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Various generalizations of tree-characterization theorems are developed 
for n-dimensional complexes. In particular, generalizations of three conditions 
satisfied by trees Tare studied: T is connected, Tis acyclic, 1 V(T)[ - / E(T)1 = 1, 
where V(T) and E(T) denote the vertex and edge sets of T, respectively. 

Earlier work by Beineke and Pippert is extended in generalizing these condi- 
tions and studying which combinations of such conditions yield characteriza- 
tions of the n-dimensional trees treated here. 

There are many equivalent definitions of the concept of tree in Graph 
Theory; see for example [3]. Many such definitions include conditions like 
being connected or having no circuits or that the equation p - q = 1 
be satisfied, where p and q are the number of vertices and edges, respec- 
tively, in the graph. 

In this paper, trees are generalized to a kind of n-dimensional complex 
called an “(m, n)-tree.” The definition is purely inductive and some of the 
above definitions of tree are generalized to characterizations of (m, n)- 
trees. In some of these characterizations, the role of the equationp - 4 = 1 
is played by a set of m equations, a few low-order examples of which were 
previously investigated by Beineke and Pippert [I]. 

In Section 1 below are given a number of definitions required in this 
paper. Each of the most familiar characterizations of trees T involve some 
of the conditions listed below: 

(a) T is connected, 
(b) T has no circuits, 
(4 p-4=1, 

where p and q represent the number of vertices and edges, respectively, 
of T. Each of these conditions is generalized below. In Section 2 the 
generalized conditions (a) and (b) are employed, along with a third 
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condition, to characterize (m, n)-trees. In Section 3 the generalized condi- 
tions (a) and (b) are also employed to characterize (m, n)-trees. The latter 
characterization also generalizes some results of Beineke and Pippert. 

1. 

Let K be a collection of subsets x called simplexes of a finite set V(K) 
of vertices. Then K is called a complex if every subset of every simplex in K 
is a simplex in K and if V(K) = UrsK x. This is equivalent to the definition 
of a “finite abstract simplicial complex,” as given in [4, p. 411. The 
dimension of a simplex is the number 1 x I - 1. The dimension of a complex 
K is the maximum dimension of its simplexes. One frequently speaks of an 
n-complex (n-simplex) in place of a complex (simplex) having dimension ~1. 

A graph is an n-complex for which n < 1. 
The complex L is a subcomplex of the complex K if L C K. Two com- 

plexes K and L are isomorphic, denoted by Kg L, if there is a 1-l onto 
mapping f: V(K) + V(L) such that x = (v,, , v1 ,..., UJ is a simplex in K 
if and only iff(x) = (f(v,), f (v,),..., f (v&} is a simplex in L. Let S be an 
arbitrary subset of a complex K. The closure of S in K is the subcomplex 

S ={xEK:xCyforsomeyES}. 

If S = {y}, we denote S merely by J. 
A n-complex K having p vertices is called complete if every (n + l)- 

subset of V(K) is present as a simplex in K. Such a complex will be written 
K,“. 

Let xl, yl, x2, Y, ,..., x,-i , y,-, , x, be an alternating sequence of 
m-simplexes and n-simplexes in a complex K and suppose that xi, 
xc+1 C yi for each i = 1, 2,..., r - 1. Such a sequence is called a (m, n)- 
path sequence if all the simplexes appearing in the sequence are distinct. 
It is called an (m, n)-circuit sequence if x1 = x, while all other simplexes 
are distinct. The subcomplex S of K, where S = {yl , y2 ,..., yrpl}, is called 
an (m, n)-path (respectively, (m, n)-circuit). The length of an (m, n)-path 
sequence or (m, n)-circuit sequence x1 , y1 , x2 , y2 ,..., x,-~ , yrel , x, is the 
number r - 1. The same terminology applies to (m, n)-paths and (m, n)- 
circuits. A complex K is (m, n)-connected if for any two m-simplexes x, x’ 
in K, there is an (m, n)-path sequence in which x and x’ are the first and 
last members, respectively. A complex K is (m, n)-simpZe if for every 
(m, n)-path sequence x1 , y1 , x2 , y2 ,..., x, in K, the existence of a vertex v 
in y, and yj , i < j, implies that v lies in all of yi , yi , yi+l ,..., yj . An 
n-complex is pure if every simplex of K lies in some n-simplex of K. 

