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We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the 
IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex 
function satisfying the wave equation in flat (2 + 1)-dimensional space–time. As examples, electric and 
magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. 
Euclidean solutions are also presented.
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1. Introduction

The first systematic classification of metrics admitting super-
covariantly constant spinors in Einstein–Maxwell theory was per-
formed many years ago by Tod in [1]. The analysis of Tod was to 
some extent motivated by the results of Gibbons and Hull [2]. The 
metrics found in [1] are bosonic solutions of minimal N = 2 super-
gravity theory admitting half of the supersymmetry. In the context 
of the supergravity theory, the Killing spinor equation represents 
the vanishing of the gravitini supersymmetry transformation in a 
bosonic background. The metrics with a time-like Killing vector are 
the known Israel–Wilson–Perjés (IWP) metrics [3] with the static 
limit given by the Majumdar–Papapetrou (MP) metrics [4]. The 
second class of metrics with a null-Killing vector is given by plane-
wave space–times [5]. In recent years, a considerable amount of 
research activities has been devoted to the understanding and the 
systematic classification of supersymmetric solutions in ungauged, 
gauged and fake (de Sitter) supergravity theories in various di-
mensions (see for example [6]). Fake de Sitter supergravity can be 
obtained by analytic continuation of anti de Sitter supergravity. We 
also note that de Sitter supergravities can also be obtained as gen-
uine low energy effective theories of the so called ∗ theories of 
[7]. For instance, a non-linear Kaluza Klein reduction arising of IIB∗
string theory and M∗ theory produce four and five-dimensional de 
Sitter supergravities with vector multiplets. However these theo-
ries have actions where some of the gauge fields kinetic terms 
have the non-conventional sign [8]. Black hole solutions with anti 
or phantom Maxwell fields1 have been studied and analyzed in [9]. 
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Black hole solutions with phantom fields and their relations to 
astrophysics and dark matter were also considered by many au-
thors (see [10] and references therein). However, to our knowledge 
phantom solutions with Killing spinors have not yet been dis-
cussed.

In our present work, we shall study metrics admitting Killing 
spinors in gravitational theories with anti-Maxwell fields. We shall 
only focus on the simplest theory of four-dimensional Einstein 
gravity coupled to a Maxwell field as a first step for a future 
study of supergravity theories with many anti-Maxwell and scalar 
fields in various space–time dimensions. We will consider both the 
Lorentzian and the Euclidean theory. The action of the theory is 
given by

S =
∫

d4x
√−g

(
R + κ2 Fμν F μν

)
, (1.1)

where Fμν is the U (1) gauge field strength. We have introduced a 
parameter κ which for κ = i, corresponds to the standard Einstein–
Maxwell theory and for κ = 1 corresponds to the Einstein–anti-
Maxwell theory, i.e., where the Maxwell field kinetic term comes 
with the wrong sign. The signature of the metric is taken to be 
(−, +, +, +). For κ = 1, this action can be thought of as the 
bosonic part of a fake minimal N = 2, D = 4 supergravity. The Ein-
stein and gauge field equations derived from (1.1) are

Rμν = −κ2
(

2Fμρ Fν
ρ − 1

2
gμν Fαβ F αβ

)
,

d ∗ F = 0 . (1.2)

Here F is the two form representing the gauge field strength Fμν . 
The Killing spinor equation is given by(

∂μ + 1
ωμ,ν1ν2γ

ν1ν2 + κ
Fν1ν2γ

ν1ν2γμ

)
ε = 0. (1.3)
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where ε is a non-zero Dirac Killing spinor and ωμ,ν1ν2 are the spin 
connections components. For κ = i, the Killing spinor equation is 
simply the vanishing of the gravitini supersymmetry transforma-
tion in a bosonic background of minimal N = 2, D = 4 supergrav-
ity.

We note that if one interchanges F by its Hodge dual ∗ F in 
the Lorentzian Einstein–Maxwell equations, this simply maps so-
lutions to solutions as Lorentzian Maxwell stress energy tensor is 
unchanged by this transformation. In the Euclidean case, however, 
this is no longer the case and the stress energy tensor picks up a 
minus sign. Therefore with Euclidean signatures, solutions for the-
ory with the wrong sign of the coupling of Maxwell field are those 
for the theory with the “correct” sign of the coupling but with F
and ∗ F interchanged [11]. This can also be seen from the inspec-
tion of the Killing spinor equations [12].

