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Abstract
Background: Microbial fuel cells (MFC) and microbial electrolysis cells are electrical devices that
treat water using microorganisms and convert soluble organic matter into electricity and hydrogen,
respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during
production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation
inhibitors which accumulate in process water and make the water recycle process difficult. Use of
MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is
investigated in this study.

Results: Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4-
hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is
demonstrated here. An integrated MFC design approach was used which resulted in high power
densities for the MFC, reaching up to 3700 mW/m2 (356 W/m3 net anode volume) and a coulombic
efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was
characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial
consortium dominated by δ-Proteobacteria (50%), along with β-Proteobacteria (28%), α-
Proteobacteria (14%), γ-Proteobacteria (6%) and others was identified. The consortium
demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20
mM) with near complete removal, while maintaining long-term stability with respect to power
production.

Conclusion: Use of MFCs for removing fermentation inhibitors has implications for: 1) enabling
higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2) improved water
recycle and 3) electricity production up to 25% of total biorefinery power needs.

Background
Microbial fuel cells (MFCs) are devices which convert
organic matter to energy (electricity or hydrogen) using

microorganisms as catalysts (Figure 1). Conversion of sug-
ars, organic acids and other degradable matter to electric-
ity has been demonstrated [1,2]. The use of this
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technology for electricity production is currently limited
by power density [3] and bioelectrochemical losses [4],
although significant effort is being made to overcome
these limitations [5-12]. The primary targets for applica-
tion of this technology include wastewater treatment with
simultaneous electricity production and low-power-utiliz-
ing remote sensors, although many other applications are
being investigated [5,13,14]. Significant progress has been
made in recent years in understanding the factors affecting
the power density. We have recently reported developing
integrated anode designs and biocatalyst enrichments by
combining multiple modes resulting in power densities
above 300 W/m3 [15], which is approaching the power
densities needed for commercial consideration [4].
Improvements in developing sustainable cathode design
can bring this technology closer to commercialization
[16-18]. Additionally, production of hydrogen instead of
electricity can significantly improve economics [19-21].

Biochemical conversion of renewable feedstocks to etha-
nol is being investigated at commercial scale for biofuels
production [22,23]. Processing biomass for biochemical
conversion of polymeric carbohydrates by fermentation
requires an initial thermochemical step, called pretreat-
ment, using either acidic or basic conditions at elevated
temperatures [24,25]. Unfortunately, under these condi-
tions, fermentation inhibitors are produced during pre-
treatment of biomass and include sugar degradation
products such as furfural and 5-hydroxymethylfurfural
(HMF), lignin degradation products such as phenolic
acids, alcohols and ketones, plus acetate from deacetyla-
tion of hemicellulose. These inhibitors can affect the fer-
mentation microorganism's ability both to produce
ethanol and to grow, depending upon the type of ethanol-

ogen selected [26]. The concentrations of the inhibitors
present after pretreatment varies depending upon the pre-
treatment technology and fermentation feedstock, and
concentration as low as 5 mM of any inhibitor can impact
the fermentation, depending on the ethanologen used
[27]. Existing technologies that have been investigated for
inhibitor removal include ion exchange and membrane-
based technologies [28], polymeric adsorbent [29], chem-
ical agents that precipitate contaminants such as Ca(OH)2
– often referred to as overliming [30] – and solvent extrac-
tion [31]. Unfortunately, all these approaches are only
partially effective, add considerable costs to the fermenta-
tion process, and still leave much of the various inhibitors
in the process streams. Any attempt to recycle and reuse
process water is significantly limited due to build-up of
these inhibitors, even though water recycle was reported
to be a critically important parameter in biorefinery proc-
ess integration especially with the industrial requirement
for high solids loading of > 20% w/w that yield higher
concentrations of inhibitors [32].

The use of MFCs for removal of acetate has been reported
previously [33-35]. Here, we demonstrate the removal of
the fermentation inhibitors produced during biomass pre-
treatment including the sugar degradation products (fur-
fural, HMF) and lignin degradation products (phenolic
acids, aldehydes and ketones) with simultaneous electric-
ity production. This is the first study investigating electro-
genic conversion of furans and phenolic molecules. One
study reported the effect of the inhibitors on sugar conver-
sion in MFCs, but not the transformation of these mole-
cules themselves [36]. MFC parameters such as power
density, coulombic efficiency, composition of the anode
microbial community and stability were investigated. The
impact of including an MFC in the biorefinery process
recycle stream for inhibitor removal is discussed. A
number of factors including inhibitor levels, degree of
mineralization, byproduct formation, MFC performance,
stability, maintenance, contamination, cost, effect on eth-
anol yield and others were considered in determining the
suitability of applying MFCs for controlling inhibitor con-
centration in biorefinery recycle streams and consequen-
tially improving the potential for water recycle and reuse.

