperbolic critical point local attractor for L, then the conditions (i) and (ii) of Lemma 6
are necessary for {x0} to be a global attractor of L.

Definition 1. A global transversal of L on X is a codimension one immersed submanifold Σ of X such
that for all x ∈ X there exists a unique t ∈ R such that y = γ (t, x) ∈ Σ and T y(Σ) ⊕ L(y) = T y(X).

Here Tx(M) denotes the tangent space of the manifold M at the point x ∈ M. Definition 1 is similar
to the definition used in [1, p. 15]. Now, we state some simple remarks regarding this notion.
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Remark 4. Let Σ be a global transversal of L on X .

(i) Let τ : X → R given by: for each x ∈ X, τ (x) is such that γ (τ (x), x) ∈ Σ. Then τ ∈ C∞(X,R).

(ii) M = {(t, y); y ∈ Σ, t ∈ I y} is an open subset of R × Σ. h : M → X defined by h(t, y) = γ (t, y) is
a C∞-diffeomorphism which carries ∂

∂t into L.

From Remark 4(ii) and Duistermaat–Hörmander’s theorem (see Theorem 6.4.2 of [2]) we get that
the existence of a global transversal of L on X is equivalent to the global solvability of L on C∞(X).

The next remark follows from Hartman’s theorem (see Theorem 7.1 of [4]).

Remark 5. Let x0 be a hyperbolic critical point of L. If {x0} is a global attractor of L then any global
transversal of L on X \ {x0} is a compact subset of X \ {x0}.

Sketch of the proof: Take a “sphere S centered at x0” and contained at the neighborhood of x0
preluded in Hartman’s theorem. Then, we define the mapping T from S to Σ which takes any point
of S to the unique point of Σ that belongs to the trajectory of L that passes through x0. By contin-
uous dependence, the injective mapping T is continuous. Therefore T (S) ⊂ Σ is compact. But by the
hypothesis of x0 being a global attractor we have that, for any point y of Σ , the trajectory starting
at y must go into the Hartman’s neighborhood therefore must intercept S . Then T is onto, hence
Σ = T (S) is compact.

In the lemma below we construct a global transversal in the attractor case.

Lemma 7. Let x0 be a hyperbolic critical point of L. If {x0} is a global attractor of L then for all neighborhood
V of x0, there exists a global transversal Σ of L on X \ {x0} such that Σ ⊂ V \ {x0}.

Proof. Since {x0} is a global attractor, it follows that {x0} is the unique relatively compact orbit of L.

From Hartman’s theorem it follows that there exists a neighborhood U of x0 such that U \ {x0} is
convex with respect to the trajectories of L and U ⊂ V . Now, Duistermaat–Hörmander’s theorem
implies that exists a global transversal Σ of L on U \ {x0}. Since {x0} is a global attractor of L then Σ

is a global transversal of L on X \ {x0}. �
The next result shows that an appropriated perturbation of a global transversal is still a global

transversal.

Lemma 8. Let Σ be a global transversal of L on X and χ ∈ C∞(Σ,R) such that ω−(y) < χ(y) < ω+(y),
∀y ∈ Σ. The image of the mapping σ :Σ → X given by σ(y) = γ (χ(y), y) is a global transversal of L on X .

Proof. From Remark 4(ii) we may suppose that X = M and L = ∂
∂t . The result holds easily for this

case. �
3.3. Proof of Theorem 2

Let s be the number of the eigenvalues of DL(x0) with negative real part. To prove Theorem 2 we
consider two cases:

• Case A: s ∈ {0,n} (attractor or repellent case).
• Case B: s /∈ {0,n} (saddle point case).

3.3.1. Proof of Case A
Suppose s = n (the case s = 0 is analogous). From Lemma 6 it follows that {x0} is a global attractor

of L. Let U be a neighborhood of x0 such that f = 0 on U and

x ∈ U ⇒ Γ +
x ⊂ U . (18)
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Choose a neighborhood V of x0 such that V ⊂ U and θ ∈ C∞(X) such that

θ = 0 on V and θ = 1 on �U . (19)

From Remark 5 and Lemma 7 there exists a compact global transversal Σ of L on X \ {x0} con-
tained in V \ {x0}. From the Method of Characteristics it follows that ∃ψ ∈ C∞(X \ {x0}) such that
Lψ = cθ on X \ {x0} and ψ = 0 in a neighborhood of x0. Then we may suppose ψ ∈ C∞(X) and
Lψ = cθ on X .