We shall use the spinorial geometry method which has proved 
to be a very powerful method in the classification of geomet-
ric backgrounds admitting various fractions of supersymmetry in 
supergravity theories. The isomorphism between Clifford algebras 
and exterior algebras allows one to express the Killing spinor in 
terms of differential forms. The canonical forms of the spinor are 
basically representatives up to gauge transformations which pre-
serve the supercovariant connection (the reader can refer to [13]
for spin geometry as well as supersymmetric black holes classifi-
cations).

Following [13], Dirac spinors in four space–time dimensions can 
be written as complexified forms on R2

ε = λ1 + μ1e1 + μ2e2 + σ e12, (1.4)

where e1, e2 are 1-forms on R2 and e12 = e1 ∧ e2. The functions 
λ, μi and σ are complex functions. The action of γ -matrices on 
these forms is given by

γ0 = −e2 ∧ +ie2 ,

γ1 = e1 ∧ +ie1 ,

γ2 = e2 ∧ +ie2 ,

γ3 = i(e1 ∧ −ie1) . (1.5)

and γ5 is defined by γ5 = iγ0123 and satisfies

γ51 = 1, γ5e12 = e12, γ5ei = −ei, i = 1,2. (1.6)

Following [14] we define

γ+ = 1√
2
(γ2 + γ0) = √

2ie2 ,

γ− = 1√
2
(γ2 − γ0) = √

2e2∧,

γ1 = 1√
2
(γ1 + iγ3) = √

2ie1 ,

γ1̄ = 1√
2
(γ1 − iγ3) = √

2e1 ∧ . (1.7)

In this basis the non-zero metric components are given by 
g+− = 1, g11̄ = 1.

As has been demonstrated in [14], using Spin(3, 1) gauge trans-
formations, one finds the three canonical orbits:

ε = 1 + μ2e2, ε = 1 + μ1e1, ε = e2, (1.8)

where μ1 and μ2 are complex functions. Note that the first orbit 
represents the Killing spinor for the IWP metric which has a time-
like Killing vector. The other two orbits correspond to plane-waves 
with null Killing vector. In this letter we are interested in finding 
phantom solutions for the Killing spinor ε = 1 + μe2. Similarly we 
consider the analogue solutions in the Euclidean case.
2. Phantom IWP solutions

For the orbit ε = 1 + μe2, the integrability conditions of the 
Killing spinor equation are consistent with the equations of mo-
tion. Any solution of the Killing spinor equation in which the gauge 
field satisfies the Bianchi identity and Maxwell equation is auto-
matically a solution of Einstein equations of motion.

Our solution can be written in the form

ds2
4 = 2e+e− + 2e1e1̄. (2.1)

Plugging ε = 1 + μe2 in (1.3) and using (1.7), the Killing spinor 
equations amounts to a set of sixteen algebraic and differential 
equations:

−(ω+,+− + ω+,11̄) − √
2κμ(F+− + F11̄) = 0,

ω+,−1 = 0,

∂+μ + μ

2
(ω+,+− − ω+,11̄) = 0,

ω+,+1 + κ
√

2μF+1 = 0,

ω−,+− + ω−,11̄ = 0,

μω−,−1 + κ
√

2F−1 = 0,

∂−μ + μ

2
(ω−,+− − ω−,11̄) + κ√

2
(F+− − F11̄) = 0,

ω−,+1 = 0,

ω1,+− + ω1,11̄ = 0,

ω1,−1 = 0,

∂1μ + μ

2
(ω1,+− − ω1,11) = 0,

ω1,+1 = 0,

−1

2
(ω1,+− + ω1,11) + κ

√
2μF−1 = 0,

μω1,−1 + κ√
2
(F+− − F11) = 0,

∂1̄μ + μ

2
(ω1̄,+− − ω1̄,11̄) + κ

√
2F+1̄ = 0,

ω1̄,+1 − κ√
2
μ(F+− + F11̄) = 0. (2.2)

The analysis of this system of equations gives the following re-
lations for the gauge field strength components