Results
Enrichment of microbial consortium
The inoculum obtained from an acetate-fed MFC (Borole,
et.al., Improving power production from acetate-fed
microbial fuel cells via enrichment of exoelectrogenic
organisms in continuous flow systems, unpublished man-
uscript) was enriched on a mixture of fermentation inhib-
itors including 2-furfural, 4-hydroxybenzaldehyde (HB,
model phenolic aldehyde), 4-hydroxyacetophenone
(HAP, model phenolic ketone) and vanillic acid (VA,
model phenolic acid). Growth of a microbial consortium

Representation of a biofuel cell with a microbial anodeFigure 1
Representation of a biofuel cell with a microbial 
anode.
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using these molecules as the carbon and energy source
was studied. Current production in MFCs is typically
assessed by applying an external resistance across the
anode and cathode (closed circuit) and measuring the
voltage output. During startup, the carbon source is typi-
cally used for microbial growth which results in an
increase in the voltage output [37]. Change in voltage in a
closed circuit is typically used to measure the amount of
electricity that can be produced. Figure 2A shows the
increase in voltage output from the MFC with an applied
external resistance of 500Ω. The spikes in the voltage
curve indicate open circuit voltage (OCV) measurements.
The OCV increased to 0.56 V in the first 9 days. The volt-
age output (in closed circuit) during this time was low,
indicating that part of the carbon source was being used
for growth of microorganisms. The total electron recovery
in the form of current during the 17-day experiment was
about 7%. A specific order of depletion was observed for
the model compounds studied, as indicated via monitor-
ing of the substrate molecules by high performance liquid
chromatography (HPLC) in real time. 2-furfural was the
first one to be consumed, followed by HB, VA and HAP,
in that order (Figure 2B). The trend in the voltage output
(under closed circuit conditions) correlated with the con-
sumption of the individual substrates, For example, the
initial voltage peak of 0.017 V on day 5 corresponded with
depletion of 2-furfural, followed by a peak of 0.03 V on
day 7 corresponding with the depletion of HB. The con-
centration of the inhibitors remaining after day 7 was
reduced by dilution with fresh medium at a ratio of 1:3, to
minimize potential inhibitory effects of the remaining
phenolic compounds and to promote further growth.
Glucose was also added on day 7 to promote microbial
growth and was consumed immediately with a concomi-
tant rise in voltage output to 0.3 V (day 8) as shown in Fig-
ure 2A. The consumption of VA was observed between day
9 and day 15. Consumption of HAP was initiated on day
7, and continued beyond day 15. The voltage output
decreased to below 0.02 V on day 18, indicating lack of
substrate availability. A relatively stable voltage was
obtained between day 13 and day 18 (0.22 ± 0.02 V). The
MFC was operated at a 50Ω load thereafter and a voltage
of 0.15 V or higher was obtained when adequate substrate
was provided. The microbial consortium was investigated
with a potential biorefinery application in mind; as such,
the ability of the consortium to handle a broad substrate
range, streams with multiple substrates present at the
same time and concentrations representative of biorefin-
ery streams was examined. After the initial enrichment,
studies with individual substrates as well as multi-sub-
strate studies were carried out, including HMF to broaden
the substrate range further.

Effect of the inhibitor concentration
The concentration of fermentation inhibitors in a pre-
treated biomass slurry or a typical biorefinery recycle
stream ranges from a few mM to 20 mM or more [23,27].
The effect of the fermentation inhibitors on ethanol pro-
duction in a cellulosic fermentation process increases with
the concentration [27]. The effect of 2-furfural on electric-
ity production was studied at a concentration of 0.1 g/l to
2 g/l (20.8 mM). Electricity production was observed at all
concentrations without any decrease in the voltage output
(under closed circuit) with increasing concentration. The
voltage output did not increase either, with increasing
substrate concentration, since the substrate was added in
a fed-batch manner and even at a low concentration of 0.1
g/l the concentration was sufficient to produce steady
voltage for a few hours. Under these conditions, the max-
imum voltage output was limited by the cathodic reac-
tion, as indicated by operation of the MFC with a
ferricyanide cathode, which showed much higher current
output. Cathode limitations have been demonstrated pre-
viously [11,38,39] and also for the MFC configuration
used in this study (unpublished study). Electricity produc-
tion was also observed with the other substrates at all con-
centrations, but the voltage output was lower. The
concentrations of other substrates examined were as fol-
lows: HMF (0.1 to 2 g/l), HB (0.1 to 1 g/l) and VA (0.1 to
4 g/l).

The effect of acetate concentration on electricity produc-
tion was also studied in a different MFC (MFC-B) using
the consortium enriched on acetate. The power density
obtained using acetate and 2-furfural as substrates in two
different air-cathode MFCs at various concentrations is
shown in Figure 3. The concentration of the fermentation
inhibitor did not have any adverse effect on the power
density, but instead resulted in an increased current den-
sity. The higher current densities at the high concentration
indicate a high level of substrate tolerance by the micro-
bial consortium.

