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Abstract: Models of neutrino mass which attempt to describe the observed lepton mixing

pattern are typically based on discrete family symmetries with a non-Abelian and one or

more Abelian factors. The latter so-called shaping symmetries are imposed in order to

yield a realistic phenomenology by forbidding unwanted operators. Here we propose a

supersymmetric model of neutrino flavor which is based on the group T7 and does not

require extra ZN or U(1) factors in the Yukawa sector, which makes it the smallest realistic

family symmetry that has been considered so far. At leading order, the model predicts

tribimaximal mixing which arises completely accidentally from a combination of the T7

Clebsch-Gordan coefficients and suitable flavon alignments. Next-to-leading order (NLO)

operators break the simple tribimaximal structure and render the model compatible with

the recent results of the Daya Bay and Reno collaborations which have measured a reactor

angle of around 9◦. Problematic NLO deviations of the other two mixing angles can be

controlled in an ultraviolet completion of the model. The vacuum alignment mechanism

that we use necessitates the introduction of a hidden flavon sector that transforms under

a Z6 symmetry, thereby spoiling the minimality of our model whose flavor symmetry is

then T7 × Z6.
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1 Introduction

The triplication of chiral families remains one of the biggest mysteries in particle physics.

A clue towards unraveling the principle behind the fact that quarks and leptons come in

three copies is provided by the observation of a remarkable lepton mixing pattern: contrary

to the quark sector, the mixing of the leptons is described by two large and one small angle.

Until recently, the results of neutrino oscillation experiments were well compatible with a

PMNS matrix of the intriguingly simple structure [1–3]

UPMNS ≈




2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2


 . (1.1)

This so-called tribimaximal mixing suggests an intimate connection of the three genera-

tions of leptons, which can be realized in the framework of non-Abelian discrete family

symmetries. Imposing such a horizontal symmetry G allows to unify different generations

into a multiplet of the given non-Abelian group. With three families, the physically inter-

esting groups should have a triplet representation, limiting possible choices to subgroups

of U(3). Many of these have been successfully applied to construct models of tribimaximal

lepton mixing, see for instance [4–6] and references therein.
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In general, family symmetry models can be classified according to the origin of the

symmetry of the neutrino mass matrix. We will assume that neutrinos are Majorana

particles; then their mass matrix is always symmetric under a Klein symmetry Z2 × Z2.

Working in a basis where the charged leptons are diagonal,1 the explicit form of the Klein

symmetry expressed in terms of 3 × 3 matrices is dictated by the PMNS mixing matrix

and can be determined as

U∗PMNS




(−1)p 0 0

0 (−1)q 0

0 0 (−1)p+q


UTPMNS . (1.2)

Here p = 0, 1 and q = 0, 1, yielding a symmetry group of four elements. This neutrino flavor

symmetry can arise as a residual symmetry of the underlying family symmetry G, in other

words, the four elements of eq. (1.2) can also be elements of the imposed family symmetry.

Models of this type are called direct models [14]. In indirect models, on the other hand, the

above Klein symmetry is not a subgroup of G. Models of this class are typically based on

the type I seesaw mechanism [15–18] with the assumption of sequential dominance [19–21],

i.e. a hierarchy among the three terms arising from three right-handed neutrinos. Here, the

main role of the family symmetry consists in explaining special vacuum configurations of

the flavon fields that break the family symmetry [14]. In addition to these pure classes of

models there are semi-direct models in which one of the Z2 factors of the Klein symmetry

arises as a residual symmetry of G, while the other factor arises accidentally. In fact, the

famous Altarelli-Feruglio model based on A4 [22, 23] belongs to the semi-direct class as the

tribimaximal µ-τ symmetry is not part of A4.

Hitherto, regardless of the type of model, the non-Abelian family symmetry has always

been augmented by extra Abelian factors such as ZN and U(1) in order to yield realistic

phenomenology. These shaping symmetries were crucial for controlling the coupling of the

Standard Model neutral flavon fields to the leptons. In [22, 23], for instance, the neutrino

and charged lepton sectors are separated by means of a Z3 shaping symmetry. In that

sense, one should speak more precisely of the Altarelli-Feruglio A4 × Z3 model, and the

family symmetry G is thus a group of order 36, rather than 12.

Mindful of this subtlety of defining the full family symmetry of a model, a systematic

scan over 76 different groups has been performed in [24] with the purpose of studying

whether or not there is an inherent connection between A4 and tribimaximal mixing. The

results of the scan proved that there are indeed several, even more minimal, groups which

are capable of describing tribimaximal mixing (assuming the imposed simple alignment of

the flavon vevs can be justified). The smallest such group2 was identified to be T7, a group

1This classification can also be applied to GUT models where the charged lepton mass matrix is typically

only approximately diagonal. In such a setup, the total PMNS mixing matrix will involve charged lepton

corrections that have to be taken into account separately, see e.g. [7–11], leading to characteristic mixing

sum rules [12, 13].
2As we will see in section 4, introducing a dynamical mechanism for vacuum alignment will necessitate

to augment the family symmetry by an extra Z6 factor. As such, our symmetry group T7×Z6 will be larger

than A4 × Z3 that was used in [22, 23]. Note, however, that the Z3 factor in [22, 23] is needed not only for

the flavon alignment, but also to control the coupling of the flavon fields to the neutrino or charged lepton

sector, respectively, which in our case can be achieved by T7 alone.

– 2 –
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of order 21 which is sometimes also called the Frobenius group Z7 oZ3 [25–27]. Note that

this non-Abelian symmetry does not require any extra shaping symmetry. It is furthermore

interesting to point out that T7 has no Z2 subgroups, and hence the Klein symmetry of the

neutrino mass matrix cannot be part of this family symmetry. As such, a corresponding T7

model would be neither direct nor semi-direct, but rather of indirect type. Not necessarily

requiring the seesaw mechanism, it would — to the best of our knowledge — be the first

indirect model which is not based on the assumption of sequential dominance and the

quadratic appearance of flavon fields in the effective neutrino mass term.

It is the purpose of this article to present the details of a complete T7 model of leptons

which yields tribimaximal mixing at leading order, including a discussion of the vacuum

alignment. We put particular emphasis on explaining how the Klein symmetry arises

completely accidentally from a combination of the T7 Clebsch-Gordan (CG) coefficients

and suitable flavon alignments. As tribimaximal mixing has been ruled out by the Daya

Bay [28] and Reno [29] measurements of a reactor mixing angle θ13 of around 9◦, it is

necessary to investigate if next-to-leading order (NLO) effects can generate large enough

deviations from the tribimaximal leading order prediction. With the Klein symmetry aris-

ing purely accidentally, NLO terms are bound to perturb the tribimaximal mixing pattern.

While switching on θ13, NLO corrections will in general also give rise to perturbations of

the atmospheric and, more critically, the solar mixing angle which may be phenomenolog-

ically unacceptable. However, these unwanted NLO corrections can be suppressed in an

ultraviolet completed version of the T7 model involving special messenger fields.

The remainder of this article is organized as follows. We define and discuss the minimal

T7 model in section 2, both at leading as well as next-to-leading order. The ultraviolet

completion of the model is presented in section 3. Section 4 addresses the question of

vacuum alignment, and the conclusions are drawn in section 5. The relevant group theoretic

details of T7 are laid out in appendix A, including the generators of the representations in

a basis with a diagonal order three element as well as the corresponding CG coefficients.

