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Abstract We study a quantum version of a penny flip game played using control
parameters of the Hamiltonian in the Heisenberg model. Moreover, we extend this
game by introducing auxiliary spins which can be used to alter the behaviour of the
system. We show that a player aware of the complex structure of the system used to
implement the game can use this knowledge to gain higher mean payoff.

Keywords Quantum information · Quantum games · Quantum control ·
Heisenberg model · Spin chain

1 Introduction

Game theory is used to describe the situations of mutual interaction of several parties,
where each party aims to maximize its gain. If one considers the physical system used
to define a game, it is reasonable to ask about the influence of physical laws on games.
As a result, one should consider more general notion of a game, where strategies are
defined in terms of quantum evolution and the system is described in terms of quan-
tum states. In such scheme the payoff function is defined as a mean value of some
chosen observables. As players in quantum games can use larger space of strategies
this should influence the expected value of the payoff [7,14].

The first example of a quantum game was provided in the form of a simple penny
flip game [14]. In this scenario the first player has two quantum moves, one before and
one after second player’s move. This game provides an example of situation when a
player with the ability to use quantum strategies can always win against a player using

J. A. Miszczak (B) · P. Gawron · Z. Puchała
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,
Bałtycka 5, 44-100 Gliwice, Poland
e-mail: miszczak@iitis.pl

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81164815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1572 J. A. Miszczak et al.

only classical strategies. Eisert et al. [7] provided a more elaborated example of a
two-person quantum game by constructing a quantized version of Prisoner’s dilemma
game. Recent developments in this area include the analysis of quantum games using
quantum walks [1,2] and the analysis of quantum games in the presence of decoher-
ence [3,9,10] with the special attention to the degradation of entanglement [11,18].
Quantum games also provide relatively easy scenarios for implementing quantum
information processing in physical systems [6,16,20] and can be used to probe the
influence of decoherence in such systems [8].

The main aim of this work is to provide a scheme for a quantum version of a penny
flip game, based on the Heisenberg chain model. We study a protocol for playing a
quantum game where two players implement their moves using control parameters
of the model. We show that for a two-qubit spin chain it is possible to harness the
complex structure of the system to obtain a higher mean payoff.

This paper is organized as follows. In Sect. 2 we review a classical penny flip (or
bit flip) game including a quantum versus classical player scenario. In Sect. 3 we
discuss the quantized version of the penny flip game played using control parameters
of a single qubit. In Sect. 4 we extend the previous model of the penny flip game and
discuss quantum strategies which can be achieved using an auxillary qubit. In Sect. 5
we provide the summary of the presented work and give some concluding remarks.

2 Penny flip game

Penny flip game, also known as a bit flip game, provides one of the simplest examples
used in many textbooks on game theory. It can be also easily used to show that by
using quantum strategies, represented by unitary gates, one of the players can always
win.

2.1 Classical version

Let us consider two parties (players)—Alice and Bob—playing a strategic game con-
sisting of flipping a coin. At the beginning of the game the coin is faced heads up. The
game consists of three moves. Alice plays first, then Bob and then Alice again. Each
of them can chose to flip or not to flip the coin. The coin is hidden, so they cannot see
it. Each of them does not know the actions of the other. The goal of Alice is that the
coin ends facing tails up. The goal of Bob is that it ends heads up.

The payoff matrix for the penny-flip game is presented in Table 1, where N is used
to denote the not-flipping strategy and F denotes the flipping strategy. One means that
Alice has won, minus one means that Bob has won and the game is a zero-sum game.

Table 1 Payoff matrix
for the penny flip game

NN NF FN FF

N −1 1 1 −1

F 1 −1 −1 1
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Heisenberg spin chain 1573

The above scenario can be described mathematically in a language of quantum
mechanics by using state vectors and unitary gates. In such description a coin is
replaced by a qubit and we map a coin facing heads up to state |0〉, and facing tails
up to |1〉. The flip operation corresponds to unitary matrix F = σx = (

0 1
1 0

)
i.e.

quantum Not gate, while not-flipping operator is described by the identity matrix,
N = 1 = ( 1 0

0 1 ).