In the same way, using (18) we obtain φ ∈ C∞(X) such that Lφ = eψ f on X and

φ = 0 on U . (20)

Hence

P
(
φe−ψ

) = f + ce−ψφ(1 − θ).

From (19) and (20) it follows φ(1 − θ) = 0. Therefore, by taking u = φe−ψ we have P u = f .

3.3.2. Preliminaries for Case B
We define the stable (resp. unstable) manifold of L at x0 by

W s(x0) =
{

x ∈ X; lim
t→ω+(x)

γ (t, x) = x0

}
(resp. W u(x0) = {x ∈ X; limt→ω−(x) γ (t, x) = x0}), which is a C∞ immersed submanifold of X . Take
X s = X \ W s(x0) and Xu = X \ W u(x0).

If Σ s (resp. Σu) is a global transversal of L on X s (resp. Xu), we denote X s±(Σ s) = {γ (t, y); y ∈ Σ s,

±t > 0} (resp. Xu±(Σu) = {γ (t, y); y ∈ Σu, ±t > 0}) subsets of X s (resp. Xu).
The main result of this section is:

Proposition 2. Let U1 be a neighborhood of {x0}. There exists a neighborhood U of {x0}, with U ⊂ U1 , global
transversal Σ s

1 and Σ s
2 of L on X s, and global transversal Σu

1 and Σu
2 of L on Xu such that:

(i) Σu
2 ⊂ Xu+(Σu

1 ) and Σ s
1 ⊂ X s+(Σ s

2),

(ii) Xu+(Σu
1 ) ∪ W u(x0) ⊂ X s+(Σ s

1) ∪ U , and
(iii) ∀ f ∈ C∞(X) such that f = 0 on X s−(Σ s

2) ∪ W s(x0) ∪ U (resp. Xu+(Σu
1 ) ∪ W u(x0)), ∃u ∈ C∞(X) such

that Lu = f and u = 0 on U (resp. u = 0 on Xu+(Σu
1 ) ∪ W u(0)).

For the proof of Proposition 2, we do not use that Tx(Σ
s
1)⊕ L(x) = Tx(X), ∀x ∈ Σ s

1, similarly for Σu
1 .

In order to prove Proposition 2 we will use some preliminary results, here Lemma 9 to Lemma 13.

Lemma 9.

(i) W s(x0) ∩ W u(x0) = {x0}.
(ii) W s(x0) (resp. W u(x0)) is a closed subset of X .

Proof. (i) If x ∈ W s(x0) ∩ W u(x0) then α(x) = ω(x) = {x0}. Hence Γx � X . From (b) it follows that
x = x0.

(ii) If W s(x0) is not closed in X then there exists a sequence {x j} ⊂ W s(x0) converging to some

x ∈ X \ W s(x0). Hence x0 /∈ ω(x). Since ω(x) is invariant under the flow, from (b) it follows that Γ +
x is

not relatively compact. Using the same arguments of the proof of Lemma 6 we obtain the result. �
From Lemma 9(ii) we have:
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Remark 6. X s (resp. Xu) is an open subset of X . Therefore X s+(Σ s) and X s−(Σ s) (resp. Xu+(Σu) and
Xu−(Σu)) are open subsets of X .

Moreover:

Lemma 10. X s (resp. Xu) is convex with respect to the trajectories of L.

Proof. Suppose that X s is not convex with respect to the trajectories of L, then there exist K � X,

a sequence {Γ j} of compact intervals of trajectories of L with endpoints in K and a sequence {x j}
such that

x j ∈ Γ j \ K j, ∀ j ∈ N, (21)

here {K j} is a sequence of compact subsets of X s satisfying the properties (1). From hypothesis (c) of
Theorem 2 it follows that ∃K ′ � R

n such that {x j} ⊂ K ′. Hence there exist x ∈ X and a subsequence
{x jk } ⊂ {x j} such that x jk → x. Without loss of generality, we may suppose that x j → x. Observe that
from (21) we have

x ∈ W s(x0). (22)

We will divide the rest of the proof in two cases.