2 The minimal T7 model

2.1 Tribimaximal mixing at leading order

In this section we describe a minimal model of leptons based on the family symmetry T7.

This non-Abelian finite group comprises 21 elements and has three singlet as well as two

triplet representations, which we denote by 1, 1′, 1′′, 3 and 3, respectively. As the model

does not feature any shaping symmetries, its structure is solely determined by the family

symmetry T7 as well as the gauge symmetry SU(2)L×U(1)Y . We work in a supersymmetric

framework with two Higgs doublets, hu and hd, transforming trivially under T7. The

three generations of left-handed lepton doublets L are unified in a triplet representation

of T7, while the right-handed charged leptons ec, µc and τ c live in the three distinct one-

dimensional representations. In order to break the family symmetry, two flavon fields are

introduced, namely ϕ̃ and ϕ transforming as a 3 and 3, respectively. The particle content

of this model is summarized in table 1, where we have also listed the standard charge

assignments under hypercharge U(1)Y and U(1)R for convenience.
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Field L ec µc τ c hu hd ϕ̃ ϕ

T7 3 1 1′ 1′′ 1 1 3 3

U(1)Y −1 2 2 2 1 −1 0 0

U(1)R 1 1 1 1 0 0 0 0

Table 1. The transformation properties of the minimal T7 model of leptons.

With these T7 assignments, the leading order superpotentials of the charged lepton

and the neutrino sector read

W` = ye
ϕ̃
ΛLe

chd + yµ
ϕ̃
ΛLµ

chd + yτ
ϕ̃
ΛLτ

chd , (2.1)

Wν = y1
ϕ̃
Λ2LLhuhu + y2

ϕ
Λ2LLhuhu , (2.2)

respectively. Here, the y’s are dimensionless coupling constants, and Λ denotes a common

cut-off above the scale of family symmetry breaking. The neutrino mass terms originate

from the Weinberg operator [30] augmented by a flavon field. The coefficients ye, yµ,

yτ correspond to the Yukawa couplings of the charged leptons which we will assume to

be hierarchical. Note that one can naturally generate this hierarchy by introducing an

additional Froggatt-Nielsen U(1)FN under which the flavon fields are charged [31]. For an

example of a model that realizes hierarchical charged lepton masses with an A4×Z4 flavor

symmetry alone and without invoking a U(1)FN, see [32].

It is important to note that only one flavon, ϕ̃, enters the charged lepton sector at

leading order. The other flavon, ϕ, cannot couple to the charged leptons due to the absence

of a singlet representation in the T7 Kronecker product 3⊗ 3, see appendix A. We will see

below that the vev of ϕ̃ can be chosen such that it breaks T7 down to Z3, thus leading to a

diagonal charged lepton mass matrix. In the neutrino sector, both flavons are present, as

the symmetric product of 3⊗ 3 contains both a 3 and a 3.

In order to find the vacuum alignments that lead to tribimaximal mixing, we insert the

flavon vevs in eq. (2.1) and eq. (2.2) in their most general form. Contracting the T7 indices

using the CG coefficients given in appendix A and inserting the Higgs vevs vu and vd, we

obtain the respective mass matrices. In the left-right convention for the charged leptons,

where the left-handed particles are to the left of the Yukawa matrix, we find

M` =






ye 0 0

0 yµ 0

0 0 yτ


 〈ϕ̃1〉

Λ +




0 0 yτ
ye 0 0

0 yµ 0


 〈ϕ̃2〉

Λ +




0 yµ 0

0 0 yτ
ye 0 0


 〈ϕ̃3〉

Λ


 vd√

3
, (2.3)

Mν = y1







1 0 0

0 0 1

0 1 0


 〈ϕ̃1〉

Λ +




0 ω 0

ω 0 0

0 0 ω


 〈ϕ̃2〉

Λ +




0 0 ω2

0 ω2 0

ω2 0 0


 〈ϕ̃3〉

Λ


 v2

u
3Λ (2.4)

+ y2







2 0 0

0 0 −1

0 −1 0


 〈ϕ1〉

Λ +




0 0 −1

0 2 0

−1 0 0


 〈ϕ2〉

Λ +




0 −1 0

−1 0 0

0 0 2


 〈ϕ3〉

Λ


 v2

u

3
√

2Λ
.
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This simple pattern suggests the following flavon vacuum configuration to obtain tribimax-

imal mixing:

〈ϕ̃〉 = vϕ̃




1

0

0


 , 〈ϕ〉 = vϕ

1√
3




1

1

1


 . (2.5)

The alignment of ϕ̃ ensures a diagonal charged lepton mass matrix in eq. (2.3), and brings

the first line in eq. (2.4) into tribimaximal form. The alignment of ϕ is of an extremely

simple form and generates a contribution to Mν which, again, has tribimaximal structure.

Adopting the flavon alignments of eq. (2.5), our minimal T7 model therefore predicts the

following charged lepton and neutrino mass matrices at leading order,

M` =



ye 0 0

0 yµ 0

0 0 yτ


 vϕ̃

Λ
vd√

3
, (2.6)

Mν =


y1




1 0 0

0 0 1

0 1 0


 vϕ̃

Λ + y2




2 −1 −1

−1 2 −1

−1 −1 2


 vϕ√

6Λ


 v2

u
3Λ , (2.7)

implying a tribimaximal PMNS mixing matrix and the complex valued neutrino masses

(mν
1 ,m

ν
2 ,m

ν
3) = (2y1vϕ̃ +

√
6y2vϕ , 2y1vϕ̃ , −2y1vϕ̃ +

√
6y2vϕ) v2

u
6Λ2 . (2.8)

Before continuing to the study of NLO effects, let us pause for a moment and appreciate

the beauty of the leading order model. With regard to the charged lepton sector, we observe

that the alignment of ϕ̃ is left invariant by the diagonal order-three generator d of T7, see

table 5 in appendix A. The corresponding Z3 symmetry which is thus preserved in the

charged lepton sector after the family symmetry is broken enforces a diagonal M`. In

contrast, the tribimaximal Klein symmetry Z2 × Z2 of Mν arises completely accidentally

from a combination of the T7 CG coefficients and suitable flavon alignments (which will

be derived and thus justified in section 4). This situation is reminiscent of the Altarelli-

Feruglio model [22, 23] where one Z2 is contained in A4 while the other Z2, corresponding

to a µ-τ symmetry, arises accidentally. In the case of T7, none of the two Z2 factors

of the tribimaximal Klein symmetry is a part of the underlying family symmetry. As a

consequence, one expects no protection of the tribimaximal structure when NLO terms are

taken into account.