The probability of winning for Alice and Bob can be calculated as the expectation
value of the σz operator

〈σz〉|c〉 = tr(|c〉〈c|σz), (1)

where |c〉 is the state of the coin after the second move of Alice.
One can easily see that in this scenario there is no winning strategy neither for Alice

nor for Bob.

2.2 Quantum versus classical player

In order to show how quantum mechanics can be used to cheat in the penny-flip game
one should note that in the above description Alice and Bob have only a very limited
set of operations at their disposal.

Let us now use a qubit instead of a penny and allow one of the players, namely
Alice, to use any unitary operation during her moves. In this situation any normalised
linear combination of the base states, α|0〉 + β|1〉, α, β ∈ C with |α|2 + |β|2 = 1,
describes an allowed state of a qubit representing a coin. Let us also assume that only
Alice knows that the game is played with a qubit.

The above condition allows Alice to win with probability 1. She can rotate the qubit
in any direction and prepare the state which is invariant with respect to any move Bob
can use. To achieve this, she may chose to apply a Hadamard gate, H = 1√

2

(
1 1
1 −1

)
,

during her both moves. Bob still has only two possibilities: to flip (σx ) or not to flip
(1). In these two cases we have

1. Hσx H |0〉 → |0〉,
2. H1H |0〉 → |0〉.
In the last step Alice can prepare a coin in state |1〉 by using σx operator. From the
above it follows that Bob’s actions have no influence whatsoever on the final state of
the coin and thus the outcome of the game.

One should note that we have restricted ourselves to pure strategies. More detailed
analysis of this game including mixed (probabilistic) strategies may be found in [17].

3 Qubit flip game

In the scheme described in Sect. 2.2 the player using quantum strategies was able to
always win. This situation was possible since the player using classical strategies was
not able to explore the possible space of states. As such, it is natural to ask how the
situation changes if both players are able to use quantum moves.
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Let us assume that both Alice and Bob are now aware of the fact that they are
playing the game using a qubit. Therefore now we have the following game

� = (H, |ψ〉, SA, SB, PA, PB), (2)

where H = C2 is a Hilbert space, |ψ〉 = |0〉 is an initial state, SA = U (2) × U (2)
the set of Alice’s strategies, SB = U (2) the set of Bob’s strategies and PA, PB are,
respectively Alice’s and Bob’s payoffs which are defined below.

The course of the game is as follows. Alice plays first—she applies her first element
of strategy, UA1 , on the initial state, then Bob plays applying his strategy UB , finally
Alice plays by applying the second element of her strategy, UA2 . Then the projective
measurement {Oheads → |0〉〈0|, Otails → |1〉〈1|} is performed. The final state of the
game (before measurement) is

|ψ f 〉 = UA2UBUA1 |0〉. (3)

Alice’s and Bob’s payoff functions depend on the probability of measuring Otails
and Oheads, respectively PA(SA, SB) = |〈1|ψ f 〉|2, PB(SA, SB) = |〈0|ψ f 〉|2 = 1 −
PA(SA, SB).

3.1 Two quantum players with one qubit

Pure strategies in this game cannot be in Nash equilibrium, that is why in searching for
optimality the players will use mixed strategies. To obtain Nash equilibrium the first
or the second player can use the variety of mixed strategies. Here we give examples
of two such strategies, namely Pauli strategy and Haar strategy. We will show that
these strategies give Nash equilibrium.

– Pauli strategy is a mixed strategy, where a player chooses one of four unitary
matrices {1, iσx , iσy, iσz} with equal probability.

– In Haar strategy a player chooses a random special unitary matrix distributed
with natural probability measure invariant with respect to unitary transformation,
i.e. the Haar measure.