F+− = − 1√
2
∂− (κμ̄ + κ̄μ) ,

F11 = − 1√
2
∂− (κμ̄ − κ̄μ) ,

F−1 = − κ√
2|μ|2 ∂1μ,

F+1 = − κ√
2
∂1μ̄, (2.3)

together with the relation(
∂+ + κ2|μ|2∂−

)
μ = 0. (2.4)

We also obtain for the spin connections
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ω+− = κ2∂−|μ|2e+ − ∂1 logμe1 − ∂1̄ log μ̄e1̄,

ω11 = κ2|μ|2∂− log
μ̄

μ
e+ + ∂1 logμe1 − ∂1̄ log μ̄e1̄,

ω+1 = −κ2μ
(
∂−μ̄e1̄ − ∂1μ̄e+)

,

ω−1 = 1

μ

(
κ2

|μ|2 ∂1μe− + ∂−μe1̄
)

. (2.5)

The equations (2.4) and (2.5) can be used to demonstrate that the 
vector V ,

V = |μ|2e+ + κ2e− = |μ|2∂− + κ2∂+ (2.6)

is a Killing vector which is space-like for κ2 = 1 and time-like for 
κ2 = −1.

Moreover, the vanishing of the torsion, i.e.,

dea + ωa
b ∧ eb = 0, (2.7)

implies the following relations

de1 = −d (log μ̄) ∧ e1, (2.8)

and

de+ =
(

e+ − κ2

|μ|2 e−
)

∧
(
∂1 logμe1 + ∂1̄ log μ̄e1̄

)
+ ∂− log

μ

μ̄
e1 ∧ e1̄, (2.9)

and

de− = −κ2∂−
(
|μ|2

)
e+ ∧ e− +

(
∂1 logμe1 + ∂1̄ log μ̄e1̄

)
∧ e−

− κ2 (μ∂−μ̄ − μ̄∂−μ)e1 ∧ e1̄

− κ2e+ ∧
(
μ̄∂1̄μe1̄ + μ∂1μ̄e1

)
. (2.10)

Using these relations, it can be shown that 
(|μ|2e+ − κ2e−)

satis-
fies

d
(
|μ|2e+ − κ2e−)

= 0 (2.11)

and thus is a total differential.2

The relations (2.6), (2.8) and (2.11) enable us to introduce the 
real coordinates (t, x, y, z), such that

e− = − 1√
2

(
κ2dz − |μ|2 (dt + φ)

)
,

e+ = 1√
2|μ|2

(
dz + κ2|μ|2 (dt + φ)

)
,

e1 = 1

μ̄
√

2
(dx + idy) . (2.12)

Here φ is a one form independent of the coordinate t and 
φt = 0. Note that (2.4) implies that μ is independent of t . The 
metric is therefore given by

ds2
4 = 2e+e− + 2e1e1̄ = κ2|μ|2 (dt + φ)2 + 1

|μ|2 ds2
3 (2.13)

where ds2
3 = (−κ2dz2 + dx2 + dy2

)
. Moreover, substituting the re-

lations (2.12) into (2.9) or (2.10), one can derive the relation

2 Note that (|μ|2e+ + κ2e−)
and | (μ|2e+ − κ2e−)

are related to Hermitian inner 
products by

√
2
(
|μ|2e+ − e−)

= 〈γ0ε,γaε〉; √
2
(
|μ|2e+ + e−)

= 〈γ0ε,γ5γaε〉.

d

w

∂

w

F

T

∗
U

∗

T

∇

F
in
th
e
th

(
w
n

(

2

so

μ

w
th

d

φ = iκ2

|μ|2 ∗3 d log
μ̄

μ
, (2.14)

here ∗3 is the Hodge dual with metric ds2
3.