2.2 Next-to-leading order effects

The next-to-leading order superpotential for the charged and neutral leptons contains all

terms up to mass dimension six and seven, respectively, that are invariant under the gauge

and family symmetries. Here, we only indicate the terms that are not already part of the

– 5 –
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leading-order superpotential:

∆W` =
1

Λ2

(
Ce1 Le

c hd ϕϕ + Ce2 Le
c hd ϕ ϕ̃ + Ce3 Le

c hd ϕ̃ ϕ̃+

Cµ1 Lµ
c hd ϕϕ + Cµ2 Lµ

c hd ϕ ϕ̃ + Cµ3 Lµ
c hd ϕ̃ ϕ̃+ (2.9)

Cτ1 Lτ
c hd ϕϕ + Cτ2 Lτ

c hd ϕ ϕ̃ + Cτ3 Lτ
c hd ϕ̃ ϕ̃

)
,

∆Wν =
1

Λ3

(
Cν1 (LL)3 hu hu ϕϕ + Cν2 (LL)3 hu hu ϕϕ + Cν3 (LL)3 hu hu ϕ̃ ϕ̃+

Cν4 (LL)3 hu hu ϕ̃ ϕ̃ + Cν5 (LL)3 hu hu ϕ ϕ̃ + Cν6 (LL)3 hu hu ϕ ϕ̃

)
. (2.10)

The subscripts in eq. (2.10) indicate that we have contracted the family indices of the

corresponding product to obtain a 3 and 3, respectively. As before, contracting the family

and gauge indices, and substituting the vevs for the Higgs and flavon fields gives:

∆M` =
vd
Λ2

1

3

[
Ce1

(
0 0 0
0 0 0
0 0 0

)
v2
ϕ + Ce2

(
1 0 0
1 0 0
1 0 0

) vϕ√
3
vϕ̃ + Ce3

(
1 0 0
0 0 0
0 0 0

)
v2
ϕ̃

+ Cµ1

(
0 0 0
0 0 0
0 0 0

)
v2
ϕ + Cµ2

(
0 1 0
0 1 0
0 1 0

) vϕ√
3
vϕ̃ + Cµ3

(
0 0 0
0 1 0
0 0 0

)
v2
ϕ̃ (2.11)

+ Cτ1

(
0 0 0
0 0 0
0 0 0

)
v2
ϕ + Cτ2

(
0 0 1
0 0 1
0 0 1

) vϕ√
3
vϕ̃ + Cτ3

(
0 0 0
0 0 0
0 0 1

)
v2
ϕ̃

]
,

∆Mν =
v2
u

Λ3

1

9
√

2

[
Cν1

(
0 0 0
0 0 0
0 0 0

)
v2
ϕ +
√

3Cν2

(
2 −ω2 −ω
−ω2 2ω −1
−ω −1 2ω2

)
v2
ϕ +
√

6Cν3

(
1 0 0
0 0 1
0 1 0

)
v2
ϕ̃ (2.12)

+
√

6Cν4

(
2 0 0
0 0 −1
0 −1 0

)
v2
ϕ̃ +
√

2Cν5

(
1 ω ω2

ω ω2 1
ω2 1 ω

)
vϕvϕ̃ + Cν6

(
2 −ω −ω2

−ω 2ω2 −1
−ω2 −1 2ω

)
vϕvϕ̃

]
.

A quick inspection of eq. (2.11) shows that the contributions proportional to Ce1 , Cµ1 , Cτ1
are identically zero and have no effect whatsoever on the mass matrices. The contributions

proportional to Ce3 , Cµ3 , Cτ3 do not disturb the diagonal structure of M` and hence do not

affect the bi-unitary transformations that diagonalize it and that enter in the definition

of UPMNS. In contrast, Ce2 , Cµ2 , Cτ2 will lead to a departure from tribimaximal mixing,

where it has to be noted that the magnitudes of the coefficients have to be weighted by

the corresponding Yukawa couplings, and hence the effect of Ce2 will be negligible.

From eq. (2.12) we see that the term proportional to Cν1 is identically zero and will not

have an impact on the mixing matrix. The term corresponding to Cν3 is non-vanishing, but

commutes with the two generators of the tribimaximal Klein symmetry (see e.g. [4] for the

explicit form of the generators), and as a consequence does not disturb the tribimaximal

form of the mixing matrix.

The NLO terms that do cause a departure from tribimaximal mixing are those cor-

responding to Cν2 , Cν4 , Cν5 , Cν6 . The contribution proportional to Cν4 is invariant under

a µ − τ symmetry (which corresponds to one of the generators of the tribimaximal Klein

symmetry) and thus leaves θ23 and θ13 unchanged. Of particular interest is the term pro-

portional to Cν5 , since its effect is such that θ12 is almost unchanged, θ23 stays within its 3σ

– 6 –
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interval, and θ13 receives a sizable contribution. Therefore it seems to be a good strategy

to try and suppress all NLO contributions to the superpotential except the one propor-

tional to Cν5 . Thus, we will keep the deviation of θ12 and θ23 from the tribimaximal case

small, and at the same time achieve a non-vanishing θ13 in agreement with experiment.

In section 3 we present a renormalizable, ultraviolet completion of our model that meets

exactly these criteria outlined above. Before that, however, we will explore in section 2.3

the phenomenology of our model at the effective level. We first consider the model in its

most general form without any specific assumptions about the coefficients. At the end of

section 2.3 we also discuss the case where all coefficients which break the tribimaximal

structure, except for Cν5 , are set to zero.

2.3 Phenomenology

We now compare our results with experiment [28, 29, 33–35]. To that end, we first have to

specify the coefficients in the leading and next-to-leading order superpotential (cf. eq. (2.1),

eq. (2.2), eq. (2.9), eq. (2.10)). The mixing angles, CP phases and masses will then be

uniquely determined.

The leading-order superpotential gives tribimaximal mixing which is form-

diagonalizable [36]. As such, the mixing angles are in principle independent of the co-

efficients ye, yµ, yτ , y1, y2. However, changing the coefficients affects the neutrino masses

and can lead to a reordering of the mass eigenstates that in turn has an impact on the

mixing angles. Since we work in a basis where the charged lepton mass matrix is diagonal,

we can identify ye, yµ, yτ with the corresponding Yukawa couplings for which we substitute

their experimentally determined values [37]. For y1 and y2, we choose values such that we

can fit the mass ratio ∆m2
31/∆m

2
21.

In figure 1 we present the contour lines of ∆m2
31/∆m

2
21 ≡ 30 as a function of y1vϕ̃

and y2vϕ (cf. eq. (2.7)) for normal neutrino mass orderings. Here we do not consider the

case of inverted neutrino mass orderings as it would require
∣∣y1vϕ̃

∣∣ � |y2vϕ|. The green

region in figure 1 corresponds to values of the parameters for which we obtain tribimaximal

mixing, whereas in the red region, the mixing matrix corresponds to a permutation of the

columns of UPMNS, i.e. tribimaximal mixing and the desired mass hierarchy cannot be

simultaneously satisfied. Note that we have chosen y1 and y2 to be real for presentational

purposes only. In the general case, y1 and y2 are complex, and to fit the mass ratio is

equally easy.

In the next-to-leading order superpotential, we assume that the fundamental scale of

the theory is about one order of magnitude larger than the flavon vevs and fix the ratio

at vϕ/Λ = vϕ̃/Λ = 0.10 (see eq. (2.11) and eq. (2.12)). For the coefficients Cν1 , . . . , C
τ
3 ,

we choose 1000 sets of complex numbers whose real and imaginary parts are uniformly

distributed between -2.5 and +2.5. For each such set, we calculate the corrections to the

charged lepton and neutrino mass matrices and recalculate the mixing angles and masses.