Case x 
= x0.
In this case take a sequence {Ck} of compact subsets of X satisfying the properties (1). Since

x 
= x0, from (b) it follows that ∀k ∈ N, ∃yk ∈ Γx \ Ck. Using (22) we obtain [x, yk] ∩ K = ∅, then from
Flow Box theorem there exists a neighborhood Vk of [x, yk] such that L|Vk is conjugated to ∂1 and
Vk ∩ K = ∅. Since x j → x it follows that ∃ jk ∈ N with the following property: ∀ j > jk , ∃z j ∈ Γ j \ Ck.

Then (c) fails.

Case x = x0.
From the proof of the previous case it is sufficient to prove that there exist w ∈ W s(x0), with

w 
= x0, and a sequence w j → w such that w j ∈ Γ j , ∀ j ∈ N.

Since K ∩ W s(x0) = ∅ and x0 ∈ W s(x0) there exists a neighborhood V of x0 satisfying K ∩ V = ∅.

From Hartman’s theorem we have there exists an open subset U of X such that x0 ∈ U ⊂ V and
U \ W s(x0) is convex with respect to the trajectories of L.

Consider a neighborhood W of x0 such that W ⊂ U and ∂W is homeomorphic to the sphere
Sn−1. Choose j0 ∈ N such that j > j0 ⇒ x j ∈ W . Since the endpoints of Γ j are contained in K , from
the continuity of Γ j it follows that there exist w j, w ′

j ∈ Γ j ∩ ∂W such that x j ∈ [w j, w ′
j]. From a

compactness argument there exist subsequences {w jk } ⊂ {w j} and {w ′
jk
} ⊂ {w ′

j} such that w jk → w

and w ′
jk

→ w ′ . It is sufficient to prove that

w ∈ W s(x0) or w ′ ∈ W s(x0). (23)

If w /∈ W s(x0) and w ′ /∈ W s(x0) then the sequences {w jk } and {w ′
jk
} are contained in a compact

subset of ∂W \ W s(x0). Hence U \ W s(x0) is not convex with respect to the trajectories of L. �
Using Lemma 10 we obtain:

Remark 7. X s+(Σ s) and X s−(Σ s) (resp. Xu+(Σu) and Xu−(Σu)) are convex with respect to the trajecto-
ries of L.

Let Σ s be a global transversal of L on X s. Observe that W u(x0) and Σ s are immersed submanifold
of X and Σ s is transversal to W u(x0). Then we have:
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Remark 8. If Σ s is a global transversal of L on X s (resp. Σu is a global transversal of L on Xu) then
K := Σ s ∩ W u(x0) (resp. K := Σu ∩ W s(x0)) is a global transversal of L|W u(x0) on W u(x0) \ {x0} (resp.
of L|W s(x0) on W s(x0) \ {x0}), furthermore K � X .

Hartman’s theorem is used to prove:

Lemma 11. If Σ s (resp. Σu) is a global transversal of L on X s (resp. on Xu) then X s−(Σ s) ∪ W s(0) (resp.
Xu+(Σu) ∪ W u(0)) is an open subset of X .

Proof. From Remark 6 is sufficient to prove that ∀x ∈ W s(x0) there exists a neighborhood V x of x
such that V x ⊂ X s−(Σ s) ∪ W s(x0). In the other hand from the continuity of γ it is sufficient to prove
that there exists a neighborhood V 0 of x0 such that

V 0 ⊂ Xs−
(
Σ s) ∪ W s(x0). (24)

Consider the function τ : X s → R given by Remark 4(i) and take K = Σ s ∩ W u(x0). We will divide
the rest of the proof in two steps.

Step 1. There exists an open subset U0 of X such that x0 ∈ U0 and U0 ∩ W u(x0) \ {x0} ⊂ X s−(Σ s).

In fact, since K � X (see Remark 8), there exists an open subset U0 of X such that x0 ∈ U0,
U0 ∩ K = ∅, U0 satisfies the conclusion of Hartman’s theorem and U0 is convex with respect to the
trajectories of L.

It is enough to prove that τ (y) > 0, ∀y ∈ U0 ∩ W u(x0) \ {x0}. From U0 ∩ K = ∅ we have τ (y) 
= 0.