We will show that if the second player uses one of the above strategies, then, no
matter what action the first player will take, the probabilities of the success for both
players are equal. We start with a definition.

Definition 1 A finite subset X of U (d) is unitary t-design [19] if

1

|X |
∑

U∈X

U⊗t ⊗ (U �)⊗t =
∫

U (d)

U⊗t ⊗ (U �)⊗t dμ(U ), (4)

where μ is the Haar measure on a group U (d).

Lemma 1 Let X be a unitary 1-design. Then a mixed strategy such that the second
player chooses to play a random element U ∈ X chosen with equal probability, gives
Nash equilibrium.
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Heisenberg spin chain 1575

Proof Let us denote the unitary matrices played by the first player as

UA1 = {ai j }2
i, j=1, UA2 = {bi j }2

i, j=1. (5)

Then the probability of success for the second player is given by

P̄B =
∫

U (2)

∣∣〈0|UA2UUA1 |0〉∣∣2
dμX (U ), (6)

where μX is a uniform probability measure supported on X . Simple calculations give
us

P̄B =
∫

U (2)

∣∣〈0|UA2UUA1 |0〉∣∣2
dμX (U ) (7)

=
2∑

i, j=1

|a1i b j1|2
∫

U (2)

|Ui j |2dμX (U ) (8)

+
∑

i �=k
j �=l

a1i b j1aki bl1

∫

U (2)

Ui jUkl dμX (U ). (9)

Since X is a unitary 1-design, the values of the above integrals are the same as the
value of integrals with respect to Haar measure [4]

∫

U (2)

Ui jUkldμ(U ) = 1

2
δikδ j,l , (10)

where μ is Haar measure on a group U (2). Finally, since UA1 ,UA2 are unitary, we get

P̄B = 1

2

2∑

i, j=1

|a1i b j1|2 = 1

2
. (11)

Thus, if the second player chooses to play a strategy given by a 1-design, no player
can benefit by altering their strategy. 	


Since the Pauli strategy forms a unitary 1-design, one can see that the Pauli strategy
gives Nash equilibrium.

The same holds true for the Haar strategy, but in this case to obtain the result one
needs to notice that

∫

U (2)

U ⊗ U �dμS(U ) =
∫

U (2)

U ⊗ U �dμ(U ), (12)

where μS is a Haar measure on a group SU (2).
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From the above considerations one can see that to achieve Nash equilibrium, Bob
can take any mixed strategy, in which he chooses unitary matrices with the distribution
ν satisfying the condition

∫

U (2)

U ⊗ U �dν(U ) =
∫

U (2)

U ⊗ U �dμ(U ). (13)

Moreover, it is easy to see the following.

Proposition 1 If the second player uses a mixed strategy by choosing uniformly from
a finite set X, then this strategy gives a Nash equilibrium if and only if set X is a
unitary 1-design.

The above result suggests that, if Bob aims to play optimally, he should always play
a strategy given be a unitary 1-design. In the following we assume that he always uses
the Pauli strategy.

3.2 Hamiltonian-based implementation on one qubit

The rules of the qubit-flip game can be described to reflect the constraints that are
imposed upon the physical realizations of the game. The players will be allowed to
program a quantum device that represents a one-qubit system. They will be constrained
by the execution time of the program and the set of available instructions.

Let us assume that, instead of being able to execute a fixed unitary transformation,
Alice and Bob are now allowed to play the bit-flip game by manipulating the control
parameters in the Hamiltonian H = Hc(t). Note that since there is no drift term in
this equation, we assume that players have complete control over the system. They are
only constrained by maximal fixed time T of the game turn. During this time Alice
and Bob can change values of the parameters hz and hy .