Substrate conversion and coulombic efficiency
The degree of conversion of the inhibitor molecules is an
important parameter during consideration of the MFCs
for application in biorefinery recycle water clean-up.
HPLC analysis of the samples during the course of the run
showed the appearance of a few intermediates which were
eventually consumed. The intermediates were not charac-
terized in this study, except to determine the retention
time by HPLC. The removal of 2-furfural and HMF was
near complete. The coulombic efficiency (CE) of an MFC
is the ratio of the total charge recovered from the MFC as
electricity to the maximum charge possible from complete
conversion of the substrate to electricity. The CE for fur-
fural, HB and HMF was 69 ± 3%, 64 ± 4% and 60 ± 4%,
respectively. The CE for conversion of VA and HAP was
Page 3 of 14
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Removal of fermentation inhibitors with simultaneous production of electricityFigure 2
Removal of fermentation inhibitors with simultaneous production of electricity. The voltage output during the 
growth of the microbial consortium in MFC-A is shown in section A. The open circuit voltage (red squares) is plotted on the 
secondary Y axis. The removal of fermentation inhibitors used as substrates in the MFC follows the following trend: 2-furfural, 
HB, Vanillic acid, 4-HAP (Section B).
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much lower due to low voltage output from these two
substrates, and therefore was not quantified. Although the
voltage output from the MFC using VA and HAP was low,
these substrates were removed by the microbial consor-
tium in the MFC.

Maximum power density of the MFC
Power density is an important parameter for determining
the cost-effectiveness of MFCs if electricity production is
the sole purpose of their application. Water recycle and
ethanol yield are more important parameters in the case
of the biorefinery application. Nevertheless, energy recov-
ery from the process has to be considered in the overall
economic feasibility. The use of a ferricyanide-based cath-
ode has been shown to result in higher power densities as
compared with a Pt-based air-cathode in MFC studies
[37], and its use allows determination of the electron pro-

duction ability of the anode biocatalyst. Each of the inhib-
itors was studied individually with the ferricyanide
cathode. The results for 2-furfural, 5-HMF and HB are
shown in Figure 4. A maximum power density of 3490
mW/m2 (336 W/m3) was obtained for 2-furfural as the
substrate. HMF produced 2510 mW/m2 (238 w/m3),
while HB produced 630 mW/m2 (62 W/m3).

The electricity produced with VA and HAP as substrates
was 150 mW/m2 and 9 mW/m2, respectively (data not
shown). It was observed that the power output from the
MFC using these phenolic substrates increased with time.
It should be noted that the power density analyses with
the phenolic substrates was conducted post-operation of
the MFC with furan substrates (2-furfural and HMF) for a
prolonged period (45 days). Since a substrate preference
was also observed during initial enrichment (Figure 2), it

Removal of 2-furfural and acetate from an aqueous stream with concentrations up to 2 g/l and 10 g/l, respectively, demon-strates tolerance of the MFC consortia to high concentrations of inhibitorsFigure 3
Removal of 2-furfural and acetate from an aqueous stream with concentrations up to 2 g/l and 10 g/l, respec-
tively, demonstrates tolerance of the MFC consortia to high concentrations of inhibitors. The power density of 
the MFC remains constant above a threshold inhibitor loading since the power output is limited by the air cathode, vs the sub-
strate concentration on the anode side.
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is likely that the microbial population shifted towards
organisms that would use the furan molecules as sub-
strates. A low population of microbes capable of using
HB, VA and HAP as substrates in the consortium can
potentially explain the low power density observed for
these substrates.

MFC stability
The MFC was operated for a total period of 10 months. It
was operated with an air cathode for the first 6 months,
and with a ferricyanide cathode, thereafter. The operation
was conducted in a closed-loop anode liquid recirculation
mode with an intermittent change of the liquid medium
as indicated in the Methods section. The voltage output of
the MFC was dependent on the substrate used. Using 2-
furfural as the substrate, the voltage output was relatively
stable (at 0.15 ± 0.02 V at a 50Ω load), if adequate sub-

strate was provided and the anode pH was maintained. A
pH polarization was observed in the MFC as reported else-
where for two-chamber MFCs [40]. The stability of the sys-
tem was assessed during unplanned events of substrate
limitation and pH drop. After operation of the MFC with-
out substrate for a 24 to 48 hour period, the voltage out-
put was found to return to 0.15 ± 0.02 V within 1 to 2
hours of substrate addition. A similar observation has
been reported in other MFC studies investigating short-
term substrate starvation [41]. Similarly, after operation
of the MFC at a pH below 6.0 for a period of 24 to 48
hours, a similar response was observed. The MFC was
operated with a ferricyanide cathode for a 4-month
period, during which the high power density was main-
tained and actually increased up to 3700 mW/m2, with 2-
furfural as the substrate. This indicated the relative stabil-
ity of the power output and the MFC operation.