Using (2.3), (2.12) and

+ = |μ|2√
2

∂z, ∂− = − κ2

√
2
∂z, ∂1 = μ̄√

2

(
∂x − i∂y

)
, (2.15)

e obtain for the gauge field strength two form

= 1

2
d (κ̄μ̄ + κμ) ∧ (dt + φ) − i

2|μ|2 ∗3 d (κ̄μ − κμ̄) . (2.16)

he dual gauge field strength two form is given by

F = i

2
d (κ̄μ̄ − κμ) ∧ (dt + φ) − 1

2|μ|2 ∗ d (κ̄μ + κμ̄) .

sing (2.14), F and ∗ F can be rewritten in the form

F = 1

2
d

[(
μ̄

κ
+ μ

κ̄

)
(dt + φ)

]
− i

2
∗ d

(
κ

μ
− κ̄

μ̄

)
,

F = i

2
d

[(
μ

κ
− μ̄

κ̄

)
(dt + φ)

]
− 1

2
∗ d

(
κ

μ
+ κ̄

μ̄

)
. (2.17)

hen Bianchi identity together with Maxwell equation imply that

2
(

κ

μ
− κ̄

μ̄

)
= ∇2

(
κ

μ
+ κ̄

μ̄

)
= 0,

∇2 =
(
∂2

x + ∂2
y − κ2∂2

z

)
. (2.18)

or κ = i, the solution obtained is the IWP metric [3] where the 
verse of μ is a complex harmonic function. For κ = 1, we obtain 
e new solutions in which the inverse of μ satisfies the wave 

quation in flat (2 + 1)-space–time. For κ = 1, μ = μ̄, we obtain 
e analogue of the electric MP solution [4]

ds2 = μ2dt2 + 1

μ2

(
−dz2 + dx2 + dy2

)
,

A = μdt,

∂2
x + ∂2

y − κ2∂2
z

)(
1

μ

)
= 0, (2.19)

here A is the gauge field one form. For μ = iα, we get the mag-
etic solution

ds2 = α2dt2 + 1

α2

(
−dz2 + dx2 + dy2

)
F = − ∗3 d

(
1

α

)
,

∂2
x + ∂2

y − κ2∂2
z

)(
1

α

)
= 0. (2.20)

.1. Charged Kasner universe

As special interesting phantom metric examples, we take as a 
lution to the wave equation in flat (2 + 1)-space–time,

= q

z
(2.21)

ith constant q. The metric and the gauge field strength then take 
e form

s2 = q2

z2
dt2 − z2

q2
dz2 + z2

q2

(
dx2 + dy2

)
,

F = dA = − q

z2
dz ∧ dt. (2.22)
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Introducing the new coordinates

τ = 1

2q
z2, x1 =

√
2

q
x, x2 =

√
2

q
y, x3 =

√
q

2
t, (2.23)

then the metric takes the Kasner form [15]

ds2 = −dτ 2 +
3∑

j=1

τ 2p j

(
dx j

)2
,

F = − 1

2τ 3/2
dτ ∧ dx3, (2.24)

with the Kasner exponents

p1 = p2 = 1

2
, p3 = −1

2
. (2.25)

Note that here the Kasner exponents satisfy the conditions

3∑
j=1

p j = 1

2
,

3∑
j=1

p2
j = 3

4
, (2.26)

while in vacuum they satisfy

3∑
j=1

p j =
3∑

j=1

p2
j = 1. (2.27)

For μ = iα = i
pz , we get the solution

ds2 =
(

1

pz

)2

dt2 + (pz)2
(
−dz2 + dx2 + dy2

)
,

F = pdx ∧ dy. (2.28)

This metric takes the Kasner form

ds2 = −dτ 2 + τ
(

dx1
)2 + τ

(
dx2

)2 + τ−2
(

dx3
)2

,

F = dx1 ∧ dx2, (2.29)

where we have introduced the coordinates

τ = 1

2
pz2, x1 = √

2px,

x2 = √
2p y, x3 =

√
1

2p
t. (2.30)

3. Euclidean solutions

As already mentioned, one does not get new exotic solutions 
with phantom Euclidean Maxwell fields. The metric solution is in-
dependent of the sign of the coupling of the Maxwell field. For 
the sake of completeness, we briefly present the solutions for both 
couplings in a unified fashion. We take the metric to be of the 
form [12]

ds2 = 2e1e1̄ + 2e2e2̄. (3.1)

Dirac spinor is taken to be a linear combination of the complexi-
fied space of forms on R2, with basis {1, e1, e2, e12 = e1 ∧ e2}. In 
this basis, the action of the Dirac matrices γm on the Dirac spinors 
is given by