The realisation of the game in this set-up is as follows. Alice moves as the first player
and applies the series of control to the system, then Bob performs his sequence of con-
trols and, finally, Alice performs her second sequence as the last move in the game. Each
move is described by a sequence of parameters hy(0), hz(
t), hy(2
t), . . . , hi ((N −
1)
t), with hi = hy or hi = hz depending on the length of the sequence. We assume
that players cannot use hz and hy simultaneously. We will only consider the case where
the time for which the control is applied is equal for all the controls.

The final state of the game can be obtained from Eq. (3) with

UA1 = e−ih
A1
i ((NA1−1)
t)σi · · · e−ih

A1
z (
t)σz e−ih

A1
y (0)σy , (14)

UB = e−ih B
i ((NB−1)
t)σi · · · e−ih B

z (
t)σz e−ih B
y (0)σy , (15)

UA2 = e−ih
A2
i ((NA2 −1)
t)σi · · · e−ih

A2
z (
t)σz e−ih

A2
y (0)σy . (16)

To obtain the Pauli or Haar strategy the second player may calculate control
sequences using Euler decomposition of SU (2). For a given special unitary matrix
one can write
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Table 2 Control parameters for
realizing the Pauli strategy [5]

ξ1 ξ2 ξ3

1 0 0 0

iσx π/4 −π/2 π/4

iσy 0 −π/2 0

iσz −π/4 0 −π/4

(
eiφ cos(θ) eiψ sin(θ)

−e−iψ sin(θ) e−iφ cos(θ)

)
= ei φ+ψ

2 σz eiθσy ei φ−ψ
2 σz . (17)

Thus to obtain the Pauli strategy the second player chooses uniformly one of four
matrices from the Pauli strategy and takes control parameters (ξ1, ξ2, ξ3) from Table 2.

The player applies parameters as a control sequence with constant factor 3
T , each

of them for one-third of total time T , obtaining

e−iξ3σz e−iξ2σy e−iξ1σz , (18)

which is one of four matrices in the Pauli strategy.
On the other hand, to obtain the Haar strategy the second player may choose param-

eters ξ1, ξ2, ξ3 as

ξ1 = −φ − ψ

2
, ξ2 = − arcsin(

√
p), ξ3 = −φ + ψ

2
, (19)

where φ,ψ, p are independent random variables with φ,ψ ∼ U(0, 2π) and p ∼
U(0, 1). The player applies the chosen parameters with constant factor 3

T , each of
them for one-third of total time T , obtaining a random special unitary matrix with
Haar distribution [21] i.e. matrix from the Haar strategy.

4 Cheating with auxiliary spins

Let us now consider an extension of the qubit-flip scenario where one of the players,
namely Alice, is aware of the fact that the system used to play the game is composed
of two qubits. In this situation one can ask if, analogously to the situation in classical
versus quantum player, she can use this knowledge to get a better mean payoff.

4.1 Description of the scheme

In the following we are interested in a specific class of systems where the Hamiltonian
operator of the system is given as

H(t) = H0 + Hc(t) (20)

where H0 is the drift Hamiltonian and Hc is the control Hamiltonian.
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In the case of time-independent Hamiltonian (Hc(t) ≡ 0) the unitary matrix U
describing the time evolution of the system in question is obtained from the Hamilto-
nian operator of the system by U = exp (−i t H0) for a given t .

However, we are interested in the situation where Hc(t) �≡ 0 and we are going to
consider the control Hamiltonian, such that control parameters are piecewise constant
in time. In this situation the resulting unitary evolution is of the form

U =
N−1∏

n=0

e−i
t (H0+Hc(n
t)) = U ((N − 1)
t) . . .U (
t)U (0). (21)

The Hamiltonian operator of the system used to play the game in such case is given
as in Eq. (20) with

H0 = J (σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) (22)

and

Hc(t) = hy(t)σy ⊗ 1 + hz(t)σz ⊗ 1. (23)

Here σx , σy, σz are Pauli matrices σx = ( 0 1
1 0 ), σy = ( 0 −i

i 0 ), σz = ( 1 0
0 −1 ) and the

parameter J ∈ R is the coupling constant [12].