Power density curves for fermentation inhibitor removal in MFCs at a concentration of 0.2 g/l, using a ferricyanide-cathodeFigure 4
Power density curves for fermentation inhibitor removal in MFCs at a concentration of 0.2 g/l, using a ferricy-
anide-cathode.
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Microbial characterization
A total of 95 clones were sequenced from a library created
from the sample collected on day 83 from the MFC anode
Clone library, Accession # FJ823862 – FJ823945). Eleven
sequences were excluded from phylogenetic analyses
because they were found to be chimeras. The microbial
community was dominated by δ-Proteobacteria which
constituted 50% of the clone library population (43
clones from a total of 84 clones) (Figure 5). The closest
match to this group was a previously uncultured environ-
mental bacterium Proteobacterium Core-3 enriched in a
consortium in an electrochemically-assisted bioreactor
using iron for respiration. The 43 strains were not all sim-
ilar and exhibited between 92 to 99% similarity to the
strain Core-3. Additionally, the closest known genus sim-

ilar to this group of organisms was Desulfovibrio (92 to
99% similarity). This group was designated as Group A
(Table 1). The similarity data given here is based on 16S
rRNA obtained using PLAN or BLAST [42].

The remaining 41 clones in the library had significant
diversity, representing more than 14 genera. Of these 41
clones, 24 clones were genetically similar to potential exo-
electrogens reported in the literature. These 24 clones
were divided into three groups based on phylogeny (B to
D, Table 1). Group B (12 clones) showed 94 to 99% sim-
ilarity to a strain 24d08 (EF515439) enriched in an MFC
by Angenent's laboratory This group was similar to the
genus Azospira (89 to 97% similarity). Group C (3 clones)
exhibited 95% similarity to a Proteobacterium Core-1,

Table 1: Distribution of microbial population in MFC.

Clone # Closest relatives of known Genus Accession # Query Coverage, %† % similarity Group #‡

A01, A04, A07, A09, A10, A11, A12, B01, B03, 
B08, B09, B10, B11, C03, C04, C05, C07, C10, 
C11, C12, D01, D02, D03, D06, D10, E03, E05, 
E07, E11, E12, F03, F05, F08, F11, F12, G01, 
G04, G10, G11, H02, H04, H07, H10

Desulfovibrio intestinalis, strain KMS2 Y12254.1 98 92–99 A

B12, C01, D07, E09, F01, F04, F10, G02, G09, 
H01, H03, E10

Azospira oryzae strain N1 DQ863512.1 100 89–97 B

B04, B05, D11 Azospira oryzae strain N1 DQ863512.1 100 94–95 C

A08, B06, B07, C06, C09, D05, D08, E02, G03 Proteobacterium LS-1 AB111107 92 95 D

D09 Anaerofilum agile X98011.1 97 89

C08, F06 Dysgonomonas gadei strain 1145589 Y18530.1 98 95

C02 Fenthion-degrading bacterium FP1–6 DQ120938.1 100 91–98

A02 Oscillibacter valericigenes sp. AB238598.1 97 95

H05, E01 Ralstonia eutropha H16 AM260479.1 100 92

G05 Ralstonia metallidurans CH34 CP000353.1 100 98

D12, F07, G07, H08 Comamonas sp. XJ-L67 EU817492.1 99 99

A03, B02 Ochrobactrum sp. 1605 DQ989292.1 100 99

E06 Pseudomonas sp. FP1–1 DQ118951.1 99 99

G08 Ralstonia sp. PHD-11 DQ374436.1 100 90

F02 Bacterium 7B9 DQ298776.1 94–100 90–94

† The query coverage and % similarity are based on 16S rRNA homology search conducted using nucleotide BLAST.
‡ The group # is provided only for clones which were similar to potential exoelectrogens.
The closest known genus to the clone is listed. The group # refers to clones which were found to be similar to potential exoelectrogens reported 
in literature.
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which came from the same electrochemical bioreactor as
strain Core-3. Group D (9 clones) exhibited 94 to 97%
similarity to an organism Proteobacterium LS-1, which was
also from the same electrochemical bioreactor as strain
Core-3. The phylogenetic tree for the MFC community is
shown in Figure 6. Thus, 80% of the population showed
some level of phylogenetic similarity to potential exoelec-
trogens reported in literature. The details of the percent
similarity and query coverage for all clones are available in
the Table 1. The other clones demonstrated similarity to
organisms capable of degradation of various xenobiotic
molecules including phenols, methyl parathion and fen-
thion, as well as those capable of selenium reduction.
Some of these organisms may also be exoelectrogenic;
however, the closest organism to these clones based on
similarity analysis using BLAST was not a known exoelec-
trogen.