Note that now, M` is not necessarily diagonal, and we have to resort to the general definition

of UPMNS in terms of the bi-unitary transformations that diagonalize the charged lepton

and neutrino mass matrices.

– 7 –
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−1.0 −0.5 0.0 0.5
y1 vϕ̃

−1.0

−0.5

0.0

0.5

y 2
v ϕ

Figure 1. Contour lines of ∆m2
31/∆m

2
21 ≡ 30 as a function of y1vϕ̃ and y2vϕ for normal neutrino

mass ordering. The green region corresponds to values of the parameters where the mixing angles

are tribimaximal.

We present the results in figure 2(a). The LO order prediction has given way to a

“blob” centered around the tribimaximal values for the mixing angles. Remarkably, 99%

of the points lie in the 3σ interval [33] of θ23, whereas 13% also satisfy the 3σ bounds for θ12

(see first panel of figure 2(a)). As was to be expected, the strongest constraint comes from

θ13. From the third panel of figure 2(a) we see that low values for θ13 are preferred, but 10%

of the points can accommodate a large reactor angle in agreement with experiment. This

number drops to 1% when we take the constraints from the other two angles into account.

In figure 2(b) we present the results for a model where all terms except Cν5 that lead

to departures from tribimaximal mixing are suppressed. This will correspond to the case

of the renormalizable model that we will discuss in section 3. As we can see from the first

panel of figure 2(b), θ12 is practically unchanged from its tribimaximal value, whereas θ23

varies very little, and both angles are within their 3σ error bands. At the same time, we can

easily obtain a large θ13 in such a way that the experimental constraints on the other two

angles are always satisfied (blue points in the third panel of figure 2(b)). At the same time

we can observe an interesting correlation between θ23 and θ13, namely the larger θ13 is, the

more θ23 deviates from maximal mixing.3 Unfortunately, this effect is symmetric around

θ23 = 45◦ and hence does not give a hint whether this deviation is positive or negative.

3 An ultraviolet completion of the model

We have shown in section 2 how the minimal T7 model, which predicts exact tribimaximal

lepton mixing at leading order, receives in general significant corrections at next-to-leading

3This numerical observation is a reflection of a well-known mixing sum rule relating the deviations of

the atmospheric and reactor angles from their tribimaximal values via the CP phase δ [38, 39].
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(a) vϕ/Λ = vϕ̃/Λ = 0.10 and −2.5 ≤ ReCαi , ImC
α
i ≤ 2.5.

(b) vϕ/Λ = 0.25, vϕ̃/Λ = 0.05, −2 ≤ ReCν5 , ImC
ν
5 ≤ 2, all other coefficients set to zero.

Figure 2. The mixing angles for a given set of leading order coefficients y1, y2, ye, yµ, yτ and 1000

sets of random values for the next-to-leading order coefficients Cν1 , . . . , C
τ
3 . Our choice for the coef-

ficients y1 = 0.50, y2 = −1.52 y1 vϕ̃/vϕ corresponds to ∆m2
31/∆m

2
21 ∼ 30 in the LO approximation.

The green bands correspond to the 3σ intervals [33] for the mixing angles (normal hierarchy in the

case of θ23 and θ13). In each diagram, the color of the markers indicates whether the data point

lies in the 3σ interval of the respective angle that is not plotted (blue) or not (red).

order. Such deviations from the tribimaximal pattern are welcome in order to accommodate

the observed large value of the reactor angle θ13. On the other hand, the same set of

corrections can potentially modify the other two mixing angles to values disfavored by

current global fits. In particular, the solar angle should obtain only small corrections, as

its tribimaximal value of θ12 ≈ 35.3◦ fits the experimental result already remarkably well. In

order to obtain a deviation from tribimaximal mixing which stabilizes the solar angle in first

approximation, one can make use of corrections of the so-called trimaximal type [40–48].

These are typically defined by corrections to the tribimaximal neutrino mass matrix whose

eigenvectors are proportional to either (1, 1, 1)T [39] or (2,−1,−1)T [49]. Comparison

with eq. (2.12) reveals that there exists exactly one NLO correction which respects the

trimaximal structure but breaks the tribimaximal one. This subleading contribution to

the neutrino mass matrix is proportional to the coefficient Cν5 and can be traced back to

an NLO operator in eq. (2.10) in which LL is contracted to a 3 of T7. Notice that the

other two terms with LL contracted to a 3, i.e. those proportional to Cν1 and Cν3 , do not

lead to deviations from the tribimaximal structure.
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Field ∆ Θ Θc Σ Σc Ω Ωc

T7 1 3 3 3 3 3 3

U(1)Y 2 −2 2 −2 2 1 −1

U(1)R 0 1 1 2 0 1 1

Table 2. The charge assignments of the (effective) Higgs SU(2)L triplet ∆ as well as of the

messenger fields required for the ultraviolet completion of the minimal T7 model.

This begs the question of how to remove or suppress the unwanted NLO operators

while keeping the one proportional to Cν5 . To this end, it is useful to recall that we have so

far only discussed the model at the effective level, i.e. writing down all (non-renormalizable)

terms which are allowed by the imposed symmetries. However, any particular ultraviolet

completion of such an effective model does not give rise to all effective NLO terms. The

underlying renormalizable model will involve messenger fields which have to be introduced

to mediate the effective leading order operators. These necessary messengers typically do

not generate all NLO terms [50]. If one particular NLO term is desired, as is the case in

our T7 model, an extra messenger has to be introduced. In the following we adopt the

strategy of considering an ultraviolet completion of the effective T7 model such that the

operator proportional to Cν5 is allowed, while the bothersome NLO terms are forbidden or

sufficiently suppressed. We begin the discussion of the ultraviolet completion of the model

with the charged lepton sector, before turning to the more interesting neutrino sector which

will be responsible for the breaking of the tribimaximal to the trimaximal pattern.

3.1 The charged lepton sector

The leading order operators in eq. (2.1) can be obtained by imposing a T7 triplet mes-

senger pair Θ, Θc with the transformation properties as given in table 2. The resulting

renormalizable charged lepton superpotential takes the form

W ren
` ∼ LhdΘ

c + Θϕ̃ec + Θϕ̃µc + Θϕ̃τ c + ΘΘc(MΘ + ϕ+ ϕ̃) , (3.1)

where we have suppressed all dimensionless coupling coefficients. Note that Θ and Θc allow

for a bilinear mass term. However, due to the absence of any shaping symmetry, we can

also couple a flavon triplet to this product, thus leading to a trilinear term which, after

family symmetry breaking, gives a correction to the messenger mass. This is a general

feature for heavy messenger fields which transform as triplets under T7. Ignoring the

correction to the messenger mass, we can integrate out the pair Θ, Θc and obtain the

effective superpotential of eq. (2.1) without any higher order corrections. Hence, in the

present ultraviolet completion, the only source of deviations from a diagonal charged lepton

mass matrix originates from the aforementioned trilinear terms correcting the messenger

mass. Such a correction can be rendered sufficiently small by assuming 〈ϕ̃〉, 〈ϕ〉 �MΘ. In

the following, we will therefore ignore any NLO terms in the charged lepton sector.
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3.2 The neutrino sector