4.2 Mimicking one-spin behaviour

If Alice aims to cheat against Bob by using auxiliary spins, the first challenge she
has to face is to convince Bob that the system is constructed in such a way that both
players can win with equal probability. Let us assume that Bob can study the system
used to play the game with a series of experiments before actually playing the game.
The only possible experiment Bob can make is to play the game against Alice with
the best possible strategy and observe his mean payoff. If the payoff is equal to 1/2,
then he must assume that both players have an equal probability of wining.

In order to achieve this effect, Alice must choose the value of J/T in such way,
that if both players use the Pauli strategy they cannot distinguish if they are using a
device composed of one or two qubits using the information about the mean payoff
only.

Let us assume that T = 1. If the system (the spin chain) used to play the game is
composed of two qubits only, Alice is able to convince Bob that they are using one
qubit only.

In Fig. 1 Bob’s mean payoffs for different values of the coupling constant J are
presented. In the case of a spin chain composed of two spins, the smallest value of J
greater than zero, such that the condition for the game appears to be fair, is equal to
J/T ≈ 4.10469.
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Heisenberg spin chain 1579

Fig. 1 Mean value of Bob’s payoff in function of spin chain coupling strength J when both players use
Pauli strategy. The inset plot shows the behaviour of the payoff for very large values of J

4.3 Mean payoff for Alice

Having the value of J/T fixed, we can assume that Bob always uses the optimal strat-
egy, i.e. he aims to achieve the probability of wining equal to 1/2. In the following we
assume that he always plays the Pauli strategy and applies three controls.

Let be given H0, the drift Hamiltonian, which is known to Alice only and T , the
time for each move, known to both players. Alice’s goal is to optimize the following
functional

PA(h1,h2) = 1

4

4∑

i=1

〈1|tr2(|ψ f
i 〉〈ψ f

i |)|1〉 (24)

with respect to control vectors h1 and h2. The final state of the game |ψ f
i 〉 reads

|ψ f
i 〉 = U (h2)ViU (h1)|00〉, (25)

where matrices U (h1) and U (h2) are defined as in Eq. (21). Matrices Vi describe one
of Bob’s possible moves,

Vi = e−i T
3 (H0+ 3

T ξ
(i)
3 σz⊗1)e−i T

3 (H0+ 3
T ξ

(i)
2 σy⊗1)e−i T

3 (H0+ 3
T ξ

(i)
1 σz⊗1), (26)

where ξ (i)k , k = 1, 2, 3 are control parameters from i th row of Table 2.

4.3.1 Optimal strategy for Alice

In order to find optimal control sequences allowing to maximize the final output we
have used nonlinear conjugate gradient algorithm [15] implemented as a part of SciPy
open-source mathematical software distributed with modified BSD license [13].
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Controls that maximize Alice’s payoff. a and b show the sequence of pulses that generate gates UA1
and UA2 , respectively when Alice chooses to apply only three controls to run her strategy. In this case her
probability of winning is equal to 0.97. Similarly c and d represent her strategy using 6 pulses per gate; in
this case her probability of winning is 0.988. e and f represent 9-pulse strategy which gives the probability
of winning 0.999

In Fig. 2 the sequences of control pulses allowing Alice to obtain mean payoff
equal approximately to 1 are presented. It is easy to observe that she is able to exploit
the internal structure of the system by using a very short sequence of control pulses.
Additionally, the gain obtained by increasing the length of control sequences is very
small.

From the Fig. 2 one can conclude that the knowledge of the dimensionality of the
system can be easily used to cheat against the opponent. This situation resembles the
one described in Sect. 2.2, where one of the players was playing using the classical
moves only. In our case, however, both players are able to exploit quantum strategies.