Discussion
A proof of principle for removal of fermentation inhibi-
tors from aqueous streams using MFCs is demonstrated.
In order to assess the potential applicability of the MFCs
for removal of fermentation inhibitors from biorefinery
process streams, the following points are considered: 1)
percent removal of fermentation inhibitors and degree of

mineralization; 2) ability to handle high concentrations
of inhibitors, representative of biorefinery streams; 3) per-
formance of MFCs with mixed-substrate feed (multiple
inhibitors at the same time); 4) stability of the MFC per-
formance including power output and identification of
parameters requiring control; and 5) total power gener-
ated by implementing MFCs in biorefineries.

MFC performance
The removal of six model fermentation inhibitor com-
pounds via electrogenic conversion was studied in this
work. Near-complete removal of 2-furfural and HMF was
observed, although it required continuous recirculation of
the aqueous phase. Further work with continuous flow
and single-pass operation is needed to further improve
the efficiency of operation. Removal of 2-furfural was
observed with a final concentration (including all byprod-
ucts) below 0.05 mM (99% removal) at the laboratory
scale. The CE data indicated 60 to 69% conversion of the
inhibitors to electricity. The balance of 31 to 40% of the
inhibitor was probably assimilated into cells or biofilm
since no persistent byproducts were observed. Experi-
ments with inhibitor concentration up to 20 mM did not
prevent electricity production, indicating that the model
compounds tested were not inhibitory to the anodic

Distribution of microbial population in MFC enriched on fermentation inhibitors to the Class level or belowFigure 5
Distribution of microbial population in MFC enriched on fermentation inhibitors to the Class level or below.
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microbial biofilm consortium. The ability to handle
multi-substrate mixtures containing 2-furfural, HB, VA
and HAP was also demonstrated. The effects of byprod-
ucts produced during MFC treatment on fermentation are
important criteria in determining the success of this tech-
nology in its application to the biorefinery process. The
HPLC data indicated near-complete mineralization of the
2-furfural and HMF, thus implying minimal potential for
any adverse effects on the fermentation process. Further
work is needed to investigate the byproducts from the
lignin degradation model compounds.

The long-term stability of the MFC depends on imple-
menting process control to maintain key operating
parameters in a desired range. Some of these parameters
include pH, substrate loading, flow rate and oxygen trans-

port into the anode chamber. A pilot-scale MFC study
identified a number of parameters including these that
need to be controlled to enable stable MFC operation
[43]. The operational stability of the MFC with respect to
power output was investigated and was found to be quite
stable, provided sufficient substrate and neutral pH were
maintained. After the initial inoculation, the anode bio-
catalyst did not require any replacement and functioned
stably with nutrient replacement, substrate addition, pH
control, and periodic flushing of the anode to remove
planktonic cells, or excess microbial biomass over the
complete 10-month period.

Microbial diversity in exoelectrogenic consortium
This is the first report on direct conversion of sugar and
lignin degradation products into electricity. Therefore, the

Phylogenetic tree of MFC anode consortium enriched using fermentation inhibitors as the carbon and energy sourceFigure 6
Phylogenetic tree of MFC anode consortium enriched using fermentation inhibitors as the carbon and energy 
source.
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 G05 

 Ralstonia eutropha VKPM B8562 (AJ633675) 
 H08

 F07
 D12
 G07
 Uncultured Comamonas sp. clone DS091 (DQ234174) mangrove 
 Comamonas sp. XJ-L67 (EU817492) aerobic biodegradation of DBP

Beta 

 Bacterium 7B9 (DQ298776) from community exposed to nutrient flux
 Stenotrophomonas acidaminiphila (AF273080) upflow anaerobic sludge blanket  reactor

 F02
 C02

 Fenthion-degrading bacterium FP1-6 (DQ120938) 
 Pseudomonas sp. 7021 (AM111023) deep sea sediment of the east Pacific
 E06
 Pseudomonas sp. FP1-1 (DQ118951) 

Gamma

Proteobacteria

 A02 
 Oscillibacter valericigenes (AB238598) anaerob from alimentary canal of Japanese clams

 Anaerofilum agile DSM 4272 (X98011) anaerobic bioreactor
 Elbe River snow isolate Iso15_5 (AF150697) community of lotic organic aggregates

Firmicutes

 C08,F06 
 Dysgonomonas gadei str. 1145589 (Y18530) human gall bladder 100

100

100

100

100

99

89
99

73

100

100

64

75
98

95
100

57

99

100

100

65
81

92

100

100

99

75

99

61
100

99

64
85
99

92
76

100

100

56

84

80
53

99

72
69

Bacteroidetes 

0.05
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microorganisms involved in the biochemical conversion
are novel. None of the 84 clones sequenced showed 100%
similarity to any known organism. Three of the 84 clones
showed 99% similarity to identified organisms, of which
one was a Comamonas sp. and the other two Pseudomonas
spp. The potential exoelectrogens identified in the MFC-A
demonstrated 89 to 99% similarity to reported exoelectro-
gens. Although about 80% of the clones sequenced from
the 16S clone library of the MFC sample showed phyloge-
netic similarity to known exoelectrogens, very little is
known about how the organisms may be interacting with
electrode materials. The phylogenetic tree (Figure 6) dem-
onstrates the significant microbial diversity of these
organisms and indicates that such organisms may be
present in diverse environments such as termite gut,
anaerobic sludge reactors, sediments, metal-reducing
environments, insecticide-contaminated environments,
and so on.