We now turn to the neutrino sector where we want to formulate a renormalizable theory

which, at leading order, gives rise to the effective superpotential in eq. (2.2). The most

popular possibility to derive the Weinberg operator from renormalizable terms is provided

by the famous type I seesaw mechanism [15–18]. However, applied to the minimal T7

model without any shaping symmetry, the type I seesaw mechanism does not yield the

tribimaximal structure at leading order. This can be traced back to the fact that the

triplet representations of T7 are complex. Putting the L into the 3 would entail to introduce

right-handed neutrinos N c in the 3 so that the Dirac neutrino Yukawa term LhuN
c leads

to a Dirac mass matrix that is proportional to the identity matrix. Then the tribimaximal

structure of the effective light neutrino mass matrix would be inherited directly from a

tribimaximal right-handed neutrino mass matrix MR. With N c being a 3 rather than a

3, the alignments of the 3 flavon ϕ̃ and the 3 flavon ϕ would have to be exchanged to

get MR of tribimaximal form. However, changing the alignment of the flavon ϕ̃ coupling

to the charged leptons to (1, 1, 1)T destroys the diagonal charged lepton mass matrix in

eq. (2.3). As a result, under the fairly general set of assumptions that we made above, the

total leading order lepton mixing would no longer feature the tribimaximal pattern.

As an alternative to the type I seesaw mechanism, we can adopt the type II see-

saw [51–55]. For the sake of clarity, we assume an SU(2)L triplet Higgs ∆ in the remainder

of this section. It is straightforward to replace such a Higgs field by the product of two

hu doublets which couple to the square of the lepton doublet L via an SU(2)L triplet mes-

senger field. The type II seesaw mechanism seems particularly suited for our purposes as

we wish to obtain the NLO correction to the neutrino mass matrix proportional to the

coupling constant Cν5 , which arises from contracting LL to a 3 of T7. The existence of

the effective NLO term 1
Λ3 (LL)3huhuϕϕ̃ in eq. (2.10) requires a messenger field Σc in the

3 representation which couples to the square of the lepton doublet via the renormalizable

term LLΣc. With the messenger field transforming as a 3 of T7, the product LL is neces-

sarily contracted to a 3 of T7. The U(1)Y and U(1)R charges required for the existence of

LLΣc are given in table 2. As Σc carries e.g. non-zero hypercharge, the messenger cannot

be a Majorana particle. In order to allow for a bilinear messenger mass term, we have to

invoke a second superfield Σ, whose charge assignments are fixed by demanding ΣΣc to

be invariant under all symmetries. The field Σ can couple to the Higgs field ∆ and the

flavon ϕ̃, thereby generating the leading order contribution to Mν proportional to y1, cf.

eq. (2.4). A similar coupling to the other flavon ϕ is forbidden by the T7 family symme-

try. We are therefore forced to introduce another pair of messengers Ω, Ωc, which allows

to generate the second leading order contribution to Mν proportional to y2, cf. eq. (2.4).

Their charge assignments are again given in table 2.

With this particle content, the renormalizable neutrino superpotential reads

W ren
ν ∼ LLΣc + Σϕ̃∆ + ΣΣc(MΣ + ϕ+ ϕ̃)

+LϕΩ + Lϕ̃Ω + Ωc∆L+ ΩΩc(MΩ + ϕ+ ϕ̃) (3.2)

+LΣcΩc + ΣcΩcΩc ,
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ϕ̃
∆ϕ, ϕ̃

LL LL
ΩcΩ

∆

Σc

Σ

Figure 3. The diagrams contributing to the leading order neutrino superpotential of eq. (2.2).

ϕ̃
∆

LL LL
ΩcΩ

∆

Σc

Σ
ϕ

ϕϕ

Figure 4. Two diagrams contributing to the NLO neutrino superpotential. The diagram on the

left gives the desired trimaximal correction, while the diagram on the right should be suppressed

in order to avoid large deviations of the solar angle from its tribimaximal value of θ12 ≈ 35.3◦.

where we have suppressed all dimensionless coupling constants. As already discussed for

the charged lepton sector, the masses of the T7 triplet messengers receive corrections from

the flavon vevs. These will break the tribimaximal structure at higher order. Ignoring

the corrections to the messenger masses as well as the two operators in the third line of

eq. (3.2) results in the effective superpotential of eq. (2.2). The corresponding diagrams

are sketched in figure 3, where the right diagram contributes to the term proportional to

y2, while the term proportional to y1 arises from both diagrams.

We point out that the left diagram in figure 3 is needed only for generating the de-

sired trimaximal NLO correction while suppressing other unwanted NLO terms. In other

words, if we wanted to end up with tribimaximal neutrino mixing, the diagram with the Ω

messenger would have been perfectly sufficient. In that case we would have to impose the

condition 〈ϕ̃〉, 〈ϕ〉 � MΩ, similar to the situation in the charged lepton sector. However,

since accurate tribimaximal mixing is ruled out by the Daya Bay and Reno measurements,

we are forced to consider sizable NLO corrections. Due to the structure of the diagram with

the Ω messenger, the NLO terms obtained from attaching a flavon to the cross represent-

ing the mass term MΩΩΩc would give rise to corrections that would shift the solar angle

away from its experimentally allowed region. Hence, the trimaximal NLO correction must

originate from another diagram, namely the one with the Σ messenger, more precisely, the

left diagram of figure 3 with the flavon ϕ attached to the cross. The resulting diagram

is sketched in figure 4, where one NLO diagram involving the Ω messenger is also shown.

The NLO diagram on the right can be suppressed compared to the NLO diagram on the
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left by assuming a hierarchy in the messenger masses. This can be parameterized by

MΣ ∼ εkMΩ , (3.3)

where k is a positive integer and ε an expansion parameter around 0.2. With this hierarchy

of messenger masses imposed we also have to assume a hierarchy in the two flavons vevs,

vϕ̃
vϕ
∼ MΣ

MΩ
∼ εk , (3.4)

so that the leading order mass contributions derived from the two diagrams in figure 3

are of similar size. Note that the diagram on the right involving the flavon ϕ̃ gives a

subdominant contribution which is of the same tribimaximal structure as the one obtained

form the left diagram. Finally, we need to guarantee that the trimaximal NLO correction

of the left diagram in figure 4 is sizable enough to account for the observed value of reactor

angle θ13. This requires the correction to the mass of the Σ messenger originating from the

flavon ϕ to be of order ε, i.e.
vϕ
MΣ
∼ ε . (3.5)

Defining M ∼MΩ we can summarize the requirements on the hierarchies as

vϕ̃ ∼ ε2k+1M , vϕ ∼ εk+1M , MΣ ∼ εkM , MΩ ∼M , (3.6)

yielding neutrino mass contributions proportional to
vϕ̃
MΣ
∼ vϕ

MΩ
∼ εk+1 at leading order,

with a trimaximal NLO correction proportional to εk+2. In comparison, the right diagram

in figure 4 gives a contribution proportional to ε2k+2 which is suppressed by a factor of εk

relative to the desired NLO correction.