Suppose that τ (y) < 0. Since x0 is a hyperbolic critical point of L and x0 is a global attractor of −L
on W u(x0), there exists an open subset A of W u(x0), with x0 ∈ A ⊂ U0 ∩ W u(x0), such that

t � 0, z ∈ A ⇒ γ (t, z) ∈ A. (25)

Choose t0 < 0 such that γ (t0, y) ∈ A. If τ (y) � t0, from (25) it follows that γ (τ (y), y) ∈ U0. This is
a contradiction, because U0 ∩ K = ∅. Hence t0 < τ(y) < 0. Since U0 is convex with respect to the
trajectories of L, these inequalities imply γ (τ (y), y) ∈ U0 and this is a contradiction with K ∩ U0 = ∅.

Therefore we have τ (y) > 0.

Step 2. There exists a neighborhood V 0 of x0 with the property (24).
In fact, from Hartman’s theorem there exists a subset Σ ′ of X such that Σ ′ ⊂ U0 \ {x0} and Σ ′ is

homeomorphic to Sn−1. Define � = Σ ′ ∩ W u(x0). From Lemma 9(ii) we have � � X . From Step 1 it
follows that there exists a neighborhood V� of � such that

V� ⊂ Xs−
(
Σ s) ∩ U0. (26)

Using (26), Hartman’s theorem and the compactness of � we prove that there exists a neighbor-
hood V 0 of x0 such that V 0 \ W s(x0) ⊂ X s−(Σ s). This inclusion implies the statement of Step 2. �

From these lemmas we will construct global transversal of L on X s with special properties. Denote
[x, y] the interval of trajectory of L with endpoints x and y.

Lemma 12. Let U1 be a neighborhood of {x0}. Then there exists an open set U , with x0 ∈ U ⊂ U1 , satisfying the
conclusion of the Hartman’s theorem with U convex with respect to the trajectories of L, and global transversal
Σ s

1 and Σ s
2 of L on X s such that:

(i) Σ s
1 ∩ W u(x0) ⊂ U ,

(ii) Σ s
1 ⊂ X s+(Σ s

2), and
(iii) x ∈ Σ s

2, y ∈ Γ +
x ∩ U ⇒ [x, y] ⊂ U .
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Proof. From the hypothesis (b) of Theorem 2, Lemma 10 and Duistermaat–Hörmander’s theorem it
follows that there exists a global transversal Σ s

0 of L on X s. From Lemma 11 there exists an open
subset U of X, with x0 ∈ U ⊂ U1 such that: U ⊂ X s−(Σ s

0) ∪ W s(x0), U satisfies the conclusion of
Hartman’s theorem and U is convex with respect to the trajectories of L. Observe that U has the
additional property:

y ∈ Σ s
0, γ (t, y) ∈ U ⇒ t < 0. (27)

We will divide the rest of the proof in four steps.

Step 1. There exist T ∈ R and an open subset W0 of Σ s
0, with K ⊂ W0, such that

y ∈ W0 ⇒ ω−(y) < T < 0 (28)

and

y ∈ W0 ⇒ γ (T , y), γ (T /2, y) ∈ U . (29)

In fact, consider an open subset V of X such that W u(x0) ⊂ V and ω−(y) = −∞, ∀y ∈ V . Take
K = Σ s

0 ∩ W u(x0). For each y ∈ K take t y < 0 such that γ (t, y) ∈ U , ∀t � t y . From compactness
of K there exists T < 0 such that t � T ⇒ γ (t, y) ∈ U , ∀y ∈ K . By continuity of γ it follows that
there exists an open subset V 0 of X such that K ⊂ V 0 ⊂ V and γ (T , y), γ (T /2, y) ∈ U , ∀y ∈ V 0. Set
W0 = V 0 ∩ Σ s

0.

Step 2. There exist a sequence {t j}∞j=1 ⊂ R and a locally finite cover {W j}∞j=1 of Σ s
0 such that

y ∈ W j ⇒ 0 < t j < ω+(y). (30)

In fact, for each y ∈ Σ s
0 choose t y ∈ R and a neighborhood V y of y such that 0 < t y < ω+(y),

∀y ∈ V y . Consider a locally finite refinement {W j}∞j=1 of the cover {V y ∩ Σ s
0}y∈Σ s

0
. For each j � 1

choose V y such that W j ⊂ V y ∩ Σ s
0 and define t j = t y . Hence Step 2 follows.