4.3.2 Optimal strategy for Bob

Let us now assume that the device used to play the game was prepared not by Alice,
but by Bob. In such situation only Bob is aware of the internal structure of the system
and he may use it to increase his payoff.
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(a) (b)

(c) (d)

Fig. 3 Controls that maximize Bob’s payoff. a shows the control vector that generates Bob’s strategy when
using 3 control parameters, in this case his payoff is 0.713. b, c and d show Bob’s controls of length 6, 9
and 12 giving payoffs 0.804, 0.8241 and 0.8246, respectively

We can distinguish the following two scenarios where Bob aims to cheat against
Alice:

1. Bob uses one auxiliary qubit and he tries to find the best possible sequence of
controls;

2. Bob adds more auxiliary qubits and tries to find the best sequence of control
pulses.

Optimization over the number of controls We may assume that now Alice is using the
Pauli strategy. The J/T was chosen so that both players have no reasons for suspecting
that the system has higher dimensionality.

In Fig. 3 the sequences of control pulses allowing Bob to achieve mean payoff
greater than 1/2 are presented.

Optimization with additional qubits Let us now consider the scenario where Bob is
able to add more auxiliary qubits and build a longer spin-chain. Unfortunately, in this
situation it is impossible to find J/T such that the mean payoff for both players using
the Pauli strategy is 1/2. For this reason we must assume that Bob convinced Alice to
play the qubit flip game using his device without allowing her to check it by playing
with the Pauli strategy.

The maximal payoffs obtained by Bob in this scenario are presented in Table 3.
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Table 3 Bob’s maximal payoff for a different size of a chain in the case of using three control pulses

Chain length 2 3 4 5 6 7

Maximal payoff 0.713 0.920 0.925 0.901 0.901 0.951

5 Concluding remarks

We have discussed some possible realizations of a penny flip game in a quantum
system. First, we have assumed that both players are aware of the fact that they play
the game using a qubit. In the next step we have extended the model by adding an
additional qubit.

In the second case only the first player was aware of the fact that the game is played
on a two-qubit system and of the type of interaction between qubits. We have shown
that in such a situation she is able to achieve a mean payoff equal to almost 1. More-
over, it is enough to use one auxiliary qubit (spin) only to achieve this effect. This
shows that in the situation when one of the parties is not aware of the dimensionality
of the system, the other can easily use this fact to play unfairly.

To show that also the second player can gain by harnessing the dimensionality of
the system we have introduced a scenario where he tries to cheat with auxiliary qubits
against the first player. We have shown that the payoff of the second player grows with
the number of controls and with the number of auxiliary qubits.

The presented work leaves open a problem of the behaviour of the game in the
situation where players, or at least one of them, are able to use more general strat-
egies, namely strategies described by quantum channels. This would also allow to
incorporate the influence of noise on the course of the proposed game.
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chains. Phys. Rev. A 82(5), 52–333 (2010). doi:10.1103/PhysRevA.82.052333

13. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://
www.scipy.org/

14. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055 (1999). doi:10.1103/PhysRevLett.
82.1052

15. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)
16. Pakuła, I.: Quantum gambling using mesoscopic ring qubits. Phys. Stat. Sol. B 244(7), 2513–2515

(2007). doi:10.1002/pssb.200674643
17. Piotrowski, E.W., Sładkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42, 1089–

1099 (2003). doi:10.1023/A:1025443111388
18. Ramzan, M., Khan, M.: Distinguishing quantum channels via magic squares game. Quantum Inf.

Process. 9(6), 667–679 (2010). doi:10.1007/s11128-009-0155-4
19. Roy, A., Scott, A.: Unitary designs and codes. Des. Codes Cryptogr. 53(1), 13–31 (2009). doi:10.1007/

s10623-009-9290-2
20. Schmid, C., Flitney, A., Wieczorek, W., Kiesel, N., Weinfurter, H., Hollenberg, L.: Experimental

implementation of a four-player quantum game. New J. Phys. 12, 31–63 (2010)
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