Given a pure n-complex K and an n-simplex y in K, the attachment of y 
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in K, denoted by A( y, K), is the subcomplex K - J n 7, i.e., the set of all 
simplexes of K which are contained both in y and in some other n-simplex 
of K. Let 9’ be a collection of complexes and let y, , y, ,..., y, be an 
ordering of the n-simplexes of some pure n-complex K. Denote by Ki the 
subcomplex { y1 , yZ ,..., y;} of K. Then K will be said to have an Y-ordering 
if for each i = 2, 3,..., s, A(yi , Ki) is isomorphic to a member of Y. 
Suppose now that Y has a single member Kg+l . If K has an ,L”-ordering 
in this case, then K will be said to have a K,“,,-ordering. A pure n-complex 
having a K,“,,-ordering will be called an (m, n)-tree. 

In closing this section, we observe that a graph-theoretic structure in 
many ways equivalent to an (m, n)-tree could be defined. Such a graph 
could be obtained from an (m, n)-tree by deleting all its simplexes having 
dimension greater than 1. 

2. 

One of the simplest characterizations of a tree in the Theory of Graphs 
states that it is connected and contains no circuits. Since every l-complex 
is (0, l)-simple, it will be seen that the following theorem generalizes this 
characterization to (m, n)-trees. 

THEOREM 1. A pure n-complex K is an (m, n)-tree if and only if the 
following conditions hold: 

(i) K is (m, n)-connected; 
(ii) K contains no (m, n)-circuits; 
(iii) K is (m, n)-simple. 

Proof. If K is an (m, n)-tree, then the inductive arguments that K has 
properties (i), (ii), and (iii) are obvious. 

Assume then that K is a pure n-complex having these properties. If K 
has just one n-simplex, then K is obviously an (m, n)-tree. Assume as an 
induction hypothesis that all pure n-complexes having k - 1 n-simplexes 
and having properties (i), (ii), and (iii) are (m, n)-trees. Suppose now that K 
has k n-simplexes, k > 1. It will be shown that K has at least one n-simplex 
y such that A(y, K) g Kz+l: since K is (m, n)-connected, the attachment 
A(y, K) of every n-simplex y of K contains at least one m-simplex. If 
every such attachment contains two m-simplexes, then an (m, n)-circuit 
can readily be found in K, thus violating condition (ii). Therefore, for 
some n-simplex of K, say y, , A(y, , K) contains just one m-simplex, say X. 
Suppose that A( y1 , K) contains a vertex u not in x. Then there must be an 
n-simplex yZ of K different from y1 and also containing a. For i = 1, 2, 
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let xi be an n-simplex of K incident with yi and containing V. By condition 
(i), there is an (m, n)-path sequence p from x, to xp in K. The first three 
terms of p must clearly be x1 , y1 , x. Since 0 E x2 but u # x, x2 # x, and 
so x is not the last term of p: let the fourth term of p be y. 

Since K is (m, n)-simple, e E y. But in this case x u (01 _C y whence y1 
and y contain at least (ET:) common m-simplexes, and these, of course, lie 
in A( y1 , K), a contradiction. It follows that A(y, , K) contains no vertices 
not in x. In other words, A(y, , K) g KE+l , as required. 

The inductive step will now be taken. Denote by K’ the n-complex 
K - j1 and observe that K’ satisfies conditions (i), (ii), and (iii). By the 
induction hypothesis, K’ is an (m, n)-tree and, therefore, has a K,nZ+l- 
ordering. By adding y, to this ordering, a K,“,,-ordering for K is obtained. 
This completes the proof. 

In Fig. 1 below are shown two 2-complexes K and K’. Both complexes 
satisfy conditions (i) and (ii) above when m = 1 and n = 2. However, 
the complex K is a (1, 2)-tree while K’ is not. This example shows that 
condition (iii) is not redundant in the above theorem. 

K’: 

FIG. 1. A (1,2)-tree and a non-(1, 2)-tree. 

3. 