γm = √
2iem , γm̄ = √

2em∧ (3.2)

for m = 1, 2. We also define γ5 = γ11̄22̄. Euclidean version of the 
IWP metric were found in [12] for the case κ = i, and orbit
ε = λ1 + σ e1, (3.3)

with real λ and σ . Keeping κ as a parameter, then the analysis of 
the Killing spinor equation for the orbit (3.3) gives the geometric 
conditions

ω11̄ = ∂2 log
λ

σ
e2 − ∂1 logσλe1 − ∂2̄ log

λ

σ
e2̄ + ∂1̄ logσλe1̄ ,

ω22̄ = ∂2 logλσe2 − ∂2̄ logλσe2̄ + ∂1 log
σ

λ
e1 − ∂1̄ log

σ

λ
e1̄,

ω21 = −2κ2∂2 logλe1 − 2∂1 logλe2̄,

ω2̄1 = −2κ2∂2̄ logσe1 − 2∂1 logσe2, (3.4)

together with the condition(
∂1 + κ2∂1̄

)
σ =

(
∂1 + κ2∂1̄

)
λ = 0. (3.5)

For the gauge field strength we get

F22̄ = 1√
2λσ

[
∂1

(
λ2

κ
+ σ 2

κ̄

)
e1 + ∂2σ

2

κ̄
e2 + ∂2̄λ

2

κ
e2̄

]
∧ e1̄

+ 1√
2λσ

[
∂2λ

2

κ̄
e2 + ∂2̄σ

2

κ
e2̄

]
∧ e1

+ 1√
2λσ

∂1

(
λ2

κ
− σ 2

κ̄

)
e2 ∧ e2̄. (3.6)

For torsion free metric, the conditions (3.4) and (3.5) imply that 
λσ

(
e1 − κ2e1̄

)
is a total differential and that κλσ

(
e1 + κ2e1̄

)
is a Killing vector. This enables us to introduce the coordinates 
(τ , x, y, z) and write

e1 = 1√
2

(
−iκ

dx

λσ
+ 1

κ
λσ (dτ +φ)

)
, e2 = 1√

2λσ
(dy + idz) ,

and the solution is given by

ds2 = (λσ )2 (dτ + φ)2 + 1

(λσ )2

(
dx2 + dy2 + dz2

)
,

dφ = 2κ2

(λσ )2
∗ d log

λ

σ
,

F = 1

2
d
[(

κ2σ 2 + λ2
)

(dτ + φ)
]
+ 1

2
∗ d

(
1

λ2
− κ2

σ 2

)
,

F̃ = −1

2
d
[(

λ2 − κ2σ 2
)

(dτ + φ)
]
+ 1

2
∗ d

(
1

λ2
+ κ2

σ 2

)
, (3.7)

with λ and σ independent of τ . The Bianchi identity and Maxwell 
equation imply the equations

∇2
(

1

λ2
− κ2

σ 2

)
= ∇2

(
1

λ2
+ κ2

σ 2

)
= 0, (3.8)

where ∇2 = ∂2
x + ∂2

y + ∂2
z .

In summary, the method of spinorial geometry is used to find 
IWP analogue solutions in four-dimensional Einstein–anti-Maxwell 
theory admitting Killing spinors. The analysis of the Killing spinor 
equation reveals the existence of a Killing vector and a total dif-
ferential which switch roles when one changes the coupling of 
the Maxwell field. The phantom solutions found admit a space-
like Killing vector and constitute the time-dependent analogues of 
the IWP metrics of the canonical Einstein–Maxwell theory. The so-
lutions are expressed in terms of a complex function satisfying the 
wave equation in a flat (2 + 1)-space–time. As examples, electric 
and magnetic Kasner spaces can be constructed by specializing to 
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solutions that depend only on the time coordinate. The Kasner ex-
ponent sum rules of the vacuum Kasner solution get modified in 
the presence of a phantom U (1) gauge field. Phantom Euclidean 
solutions are also presented. In the Euclidean case, the phantom 
metric is the same as in the ordinary Einstein–Maxwell theory but 
with the roles of F and ∗ F interchanged. Our analysis can be ex-
tended to theories with anti-scalars and anti-vector multiplets in 
ungauged and gauged supergravity models in various dimensions. 
Work in this direction is in progress.
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