The enrichment strategy used in this study targeted selec-
tion of biofilm-forming, exoelectrogenic organisms,
reported previously with sugars and organic acids as the
energy source [15]. A compact, flow-through anode
design and a dual flow-rate regime was used to minimize
non-biofilm forming organisms. The inoculum used for
this enrichment was obtained from an acetate-fed MFC
(Clone library Accession # FJ823774 – FJ823861). The
dominant organisms in the acetate MFC were from the
class β-Proteobacteria (71%), followed by δ-Proteobacte-
ria (13%) and γ-Proteobacteria (5%). Enrichment with
furan and phenolic molecules as substrates resulted in
substantial change in the population resulting in a con-
sortium containing 50% δ-Proteobacteria, 28% β-Proteo-
bacteria and 14% α-Proteobacteria. The genus closest to
the most dominant organism in the consortium enriched
in this study was Desulfovibrio (98% coverage and 99%
identity). Only one other study has reported species from
this genus in MFCs [44]. The microbial consortium
enriched in this study is unique in its ability to transform
fermentation inhibitor into electricity. The consortium
was enriched on a mixed substrate carbon source and
operated with a synthetic mixture of fermentation inhibi-
tors to assess the biocatalyst response, and as such,
requires further investigation using real biorefinery
streams. It is likely that MFC microorganisms will prefer-
entially remove sugars prior to removal of the acetate or
other inhibitors. While this may be the case with natural
consortia, development of substrate-specific exoelectro-
gens that can only remove the inhibitors may also be pos-
sible.

Implications for biorefinery process water recycle
In a biorefinery process, a potential point of application
for MFCs is downstream from the ethanol recovery unit
(for example, distillation column) after the solid-liquid

separation unit (Figure 7). The MFCs may be placed in the
recycle stream returning to the saccharification/fermenta-
tion vessel via the mixing chamber. A once-through proc-
ess is preferable; however, a recirculation within the MFC
unit operation is most likely necessary to achieve com-
plete removal of the inhibitors.

The amount of electricity produced from the bioconver-
sion of the inhibitor molecules is a function of the CE,
power density and the concentration of the inhibitor mol-
ecules in the recycle stream. Figure 7 shows the overall
process schematic including MFCs which is based on a
flowsheet model from the National Renewable Energy
Laboratory (NREL) for biochemical conversion of corn
stover to ethanol via a dilute acid pretreatment method
[23,32]. This process was considered for determination of
potential power output from the MFC system. The con-
centrations of the inhibitors in the recycle stream were
obtained from the NREL report [23]. This process assumes
a solids loading of 30%. Acetic acid, 2-furfural, HMF and
glucose and its oligomers are present in the recycle stream
at a concentration of 6.5, 1.5, 0.23 and 2.1 g/l, respec-
tively. Since it was observed that glucose was consumed
prior to the removal of the inhibitor molecules by the
MFC consortium, it was also considered a substrate in the
MFC. A minimum of three different MFCs were presumed
to be needed, each with a certain substrate specificity
(namely, sugars, acetate or organic acids, and lignin- +
sugar degradation products). Assuming a 60% CE, the
process yielded 2.5 megawatts of power. This is equivalent
to one quarter of the total power needed for the biorefin-
ery plant. The MFC technology is presently limited by var-
ious losses that occur during energy harvesting at higher
scales due to electrochemical and process issues. These
limitations can reduce the overall power that can be har-
vested from the biorefinery process water. Production of
hydrogen instead of electricity has the potential to result
in a reasonable economic advantage for the overall biore-
finery process.

MFC technology is in its early stage of development. A
detailed economic analysis of MFCs has not been reported
to date. Preliminary analyses suggest a minimum power
density of 0.5 to 1 kW/m3 to consider commercial appli-
cation [3,4]. Recent studies on the MFC anode design and
control of operational parameters have resulted in devel-
opments which have improved the application potential
[3,9,11,15,43,45,46]. Use of alternate membranes [47]
and sustainable cathodes [8,16-18] has revealed potential
alternatives for other MFC components. Process control
strategies optimizing substrate loading, flow rates, pH,
ionic strength and dissolved oxygen levels in the feed have
potential to improve the operational feasibility of an
MFC-based process.
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A number of other factors including operational feasibil-
ity of MFCs, (lifespan of cathode and membrane, mainte-
nance requirements during periodic and/or annual shut-
downs, etc.), quality of recycle water after MFC treatment
(presence of nuisance dissolved and suspended solids),
effect of using MFCs on ethanol yield from biomass, and
finally, overall effect on the economics of the biorefinery
process, also need to be considered.