Beineke and Pippert in [2] have defined a “k-tree” as a graph made up of 
complete graphs on k vertices in a certain fashion. In their definition, 
these complete graphs play the same role as n-simplexes in an (m, n)-tree 
with m = n - 1. In an earlier paper [l, p. 2671, Beineke and Pippert 
characterize “2-trees” in several ways. Due to the formal equivalence of 
“2-trees” with (1, 2)-trees, their principal result is stated below as a 
theorem about (1, 2)-trees. For any complex K, denote by a,(K) the num- 
ber of k-simplexes in K. 
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THEOREM 2 (Beineke and Pippert). For a pure 2-complex, the following 
conditions are equivalent : 

(i) K is a (1, 2)-tree; 
(ii) K is (1,2)-connected and al(K) = 2 . or,(K) - 3; 
(iii) K is (1, %)-connected and a.JK) = a,,(K) - 2; 
(iv) K has no (1, 2)-circuits, a,(K) = 2 . u,,(K) - 3 and a,(K) = 

CL,(K) - 2. 

The equations involving a,,(K), a,(K), and N,(K) are of some interest. 
They extend the well-known basic relation a,(K) = a,(K) - 1 when K is 
a (0, l)-tree. The following set of equations contain generalizations of all 
these equations: 

%W) &K)-m- 1 n + 1 a&K)-n- 1 m + 1 = - k = n. n-m ( ) k+l n-m ( k+l 1 ’ 1, 2 ,..., 

We will call these equations the Beineke-Pippert equations for an n-complex 
K. For n = 2, the complete set of these equations appears in condition (iv) 
of Theorem 2. Denote the right-hand side of the kth equation by B,,%(k,K). 
When k > m, one takes the usual convention of setting (E’i) = 0. 

It will be established first that (m, n)-trees satisfy the appropriate set of 
Beineke-Pippert equations. Then after a sequence of three lemmas and a 
theorem, it will be shown that the following condition may be used to 
replace properties (ii) and (iii) in Theorem 1. 

THEOREM 3. Zf K is an (m, n)-tree, then c+(K) = B,,,(k, K), k = 
1, 2,. . . , n . 

Proof. This result is established by induction an a,(K). If a,(K) = 1, 
then or,(K) = (i$. Setting I+,(K) = n + 1 in the kth Beineke-Pippert 
equation yields the same result. Suppose that any (m, n)-tree having 
OL - 1 n-simplexes satisfies the kth Beineke-Pippert equation. Let K be an 
(m, n)-tree for which a,(K) = 0~. By definition, K has a K,“,,-ordering 
Yl 9 Y2 ,***, Ya . The n-complex K,-, = {y, , y, ,..., yuel} is also an (m, n)- 
tree and satisfies the kth Beineke-Pippert equation by the induction 
hypothesis. The number of new k-simplexes added in going from K,-, to 
K, is clearly (z!:) - (r!:) and, therefore, 

Q(K) = 
a,(K,-,) - m - 1 + (n - m) rz + 1 

n-m ( ) k+l 

%(K,-,) - n - 1 + (n - m) m + 1 - 
n-m ( ) k+l * 
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However, %(K) = CYJ&-J + (n - m), and thus K satisfies the kth 
Beineke+ippert equation. 

LEMMA 4a. If k, m, r, n are integers, and $0 < k < m d r < n, then 

(n - m)(L) - (3 3 (n - r)((J - (T)) 3 (0 

and this inequality is strict $0 < k < m < r < n. 

Proof. If k = 0 or m = r or r = n, the inequality is obvious. Assume 
that k > 0 and that m < r < n. Since (“:I) - (i) = &) for every 
positive integer t 3 k, 

> b - ‘)(k L 1) 

= E cr - m)(k 1 1) 

Therefore, (r - m)((;) - (I)) > (n - r>(G) - (3). Adding (n - r>((;) - (i)) 
to each side of this last inequality yields the inequality (i). 

LEMMA 4b. Let K be an (m, n)-tree, and let K,” be a complete k-sub- 
complex of K with p vertices, where 1 < k < n, p < n + 1. Then there is 
some n-simplex y of K such that Kpn C j?. 