With the above assumptions on the hierarchies it is possible to suppress all unwanted

contractions in eq. (2.10) while keeping the desired one proportional to Cν5 . This holds true

even if we take into consideration possible higher order diagrams obtained from the two

terms of the third line of eq. (3.2). These terms can give rise to diagrams which involve one

Σ messenger as well as one or two Ω messengers. Multiplying the appropriate flavon fields,

one can easily find that the maximal contribution derived from the renormalizable term

LΣcΩc is of order ε2k+2, while the one derived from ΣcΩcΩc is of order ε3k+3. This shows

that these higher order corrections are also suppressed with respect to the trimaximal NLO

correction by at least a factor of εk.

We conclude this section by mentioning that we have also checked these results nu-

merically for the case of k = 2. Integrating out the messengers we have first determined

the effective neutrino mass matrix, from which we have calculated the mixing angles using

the Mixing Parameter Tools provided with the REAP package [56]. This numerical check

confirms the results of this section, showing how an ultraviolet completion of the minimal

T7 model can lead to deviations from tribimaximal mixing which are compatible with a

sizable reactor angle as well as a solar angle that is close to its tribimaximal value.
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4 Vacuum alignment

4.1 General discussion

Any model of flavor that tries to explain a particular mixing pattern by means of a family

symmetry which gets broken by flavon vevs has to justify the imposed alignments. In

this section we study the possibilities of achieving the vacuum configuration required by

the minimal T7 model. Following the idea of [23], we demand that supersymmetry be

unbroken at the scale of family symmetry breaking. This so-called F -term alignment

mechanism introduces driving fields whose F -terms are set to zero, thus entailing the

important F -term conditions. Just like the regular flavons, driving fields are neutral under

the SU(2)L × U(1)Y gauge symmetry. With the five irreducible representations of T7

and no ZN shaping symmetry, one can introduce driving fields in at most five different

representations. Hence, we obtain five distinct F -term conditions which we discuss in the

following. Throughout this section we will drop all dimensionless coupling as well as overall

CG coefficients.

A driving field D1 transforming in the 1 of T7 allows for two invariant terms in the

renormalizable flavon superpotential

Wflav ⊃ D1

(
M2 + ϕ̃ϕ

)
, (4.1)

which lead to the F -term condition

∂Wflav

∂D1
= M2 + 〈ϕ̃1〉〈ϕ1〉+ 〈ϕ̃2〉〈ϕ2〉+ 〈ϕ̃3〉〈ϕ3〉 = 0 . (4.2)

Similarly, the driving fields Dr in the representations r = 1′,1′′,3,3 of T7 lead to the
conditions:

∂Wflav

∂D1′
= 〈ϕ̃1〉〈ϕ2〉+ 〈ϕ̃2〉〈ϕ3〉+ 〈ϕ̃3〉〈ϕ1〉 = 0 , (4.3)

∂Wflav

∂D1′′
= 〈ϕ̃1〉〈ϕ3〉+ 〈ϕ̃2〉〈ϕ1〉+ 〈ϕ̃3〉〈ϕ2〉 = 0 , (4.4)

∂Wflav

∂D3
= M1



〈ϕ̃1〉
〈ϕ̃2〉
〈ϕ̃3〉


+



〈ϕ̃1〉2 + 2〈ϕ̃2〉〈ϕ̃3〉

ω2(〈ϕ̃3〉2 + 2〈ϕ̃1〉〈ϕ̃2〉)
ω(〈ϕ̃2〉2 + 2〈ϕ̃3〉〈ϕ̃1〉)




+



〈ϕ1〉2 − 〈ϕ2〉〈ϕ3〉
〈ϕ2〉2 − 〈ϕ3〉〈ϕ1〉
〈ϕ3〉2 − 〈ϕ1〉〈ϕ2〉


+



〈ϕ̃1〉〈ϕ1〉+ ω〈ϕ̃2〉〈ϕ2〉+ ω2〈ϕ̃3〉〈ϕ3〉
〈ϕ̃1〉〈ϕ3〉+ ω〈ϕ̃2〉〈ϕ1〉+ ω2〈ϕ̃3〉〈ϕ2〉
〈ϕ̃1〉〈ϕ2〉+ ω〈ϕ̃2〉〈ϕ3〉+ ω2〈ϕ̃3〉〈ϕ1〉


 =




0

0

0


, (4.5)

∂Wflav

∂D3

= M2



〈ϕ1〉
〈ϕ2〉
〈ϕ3〉


+



〈ϕ1〉2 + 2〈ϕ2〉〈ϕ3〉

ω(〈ϕ3〉2 + 2〈ϕ1〉〈ϕ2〉)
ω2(〈ϕ2〉2 + 2〈ϕ3〉〈ϕ1〉)




+



〈ϕ̃1〉2 − 〈ϕ̃2〉〈ϕ̃3〉
〈ϕ̃2〉2 − 〈ϕ̃3〉〈ϕ̃1〉
〈ϕ̃3〉2 − 〈ϕ̃1〉〈ϕ̃2〉


+



〈ϕ̃1〉〈ϕ1〉+ ω2〈ϕ̃2〉〈ϕ2〉+ ω〈ϕ̃3〉〈ϕ3〉
〈ϕ̃3〉〈ϕ1〉+ ω2〈ϕ̃1〉〈ϕ2〉+ ω〈ϕ̃2〉〈ϕ3〉
〈ϕ̃2〉〈ϕ1〉+ ω2〈ϕ̃3〉〈ϕ2〉+ ω〈ϕ̃1〉〈ϕ3〉


 =




0

0

0


. (4.6)

One can easily see that the desired alignments given in eq. (2.5) are inconsistent with

eq. (4.3) and eq. (4.4). Eq. (4.5) also does not admit eq. (2.5) as a solution. Turning to
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eq. (4.6), one can substitute 〈ϕ̃1〉 = vϕ̃, 〈ϕ̃2〉 = 〈ϕ̃3〉 = 0 and 〈ϕ1〉 = 〈ϕ2〉 = 〈ϕ3〉 =
vϕ√

3
to obtain

1√
3
M2vϕ + v2

ϕ + v2
ϕ̃ + 1√

3
vϕ̃vϕ = 0 , (4.7)

1√
3
M2vϕ + ωv2

ϕ + 1√
3
ω2vϕ̃vϕ = 0 , (4.8)

1√
3
M2vϕ + ω2vϕ

2 + 1√
3
ωvϕ̃vϕ = 0 . (4.9)

Since vϕ = 0 is not of physical interest, we can cancel off vϕ as common factor in the second

and third equation, which can then be solved easily to obtain vϕ = M2√
3

and vϕ̃ = M2.

Substituting this into the first equation, yields 2M2
2 = 0, which in turn would require

M2 = 0. Hence, the desired non-trivial alignment is also incompatible with eq. (4.6).

So far we have assumed that all terms in eq. (4.5) and eq. (4.6) are present. However,

in extra dimensional models it is possible to envisage a setup in which the two flavons ϕ̃ and

ϕ are localized on different branes [22, 57]. Then, a given driving field could, in principle,

couple exclusively to the ϕ̃ flavon, while another driving field could couple exclusively to

ϕ. If both driving fields transform in the 3 of T7, it is straightforward (though tedious for

the alignment of ϕ̃) to verify that the two flavons feature the desired alignments up to T7

transformed solutions.

We conclude that the F -term conditions of eqs. (4.3)–(4.6) cannot give rise to the

alignments of eq. (2.5) without a mechanism that effectively sets some of the coupling

constants to zero.