A biofilm-based process such as that developed in this
work would enable flow of the recycle water through the
MFC anode to remove the fermentation inhibitors, with
relatively clean water exiting the MFC system. A minimal
separation step may be needed, if any, since the aqueous
stream would not contain a significant amount of micro-
organisms, especially if a periodic wash step is employed
in a separate flow loop to remove excess biofilm and
planktonic cells. The most important impact the MFC can
have on the biorefinery process is the potential indirect
effect on the ethanol yields by limiting accumulation of

fermentation inhibitors. NREL's analysis has shown that
for a solids loading of 25%, increase of water recycle from
10% to 25% results in a reduction in the ethanol yield
from 65% to 5%, potentially due to the accumulation of
the inhibitors [32]. The acetate concentration may be con-
sidered as a representative for all inhibitors present in the
hydrolyzate, some of which may have more detrimental
effect on the ethanol yield. The need for recycling of water
in a biorefinery and in the biofuels industry in general has
been stressed recently [48,49] with the conclusion that the
industry might be limited in size and/or location based
upon water availability.

The feasibility of MFC application in a biorefinery
requires a demonstration of economic advantage of such
a scheme over the existing process scheme. The power
produced from conversion of the fermentation inhibitors
to electricity is only a side benefit compared with the pos-
itive economic impact of removal of the fermentation tox-
ins. Further investigation is required to fully understand

Biorefinery flow sheet showing location of MFC units capable of removing specific substrates from the process recycle streamFigure 7
Biorefinery flow sheet showing location of MFC units capable of removing specific substrates from the process 
recycle stream. The flow sheet was based on conversion of corn stover to ethanol via dilute acid hydrolysis pretreatment 
process reported by NREL [32].
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the potential for fermentation inhibitor removal by MFCs,
especially regarding the potential of further microbial
consortium evolution toward improved efficiency.
Increased MFC efficiency impacts the degree of process
water recycle possible. This latter aspect potentially
improves both the production plant's economics, and
may broaden environmentally acceptable green-field
plant sites available due to reduced groundwater require-
ments.

Methods
MFC construction
The MFC used in this study was a two-chamber design
(Figure 1). The microbial enrichment was carried out
using an air cathode, consisting of a platinum-deposited
carbon electrode (Fuel Cell Store, # GDE HT 140 W-E).
The anode chamber (4 cm diameter × 1.27 cm thickness)
contained a carbon felt (Alfa Aesar, part # 42107) elec-
trode separated from the cathode by a Nafion-115 mem-
brane. The anode chamber was a compact, flow-through
system with high electrode surface area to volume ratio
(45,230 m2/m3). The projected surface area of the anode
was 12.57 cm2 and was used to calculate power density.
Additional details of the MFC design are reported else-
where [15]. A ferricyanide-cathode was used for determin-
ing the maximum power density.

Inoculation and operation
The anode chamber of the MFC (MFC-A) was inoculated
with a 10 ml culture sample from an MFC enriched with
acetate as the energy source, which was enriched from an
anaerobic digester sample (Borole, et.al., Improving
power production from acetate-fed microbial fuel cells via
enrichment of exoelectrogenic organisms in continuous
flow systems, unpublished manuscript). The inoculum
sample was obtained by dislodging the biofilm from the
anode surface of the acetate-fed MFC with a hypodermic
needle, followed by withdrawal of the sample with a
syringe. The inoculum was added directly into the flow
line entering the anode chamber and carried into the
anode chamber by the de-aerated recirculating medium.
The nutrient medium was prepared as described previ-
ously [15] and was placed in a glass bottle reservoir
(anode liquid reservoir, 200 ml) and recirculated through
the anode chamber at 4 to 7 ml/min. The medium was de-
aerated by bubbling nitrogen. The enrichment process
included replacement of the recirculating medium inter-
mittently (whenever optical density at 600 nm increased
above 0.05) to minimize planktonic bacteria and media-
tors and enrich exoelectrogenic biofilm-forming organ-
isms [15].

The carbon source added to the anode liquid reservoir was
a mixture of fermentation inhibitors. It included 0.2 g/l 2-
furfural, 0.1 g/l HB, 0.1 g/l HAP and 0.5 g/l VA. Acetate

was also added for the first seven days in a continuous
manner using a syringe pump at the rate of 0.2 g/l per day.
All other substrates were added all at once at time zero
and tracked until complete disappearance. The anode
medium was amended with 0.4 g/l glucose on day 7 pri-
marily to enhance the rate of microbial growth. The initial
external resistance (load) applied to the MFC-A was 500Ω,
which was reduced to 100Ω when the voltage output
increased above 0.2 volts (day 10) and then to 50Ω (day
12). The MFC was tested with individual inhibitors from
day 20 to day 50, by adding them at 0.05 to 0.2 g/l. The
conversion of HMF was also investigated subsequently. A
second experiment was conducted with acetate using a
different MFC (MFC-B) to examine the conversion of ace-
tate. The details of the MFC-B and the consortium are
reported elsewhere (Clone library Accession # FJ823774 –
FJ823861).