Consider μ0 ∈ C∞(Σ s
0,R) such that 0 � μ0 � 1, μ0 = 1 in a neighborhood of K and supp(μ0) ⊂

W0. Let {μ j}∞j=1 be a partition of unity subordinated to the cover {W j}∞j=1. Consider the functions
χ1,χ2 ∈ C∞(Σ s

0,R) given by

χ1 = T

2
μ0 + (1 − μ0)

∞∑
j=1

t jμ j and χ2 = Tμ0.

Then we have the following result:

Step 3. For each j = 1,2, the image Σ s
j of the function

σ j :Σ s
0 → Xs

y �→ γ
(
χ j(y), y

)
is a global transversal of L on X s .

In fact, from (28) it follows that ω−(y) < χ2(y) < ω+(y), y ∈ Σ s
0. In the same way, from (28) and

(30) we have ω−(y) < χ1(y) < ω+(y), y ∈ Σ s
0. From Lemma 8 it follows that Σ s

1 and Σ s
2 are global

transversal of L on X s.

Step 4. The statements (i), (ii) and (iii) hold, if Σ s
1 and Σ s

2 are given as in Step 3.
In fact, to prove (i), observe that for each x ∈ Σ s

1 ∩ W u(x0), ∃y ∈ K such that x = γ (χ1(y), y) be-
cause Σ s

0 is a global transversal of L on X s and W u(x0) is invariant under the flow. Since μ0(y) = 1
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and from (29) it follows that x ∈ U . So proof of (i) is concluded. Observe that (ii) follows from
χ2 < χ1.

For (iii), first we observe that for each x ∈ Σ s
2 and y ∈ Γ +

x ∩ U , we can take t � 0 such that
γ (t, x) = y. Since U is convex with respect to the trajectories of L, it is sufficient to prove that x ∈ U .

Choose z ∈ Σ s
0 such that γ (χ2(z), z) = x. We will prove that z ∈ W0. If z /∈ W0 then χ2(z) = 0.

But y = γ (t + χ2(z), z) we have y = γ (t, z). Therefore from (27) it follows that t < 0. This is a
contradiction. Then we have z ∈ W0.

Since T � χ2(z) � t + χ2(z) and U is convex with respect to the trajectories L, from (29) and
y ∈ U we have x ∈ U . �

Also we have:

Lemma 13. Let U be the neighborhood of x0 and Σ s
2 the global transversal of L on X s given by Lemma 12.

There exist global transversal Σu
1 and Σu

2 of L on Xu such that:

(i) Σu
1 ∩ W s(x0) ⊂ U ,

(ii) Σu
2 ⊂ Xu+(Σu

1 ), and
(iii) Σu

1 = Σ s
1 on �U .

Proof. In the same way as the proof of Lemma 12 we have that there exists a global transversal Σu
0 of

L on Xu such that K := Σu
0 ∩ W s(x0) ⊂ U . Consider the function τ : X s → R given by γ (τ (y), y) ∈ Σ s

1.

We will divide the rest of the proof in three steps.

Step 1. There exists an open subset W0 of Σu
0 such that K ⊂ W0 ⊂ U and

y ∈ W0 ⇒ γ
(
τ (y), y

) ∈ U . (31)

In fact, consider a subset Σ ′ of U \ {0} homeomorphic to Sn−1. Here the homeomorphism is
given by Hartman’s theorem. Take � = Σ ′ ∩ W u(x0). Using Lemma 12(i) it follows that there exists a
neighborhood V� of � such that

y ∈ V ⇒ γ
(
τ (y), y

) ∈ U . (32)

Moreover, using the compactness of � and Hartman’s theorem we prove that there exists a neigh-
borhood V 0 of x0 with the following property:

y ∈ V 0 \ W s(0) ⇒ ∃t ∈ R such that γ (t, y) ∈ V . (33)

From (32), (33) and from the continuity of γ Step 1 follows.
Consider μ ∈ C∞(Σu

0 ,R) such that 0 � μ � 1, μ = 1 in a neighborhood of K and supp(μ) ⊂ W0.
Since Σu

0 is an immersed submanifold of X, we have τ |Σu
0 \K ∈ C∞(Σu

0 \ K ). Let χ1 :Σu
0 → Xu be the

function given by χ1 = (1 − μ)τ |Σu
0 \K . Then we have that χ1 ∈ C∞(Σu

0 ,R).