Proof. The lemma is clearly true when K has just one n-simplex. Let K 
have r n-simplexes, and let yl, yz ,..., y, be a K,“,,-ordering of K. Assume 
that the lemma holds for all (m, n)-trees having r - 1 n-simplexes, and 
let KSk be a subcomplex of K = K, . If K,” C K,-, = (yl , y, ,..., yrpl}, 
then by the induction hypothesis, K,.-, (and thus KT) contains an n-simplex 
y such that K,” C J. Otherwise K,” has at least one vertex v in y,. which is 
not in K,-, . If K,” g J7 , then K,” also has a vertex u in Krpl , which is 
not in yT . Thus the l-simplex {u, v} is not incident with yT . But in this case, 
{u, v} must lie in K,-, , which implies that v lies in KTel , a contradiction. 
This proves the lemma. 
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Let SIm, Sal denote the set of all m-complexes containing one, respec- 
tively at least one, m-simplex. 

THEOREM 4. If 1 < k < m and if a pure n-complex K has an S>,- 
ordering y1 , yz ,..., Y, , then a,(K) 3 B,,,(k, K), and this inequality is 
strict unless y, , y, ,..., y, is a K,“,,-ordering. 

Proof. Let r be the largest integer i such that y1 , y, ,..., yi is a Kg+l- 
ordering of Ki = {yl , yz ,..., vi}. Since K, is an (m, n)-tree, olk(K,.) = 
B,Jk, Kr) by Theorem 3. Thus, if r = 01, the theorem follows. Suppose 
that r < 01. 

Denote by ak,i the number of k-simplexes in A( yi+I , Ki+J, 1 < i < 0~. 
Since A(Y,+~ , Ki+,) has n + 1 - (q(Ki+,) - a,(K<)) vertices, 

ak.i < 
( 

n f 1 - (ad&+& - 4KJ 

kfl 1. 
(0 

On the other hand, B,,Jk, Kdfl) - B,,,(k, Ki) may be written 

Since O<k+l <m+l ,<n+l-(~(Ki+l)--olo(K))~n+l, we 
may substitute these last four quantities for k, m, r, and n, respectively, in 
Lemma 4a to obtain 

Hence 

n+l ( 1 k+l 
- Olk,i 2 Bm,n(k, &-+I) - Bm,dk, &I* 

(ii) 

(iii) 

The inequality (iii) is now examined when i = r. By Lemma 4a, if 
m + 1 < n + 1 - (q,(K,+,) - %(K?)) < n + 1, then the inequality (ii) 
is strict and, therefore, so is (iii). Since y1 , y, ,..., yE is an S$-ordering, and 
since 

it follows that m + 1 < n + 1 - (ar,(K,+,) - %(K,.)). Suppose that 
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n + 1 - (u&,+,) - O&C,)) = n + 1. If the inequality (i) is strict when 
i = Y, then so is the inequality (iii). Suppose also that 

Then A(Y,+, , K,,,) contains a complete subcomplex KE,, . Therefore, 
K, contains Kt+, , and by Lemma 4b there is an n-simplex yi in K, such 
that Kt,, C ji . But thi s implies that 1 y5 n yi 1 = n + 1 while yj # yi , 
a contradiction. We conclude that the inequality (iii) is strict when i = r. 

Now add the inequalities (iii) for i = 1,2,..., 01 - 1. The sum of the 
left-hand sides is a,(K) - (F$) and the sum of the right-hand sides is 
B,,,(k, K) - (I$. Since 1 < r < (Y - 1, and since the rth inequality 
is strict, one obtains 

COROLLARY. If K is a pure (m, n)-connected n-complex, then OLD > 
B,,,(k, K), k = I,2 ,..., m. 

Proof. K is (m, n)-connected if and only if K has an S?$ordering. 

LEMMA 5a. A pure n-complex K has an &“-ordering if and only if the 
following properties hold for K: 

(i) K is (m, n)-connected; 
(ii) K has no (m, n)-circuits. 

Proof. Let K be a pure n-complex having an &“-ordering. Then K is 
shown to have properties (i) and (ii) above by the obvious inductive 
arguments. 