4.2 Alignment through a hidden flavon sector

One of the attractive features of the T7 model presented in section 2 is that it does not

require the introduction of an extra ZN shaping symmetry to arrive at tribimaximal mixing

at leading order. Unfortunately, as we have found in 4.1, the flavons cannot be aligned

without setting some coupling constants of the flavon superpotential to zero. If we do

not want to resort to extra dimensions, we are forced to extend the minimal T7 symmetry

by introducing a new symmetry. However, we will show in this section how this can be

achieved without assigning non-trivial charges under this new symmetry to the flavons ϕ̃

and ϕ, nor to the lepton and Higgs fields.

To this end, it is necessary to introduce new flavons which do not couple to the leptons.

In that sense, one might call them “hidden flavons”, constituting a sequestered sector of

the model. This separation is achieved by assuming these flavons (together with some

new driving fields) to be the only fields which transform non-trivially under a hidden Zhid
N

symmetry. The flavons ϕ̃ and ϕ of the lepton (or visible) sector can then be aligned with

respect to those hidden flavons via orthogonality conditions as we discuss now.

In the hidden sector, we introduce four flavons χ, ξ′, ψ, ζ̃ which are aligned by virtue of

four driving fields D̃χ, Dψ, O
χζ̃

, O
ψζ̃

. Their transformation properties are given in table 3,

where x, y, z are positive integers smaller than N . The minimal Zhid
N symmetry and the

corresponding values for x, y and z will be determined at the end of this section. The

resulting terms of the renormalizable hidden flavon superpotential read

W hid
flav = D̃χ

(
χξ′ + χχ

)
+ Dψψψ + O

χζ̃
χζ̃ + O

ψζ̃
ψζ̃ . (4.10)
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Field χ ξ′ ψ ζ̃ D̃χ Dψ O
χζ̃

O
ψζ̃

T7 3 1′ 3 3 3 3 1 1

Zhid
N x x y z −2x −2y −x− z −y − z

U(1)R 0 0 0 0 2 2 2 2

Table 3. The charge assignments of the hidden sector. x, y, z are positive integers smaller than N .

The smallest possible value of N is 6 with (x, y, z) = (2, 1, 5) or equivalently (4, 5, 1), see discussion

at the end of this section.

Setting the F -terms of the driving fields to zero gives rise to the conditions

∂W hid
flav

∂D̃χ

=



〈χ2〉
〈χ3〉
〈χ1〉


 〈ξ′〉+



〈χ1〉2 + 2〈χ2〉〈χ3〉

ω(〈χ3〉2 + 2〈χ1〉〈χ2〉)
ω2(〈χ2〉2 + 2〈χ3〉〈χ1〉)


 =




0

0

0


 , (4.11)

∂W hid
flav

∂Dψ
=



〈ψ1〉2 − 〈ψ2〉〈ψ3〉
〈ψ2〉2 − 〈ψ3〉〈ψ1〉
〈ψ3〉2 − 〈ψ1〉〈ψ2〉


 =




0

0

0


 , (4.12)

∂W hid
flav

∂O
χζ̃

= 〈χ1〉〈ζ̃1〉 + 〈χ2〉〈ζ̃2〉 + 〈χ3〉〈ζ̃3〉 = 0 , (4.13)

∂W hid
flav

∂O
ψζ̃

= 〈ψ1〉〈ζ̃1〉 + 〈ψ2〉〈ζ̃2〉 + 〈ψ3〉〈ζ̃3〉 = 0 . (4.14)

These conditions can be solved exactly to give a total of 21 sets of solutions for the hidden

flavon alignments. A brief description of how these can be derived is outlined below.

First, we consider eq. (4.12). Without loss of generality we can distinguish two cases:

〈ψ1〉 = 0 and 〈ψ1〉 6= 0. In the former case one quickly sees that it requires vanishing

values for all the components of 〈ψ〉, thus giving only the trivial vacuum. For 〈ψ1〉 6= 0,

we obtain three solutions, 〈ψ〉 ∝ (1, 1, 1)T , 〈ψ〉 ∝ (1, ω2, ω)T and 〈ψ〉 ∝ (1, ω, ω2)T , which

are related to each other by the T7 transformation d. We remark that a c transformation

applied to these three solutions does not modify the alignments but only multiplies them

with an irrelevant overall phase.

Next, we turn to eq. (4.11). Again there are two cases to distinguish, 〈χ1〉 = 0 and

〈χ1〉 6= 0. For the former case the solution is easily found to be 〈χ〉 ∝ (0, 0, 1)T . With

〈χ1〉 6= 0 on the other hand, it is possible to show that there exist six different solutions,

all of which are related to the previous solution by the T7 symmetry transformation c:

〈χ〉 ∝ ck(0, 0, 1)T , where k = 0, 1, . . . , 6. One can check that applying a d transformation

to any of these seven solutions does not yield new alignments.

Combining our results so far, we have 21 different pairs of alignments 〈χ〉 and 〈ψ〉.
Being related by the 21 different T7 symmetry transformations, they are physically equiv-

alent and one can choose one pair without loss of generality. Having fixed the alignments

of 〈χ〉 and 〈ψ〉, eq. (4.13) and eq. (4.14) determine the alignment of 〈ζ̃〉 uniquely to be
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Field Oχϕ̃ O′χϕ̃ O
ζ̃ϕ

O′
ζ̃ϕ

T7 1 1′ 1 1′

Zhid
N −x −x −z −z

U(1)R 2 2 2 2

Table 4. Charge assignments of the driving fields coupling the hidden flavons χ, ζ̃ to the flavons

ϕ̃, ϕ.

perpendicular to both 〈χ〉 and 〈ψ〉. This shows that in total there exist 21 sets of solutions

for the hidden flavon alignments. For convenience we choose the following simple set

〈χ〉 ∝




0

0

1


 , 〈ψ〉 ∝




1

1

1


 , 〈ζ̃〉 ∝




1

−1

0


 . (4.15)

Let us now turn to the discussion of aligning the original flavon fields ϕ̃ and ϕ which

enter in the lepton sector. Their alignment is dictated by new driving fields which couple the

pre-aligned hidden flavons to ϕ̃ and ϕ. The transformation properties of the extra driving

fields Oχϕ̃, O′χϕ̃, O
ζ̃ϕ

and O′
ζ̃ϕ

are listed in table 4. With these assignments, the resulting

renormalizable flavon superpotential consisting of all T7 and Zhid
N invariant terms reads

W ′flav = Oχϕ̃χϕ̃ + O′χϕ̃χϕ̃ + O
ζ̃ϕ
ζ̃ϕ + O′

ζ̃ϕ
ζ̃ϕ . (4.16)

The derived F -term conditions take the form

∂W ′flav

∂Oχϕ̃
= 〈χ1〉〈ϕ̃1〉 + 〈χ2〉〈ϕ̃2〉 + 〈χ3〉〈ϕ̃3〉 = 〈χ3〉〈ϕ̃3〉 = 0 , (4.17)

∂W ′flav

∂O′χϕ̃
= 〈χ1〉〈ϕ̃3〉 + 〈χ2〉〈ϕ̃1〉 + 〈χ3〉〈ϕ̃2〉 = 〈χ3〉〈ϕ̃2〉 = 0 , (4.18)