Step 2. The image Σu
1 of the function

σ1 :Σu
0 → Xu

y �→ γ
(
χ1(y), y

)
is a global transversal of L on Xu which satisfies (i).

In fact, from Lemma 8, Σu
1 is a global transversal of L on Xu . Since μ = 1 on K we have Σu

1 ∩
W s(0) = K , hence Σu

1 ∩ W s(0) ⊂ U . Then Step 2 follows.
The existence of Σu

2 with the property is proved in the same way as in the proof of Lemma 12(iii).
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Step 3. The statement (iii) holds.
In fact, we will prove that

Σu
1 ∩ �U ⊂ Σ s

1 (34)

and

Σ s
1 ∩ �U ⊂ Σu

1 . (35)

To prove (34), take x ∈ Σu
1 ∩ �U and choose y ∈ Σu

0 such that γ (χ1(y), y) = x. If y ∈ W0 then
from (31) and |χ1(y)| � |τ (y)| result x ∈ U . This is a contradiction. From y /∈ W0 it follows that
χ1(y) = τ (y). Hence x ∈ Σ s

1 and the proof of (34) is finished. In the same way we prove (35). �
Proof of Proposition 2. Proof of (i). Use Lemma 12(ii) and Lemma 13(ii), respectively.

Proof of (ii). From Lemma 12(i) it follows that W u(x0) ⊂ X s+(Σ s
1) ∪ U , and Lemma 13(iii) implies

Xu+(Σu
1 ) ⊂ X s+(Σ s

1) ∪ U .

Proof of (iii). Use the Method of Characteristics, Lemma 12(iii) (resp. Lemma 13(ii)) and
Lemma 11. �
3.3.3. Proof of Case B

Let U1 be a neighborhood of x0 such that f = 0 on U1. With the notation of Proposition 2, we
will prove Case B in two steps.

Step 1. ∀ f ∈ C∞(X) such that f = 0 on U , ∃u1 ∈ C∞(X) such that P u1 = f on U ∪ X s+(Σ s
1).

In fact, from Proposition 2(i) and Lemma 10 choose θ1 ∈ C∞(X) such that

θ1 = 0 on Xs−
(
Σ s

2

) ∪ W s(x0) and θ1 = 1 on Xs+
(
Σ s

1

)
. (36)

By the Method of Characteristics and Lemma 11, ∃ψ1C∞(X) such that Lψ1 = cθ1. From Proposi-
tion 2(iii), ∃φ1C∞(X) such that Lφ1 = θ1 f eψ1 and Lφ1 = θ1 f eψ1 and

φ1 = 0 on U . (37)

Hence

P
(
φ1e−ψ1

) = θ1 f + ce−ψ1φ1(1 − θ1).

Since f = 0 on U , from (36) and (37) it follows that on X s+(Σ s
1) ∪ U we have

φ1(1 − θ1) = 0 and θ1 f = f .

Therefore, by taking u1 = φ1e−ψ1 Step 1 follows.

Step 2. ∀ f ∈ C∞(X) such that f = 0 on U ∪ X s+(Σ s
1), ∃u ∈ C∞(X) such that P u = f on X .

In fact, from Proposition 2(i) and Lemma 11, choose θ2 ∈ C∞(X) such that

θ2 = 0 on Xu+
(
Σu

2

) ∪ W u(x0) and θ2 = 1 on Xu−
(
Σu

1

)
.

Therefore, ∃ψ2 ∈ C∞(X) such that Lψ2 = cθ2. Since f = 0 on U ∪ X s+(Σ s
1), from Proposition 2(ii)–(iii)

it follows that ∃φ2 ∈ C∞(X) such that Lφ2 = f eψ2 and φ2 = 0 on U ∪ X s+(Σ s
1).

Hence

P
(
φ2e−ψ2

) = f + ce−ψ2φ2(1 − θ2),
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and

φ2(1 − θ2) = 0 on Xs+
(
Σu

1

) ∪ U ∪ Xu−
(
Σu

1

)
.