Let K be a pure n-complex having properties (i) and (ii). Suppose that 
a,(K) = r and that r = 1. Then K certainly has an Slm-ordering. Assume 
now that r > 1 and that every pure n-complex having r - 1 n-simplexes 
and properties (i) and (ii) also has an Slm -ordering. If every n-simplex of K 
has an attachment containing at least two distinct m-simplexes, then 
obviously an (m, n)-circuit may be found in K. Since r > 1 and since K 
satisfies condition (i), every n-simplex of K has an attachment containing 
at least two distinct m-simplexes. It now follows that K has at least one 
n-simplex y such that A(y, K) contains exactly one n-simplex. Let K’ = 
k - 1 and observe that K’ also has properties (i) and (ii). But a,(K) = 
r - I, and, therefore, by the induction hypothesis, K’ has an Slm-ordering 
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Yl 3 Yz T...? Yr-1 . Set y,. = y and observe that y, , y, ,..., y,-, , y, is an 
&“-ordering for K, completing the proof. 

THEOREM 5. A pure n-complex is an (m, n)-tree if and only ifit has the 
following two properties: 

(i) K is (m, n)-connected; 
(ii) elk(K) = B,,,(k, K)for at least one k such that I < k < m. 

Proof. Let K be an (m, n)-tree. Then K has a K$+,-ordering, and this is 
also an &“-ordering whence K is (m, n)-connected by Lemma 5a. By 
Theorem 3, K has property (ii) as well. 

Suppose now that K is a pure n-complex having properties (i) and (ii). 
Since K is (m, n)-connected, K has an X$-ordering y, , yz ,..., y, , and by 
Theorem 4 the inequality &K) 3 B,,,(k, K) is strict unless y1 , yZ ,..., ya 
is also a KE+l -ordering. Since ak(K) = B,,,(k, K), y1 , yZ ,..., ya is, in fact, 
a fCL- ordering and theorem is proved. 

Although conditions (i) and (ii) of Theorem 1 are not by themselves 
sufficient to characterize (m, n)-trees when m > 0 or n > 1, conditions (i) 
and (ii) of Theorem 5 are sufficient for this purpose. Thus in the presence 
of condition (i), a pure n-complex K containing no (m, n)-circuits and 
being (m, n)-simple is “worth” at least one of the Beineke-Pippert equa- 
tions holding. 

4. 

The question remains whether the following statement is true. 

6. A pure n-complex is an (m, n)-tree if and only if it has the following 
two properties: 

(i) K has no (m, n)-circuits; 
(ii) Q(K) = B,,,(k, K) for at least on k such that 1 < k < m. 

If it is true, then either one of the two equations in part (iv) of Theorem 2 
can be deleted. If it is not true, then perhaps statement 6 would be true 
with condition (ii) replaced by 

GO’ 4K) = B,&, K> for all k = 1, 2 ,..., m. 

It seems reasonable to conjecture that statement 6 altered in this manner 
would be true, but the results developed in this paper have not helped so 
far in my investigation of this conjecture. 

In any event, it is interesting to speculate that if the altered statement 
is true and the original statement is false, then the Beineke-Pippert 
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equations give us a kind of “currency” with which to measure the relative 
“worth” of other conditions. For in this case, if a pure n-complex K is 
(m, n)-connected, then we require the addition of only one Beineke- 
Pippert equation to ensure that X is an (m, n)-tree. On the other hand, 
if K has no (m, n)-circuits, then we require the addition of m Beineke- 
Pippert equations to ensure that K is an (m, n)-tree. Thus being (m, n)- 
connected would be “worth” somewhat more than having no (m, n)- 
circuits. 

I thank Professor C. St. J. A. Nash-Williams for interesting discussions 
of these problems, as well as Professor 0. P. Buneman for helpful com- 
ments on the paper itself. 

REFERENCES 

1. L. W. BEINEKE AND R. E. PIPPERT, Characterizations of 2-dimensional trees, “The 
Many Facets of Graph Theory” (G. Chartrand and S. F. Kapoor, Eds.), pp. 263-270, 
Springer-Verlag, Berlin, 1969. 

2. L. W. BEINEKE AND R. E. PPPERT, On the number of k-dimensional trees, J. Com- 
binatorial Theory 6 (1969), 200-205. 

3. F. HARARY, “Graph Theory,” Addison-Wesley, Reading, Mass., 1969. 
4. P. J. HILTON AND S. WYLIE, “Homology Theory,” Cambridge University Press, 

Cambridge, 1962. 