∂W ′flav

∂O
ζ̃ϕ

= 〈ζ̃1〉〈ϕ1〉 + 〈ζ̃2〉〈ϕ2〉 + 〈ζ̃3〉〈ϕ3〉 = 〈ζ̃1〉(〈ϕ1〉 − 〈ϕ2〉) = 0 , (4.19)

∂W ′flav

∂O′
ζ̃ϕ

= 〈ζ̃3〉〈ϕ1〉 + 〈ζ̃1〉〈ϕ2〉 + 〈ζ̃2〉〈ϕ3〉 = 〈ζ̃1〉(〈ϕ2〉 − 〈ϕ3〉) = 0 , (4.20)

yielding the desired alignments, cf. eq. (2.5),

〈ϕ̃〉 ∝




1

0

0


 , 〈ϕ〉 ∝




1

1

1


 . (4.21)

Finally, we need to choose an appropriate Zhid
N , i.e. suitable values for N , x, y and z,

so that no additional renormalizable terms, other than the ones discussed in this section,

occur in the flavon superpotential of eq. (4.10) and eq. (4.16). Through a systematic search,
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we find that the smallest Zhid
N that we can have is a Zhid

6 [although eq. (4.10) alone can be

obtained using a Zhid
5 ]. For a Zhid

6 , we can have (x, y, z) as (2, 1, 5) or (4, 5, 1). Note that

these two choices are equivalent solutions since the elements of the group corresponding to

one set are the negatives of the elements corresponding to the other.

5 Conclusions

In the present work, we discussed a minimal model of neutrino flavor. In this context, the

term “minimal” refers to the order of our flavor group T7, and to the number of flavon fields.

It is interesting to note that the Z2×Z2 Klein symmetry is not a subgroup of T7, but arises

completely accidentally. As such, it is — to the best of our knowledge — the first indirect

model in which the flavon fields appear linearly (and not quadratically) in the leading order

structure of the model. Another striking feature of our model is the absence of any Abelian

shaping symmetries like ZN or U(1) in the Yukawa sector. As a consequence, our flavor

group T7 with its 21 elements is smaller than any symmetry A4 ×ZN that has long been a

paradigm for model building before Daya Bay’s and Reno’s measurements of a large reactor

angle θ13 ' 9◦. Our model predicts tribimaximal mixing at leading order, and we achieve a

sizable θ13 by considering next-to-leading order corrections to the superpotential. It turns

out that models in full agreement with experiment can be obtained for some generic values

of the flavon vevs and coefficients in the superpotential. More elegantly, however, one can

isolate the next-to-leading order contribution proportional to the coefficient Cν5 . Being of

trimaximal type, this correction drives θ13 to sizable values while leaving the solar angle

very close to its tribimaximal value. The atmospheric mixing angle is correlated to the size

of θ13 and stays within the allowed 3σ region. In section 3, we embedded our effective theory

into a renormalizable model that naturally suppresses all next-to-leading order contribu-

tions except the trimaximal one which is responsible for the large reactor angle. In the last

section, we discussed how the flavon fields can be dynamically aligned to yield the required

symmetry breaking pattern. The alignment of the flavon fields necessitated the introduction

of an Abelian shaping symmetry and so-called driving fields, thereby spoiling the minimal-

ity of our model. The smallest symmetry that is viable turns out to be Z6, and as such, our

flavor group T7×Z6 is larger than A4×ZN for N ≤ 10. However, one should note that the

F -term alignment we considered in section 4 is only one possible option and that the details

of an elegant and simple mechanism of vacuum stabilization are still lurking in the dark.
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d c

1 1 1

1′ ω 1

1′′ ω2 1

3




1 0 0

0 ω2 0

0 0 ω


 η

3




1 + η + η3 ω2 + ωη + η3 ω + ω2η + η3

ω + ω2η + η3 1 + η + η3 ω2 + ωη + η3

ω2 + ωη + η3 ω + ω2η + η3 1 + η + η3




3




1 0 0

0 ω 0

0 0 ω2


 η6

3




1 + η6 + η4 ω + ω2η6 + η4 ω2 + ωη6 + η4

ω2 + ωη6 + η4 1 + η6 + η4 ω + ω2η6 + η4

ω + ω2η6 + η4 ω2 + ωη6 + η4 1 + η6 + η4




Table 5. The T7 generators of the five irreducible representations in the basis where d is diagonal.

Here we have defined ω = e
2πi
3 and η = e

2πi
7 .

A Generators and Clebsch-Gordan coefficients of T7

In this appendix we list the relevant group theory of T7, which is sometimes also called

the Frobenius group Z7 o Z3. The group is obtained from two generators c, d obeying the

presentation, see e.g. [26],

< c, d | c7 = d3 = 1 , d−1cd = c4 > . (A.1)

It has 21 elements and five irreducible representations, namely 1, 1′, 1′′, 3, and 3. A pair of

triplet generators satisfying the presentation in A.1 can be found e.g. in [14, 26, 27], where

the order-seven generator c is diagonal. For the purpose of the model in the present paper,

it is however more convenient to work in a basis with a diagonal order-three generator d.

Our choice of T7 generators for all five irreducible representations is listed in table 5, where

we have defined

ω = e
2πi
3 , η = e

2πi
7 . (A.2)

Although the order-seven generators of the triplet representations look rather involved,

the Clebsch-Gordan coefficients take a relatively simple form. Omitting the trivial prod-

ucts, i.e. those involving the singlet 1 as well as products of only one-dimensional irreducible

representations, the product rules are reported below. We use the convention that the com-

ponents of the first representation of any given product a⊗ b are denoted by ai while we

use bi for the components of the second representation. The subscripts s and a stand

for “symmetric” and “anti-symmetric”, respectively. Note that we have also included the
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normalization factors of the Clebsch-Gordan coefficients.

1′ ⊗ 3 : 3 = a1



b2
b3
b1


 , 1′′ ⊗ 3 : 3 = a1



b3
b1
b2


 , (A.3)

1′ ⊗ 3 : 3 = a1



b3
b1
b2


 , 1′′ ⊗ 3 : 3 = a1



b2
b3
b1


 , (A.4)

3⊗ 3 : 1 = 1√
3

(a1b1 + a2b2 + a3b3) , (A.5)

1′ = 1√
3

(a1b2 + a2b3 + a3b1) , (A.6)

1′′ = 1√
3

(a1b3 + a2b1 + a3b2) , (A.7)

3 = 1√
3



a1b1 + ω2a2b2 + ωa3b3
a1b3 + ω2a2b1 + ωa3b2
a1b2 + ω2a2b3 + ωa3b1


 , (A.8)

3 = 1√
3



a1b1 + ωa2b2 + ω2a3b3
a3b1 + ωa1b2 + ω2a2b3
a2b1 + ωa3b2 + ω2a1b3


 , (A.9)

3⊗ 3 : 3s = 1√
3




a1b1 + a2b3 + a3b2
ω(a1b2 + a2b1 + a3b3)

ω2(a1b3 + a2b2 + a3b1)


 , (A.10)

3s = 1√
6




2a1b1 − a2b3 − a3b2
2a2b2 − a3b1 − a1b3
2a3b3 − a1b2 − a2b1


 , (A.11)

3a = 1√
2



a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 . (A.12)
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