Therefore, taking u = φ2e−ψ2 Step 2 follows.

Remark 9. The hypotheses (NRC 2) and (c) are necessary for global solvability of P on C∞(X) from
Lemma 5; and Remark 2, Theorem 4 of [9], respectively.

When L is a linear vector field on R
n , it is easy to see that (b) and (c) of Theorem 1 are verified.

In this case, the hypothesis of linearization (NRC 1) is dropped and we have that P = L + c is globally
solvable on C∞(Rn) if, and only if, (NRC 2) holds. In particular, the condition (NRC 1) is not necessary
for global solvability.

Now, we present a family of operators for which the condition (b) is necessary for global solvabil-
ity. Take p(x) = ∑n

j=0 a j x j , be a real polynomial. Let L be the vector field on R
2 given by

L = x1(1 − x1)∂1 + x2 g(x1, x2)∂2, (x1, x2) ∈ R
2,

where g ∈ C∞(R2). Notice that (0,0), (1,0) are critical points and (0,1) × {0} is a relatively compact
orbit of L. Take the operator P = L + c with c ∈ C∞(R2) satisfying

c(x1,0) = p(x1), x1 ∈ R.

Under these hypotheses we have (see [16, p. 59]): If

a0 /∈ Z and a j /∈ {1,2, . . .}, j = 1,2, . . . ,n,

then ∃u ∈ E ′ ∈ (R2) such that t P u = 0 and supp(u) = [0,1] × {0}. Hence P is not globally solvable on
C∞(R2).

References

[1] P.L. Dattori da Siva, Resolubilidade Global para Campos Reais, Master Dissertation, DM, UFSCar, 1999.
[2] J. Duistermaat, L. Hörmander, Fourier integral operators II, Acta Math. 128 (1972) 183–269.
[3] V. Guillemin, D. Schaeffer, On a certain class of Fuchsian partial differential equations, Duke Math. J. 44 (1977) 157–199.
[4] P. Hartman, Ordinary Differential Equations, John Wiley and Sons, 1964.
[5] C. Harvey, On domination estimates and global existence, J. Math. Mech. 16 (7) (1967) 675–702.
[6] J. Hounie, A note on global solvability of vector fields, Proc. Amer. Math. Soc. 94 (1) (1985) 61–64.
[7] L. Hörmander, The Analysis of Linear Partial Differential Equations, vol. 1, Springer-Verlag, 1983.
[8] K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. 140 (1994) 723–732.
[9] B. Malgrange, Existence et approximation des solutions des équations aus dérivées partielles et des équations de convolu-

tion, Ann. Inst. Fourier (Grenoble) 6 (1955–1956) 271–355.
[10] E. Nelson, Topics in Dynamics I: Flows, Princeton University Press, Princeton, 1969.
[11] J.R. dos Santos Filho, Propagation of singularities through radial points, Comm. Partial Differential Equations 6 (1981) 399–

435.
[12] J.R. dos Santos Filho, Injective mappings and solvable vector fields of Euclidean spaces, Topology Appl. 136 (2004) 261–274.
[13] P. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. 100 (1974)

386–400.
[14] H. Seifert, Closed integral curves in 3-spaces and isotopic two-dimensional deformation, Proc. Amer. Math. Soc. 1 (1950)

287–302.
[15] S. Sternberg, The structure of local homeomorphisms II, Amer. J. Math. 80 (1958) 623–632.
[16] M.F. da Silva, Resolubilidade Global para Operadores Diferenciais Reais de Ordem Um, PhD thesis in Mathematics, UFSCar,

DM, 2006.
[17] F. Treves, Locally Convex Spaces and Linear Partial Differential Equations, Grundlehren Math. Wiss., vol. 146, Springer-

Verlag, 1967.


	Global solvability for first order real linear partial differential operators
	Introduction
	L-convexity for supports, L-convexity for singular supports and convexity with respect to the trajectories
	Proof of Proposition 1 

	Proof of Theorem 1
	Proof of Lemma 4
	Preliminaries for Theorem 2
	Proof of Theorem 2
	Proof of Case A
	Preliminaries for Case B
	Proof of Case B


	References