Effect of inhibitor concentration on the microbial 
consortia
After confirmation of electricity production from individ-
ual inhibitor molecules, the effect of inhibitor concentra-
tion on their removal and electricity production was
studied. The experiments were conducted by adding each
of the substrates individually, at various concentrations to
study substrate inhibition. From day 51 to 62, HB was
used as the energy source for the MFC at concentrations
from 0.1 to 1 g/l. From day 63 to day 82, 2-furfural was
used as the energy source at a concentration from 0.05 to
2 g/l. From day 83 to day 101, VA was used as the substrate
from 0.05 to 4 g/l, followed by use of HMF as substrate
from day 129 to day 150 at a concentration from 0.2 to 2
g/l. The MFC was operated with 2-furfural as the substrate
between day 102 to 128. The effect of acetate was studied
in MFC-B using a different consortium (Clone library
Accession # FJ823774 – FJ823861) up to a concentration
of 10 g/l. The voltage output was monitored at each con-
centration for a period of up to five days.

Power density analysis
The power density analysis for the MFCs was conducted
by adding the energy source (inhibitor) to the anode liq-
uid reservoir. The nutrient medium was completely
replaced prior to every analysis, followed by fed-batch
addition of the substrate into the medium (at 0.2 g/l).
Two different cathodes were used for the power density
analysis: the air cathode and a ferricyanide-cathode. A 200
mM potassium ferricyanide in 100 mM potassium phos-
phate buffer was used as the catholyte for the latter exper-
iment. The analysis was conducted 60 minutes after
addition of the carbon source, to allow the voltage output
to stabilize. A variable resistor ranging from 0 to 5000
ohms was used and the voltage recorded by a Fluke mul-
timeter Model 83. The resistance sweep was conducted at
an interval of 5 minutes. The maximum power density
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was confirmed by operating the MFC at the particular
resistance for at least one hour, following the power den-
sity analysis. Multiple measurements of the voltage output
at the resistance exhibiting maximum power density were
made on different days to determine reproducibility of the
power density curve. The results were found to be within
a 10% standard deviation.

Genetic characterization
16S clone library. Microbial samples were collected from
the anode of MFC on day 83 by dislodging the cells from
the electrode using a hypodermic needle, followed by
withdrawal of the cells using a syringe from the exit of the
MFC anode. Genomic DNA was isolated using the stand-
ard freeze-thaw procedure, followed by phenol-chloro-
form extraction [50]. The 16S rRNA analysis was done as
reported previously [15]. Multiple sequences were ini-
tially aligned against the most similar sequences in the
Ribosomal Database Project II (RDP II) and assigned to a
set of hierarchical taxa using a Naïve Bayesian rRNA clas-
sifier version 1.0 http://rdp.cme.msu.edu/classifier/classi
fier.jsp. Orientation of the sequences was checked using
program OrientationChecker v.1.0 available at http://car
diff.ac.uk/biosi/research/biosoft. Sequences with
unknown orientation were omitted from further analyses.
Clone libraries were checked for the presence of chimeric
sequences using a program Bellerophon http://
foo.maths.uq.edu.au/~huber/bellerophon.pl[51] and the
Chimera Detection program in the RDP II http://
rdp8.cme.msu.edu/cgis/chimera.cgi?su=SSU. Putative
chimeras were excluded from further analyses. Closest rel-
atives were retrieved from NCBI GeneBank following
BLAST search [42]. To determine the clone library cover-
age for each sample, statistical analyses were performed
using DOTUR [52]. The population distribution is
reported as a percentage of the total number of bacterial
clones sequenced for each sample.

Conclusion
In this work, an MFC capable of reducing the concentra-
tion of known fermentation inhibitors including the
sugar-degradation products, furfural and 5-hydroxymeth-
ylfurfural, and lignin degradation products, vanillic acid,
4-hydroxybenzaldehyde and 4-hydroxyacetophenone was
demonstrated. Use of an integrated MFC design resulted
in high power densities, reaching up to 3700 mW/m2

(356 W/m3 net anode volume) and a coulombic efficiency
of 69%. A unique exoelectrogenic microbial consortium
capable of broad substrate specificity, ability to handle
high inhibitor concentrations (5 to 20 mM) with near
complete removal, and stable long-term power generation
was identified and characterized. The dominant organism
in the consortium was found to be a δ-Proteobacteria,
which was phylogenetically close to Desulfovibrio spp. The
MFC-based approach for removal of fermentation inhibi-

tors has implications for: 1) enabling higher ethanol
yields at high biomass loading, 2) improved water recycle
and 3) electricity production up to 25% of total cellulosic
biorefinery power needs.
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