A Lower Bound for the Length of a Partial Transversal in a Latin Square ${ }^{*, \dagger}$

P. W. Shor
California Institute of Technology, Pasadena, California 91125
Communicated by the Managing Editors

Received June 26. 1981

Abstract

It is proved that every $\mathbf{n} \times \mathrm{n}$ Latin square has a partial transversal of length at least $\mathbf{n}=5.53(\log \mathbf{n})^{\text {' }}$.

1. Introduction

A Latin square is an $n \times n$ array of cells each containing one of n distinct symbols such that in each row and column every symbol appears exactly once. We define a partial transversal of length j as a set of n cells with exactly one in each row and column and containing exactly j distinct symbols (this differs from the usual definition in that $n-j$ extra positions are added). Koksma [3] showed that an $n \times n$ Latin square has a partial transversal of length at least $(2 n+1) / 3$. This was improved by Drake [2] to $3 n / 4$, and then simultaneously by Brouwer et al. [1] and by Woolbright [5] to $n-\sqrt{n}$. This paper will prove a lower bound of $n-c(\log n)^{2}$, where $c \approx 5.53$ (this bound is sharper than $n-\sqrt{n}$ for $n \geqslant 2,000,000$), and also give a recursive inequality which can be used to compute a bound sharper than $n-\sqrt{n}$ for much lower values of n. This is still well below Ryser's conjecture of $n-1$, and n for odd $n[4]$.

2. The Operation \#

Given a partial transversal \mathbf{T} of length $n-k$, with $\mathbf{k} \geqslant \mathbf{2}$, one can find another partial transversal of equal or greater length in the following manner: Choose two duplicated symbols in T, in the cells $\left(i_{1}, j,\right)$ and $\left(i_{2}, j_{2}\right)$, such that $\mathbf{T}-\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right\}$ contains $n-\mathbf{k}$ distinct symbols. Replace

[^0]

Square 1
these two cells with the cells $\left(i_{1}, j_{2}\right)$ and $\left(i_{2}, j_{1}\right)$. Since we chose cells containing duplicated symbols, the new partial transversal has length at least $n-\mathbf{k}$, as each of the symbols in the original transversal is represented in one of the unchanged positions (see square 1). Call this operation \#.

Consider a Latin square with a partial transversal of maximum length $n \mathbf{- k}$, with $\mathbf{k} \geqslant 2$. By applying \# to this partial transversal, we get other partial transversals, whose length must also be $n-k$ and whose symbols must be the same as the first. Continuing in this manner, we obtain a set of partial transversals closed under \#. All of these partial transversals contain only a certain set of $n-k$ distinct symbols, so by ignoring all positions except those in this set of partial transversals, we obtain a partial Latin square (a partially tilled $n \mathbf{x} n$ array such that in each row and column no symbol appears more than once) with the following properties (we call this a partial Latin square satisfying A,):
A,: The partial Latin square contains only $\mathbf{n} \quad \mathbf{k}$ distinct symbols, and these symbols are exactly those contained in the cells of a set of partial transversals of length $\mathrm{n}-\mathrm{k}$ generated from a single partial transversal by \# and closed under \#.

Lemma. Given a partial Latin satisfying A, such that no subsquare satisfies A, then no cell is contained in all partial transversals; i.e., given a cell (\mathbf{i}, \mathbf{j}) and a partial transversal \mathbf{T} containing (\mathbf{i}, j), by a sequence of operations \#, one can obtain a partial transversal not containing (i, j) from T.

Proof: Suppose there is a fixed position containing the symbol a. If a appears anywhere else in the partial Latin square, then by applying \# to the transversal with two a's (there must be a transversal with the second a, since it is in the square, and this transversal must also contain the first a since all partial transversals do), one obtains a partial transversal without the fixed position, a contradiction. If a does not appear anywhere else in the partial Latin square, then by deleting the row and the column containing the \mathbf{a}, one
finds a subsquare satisfying \mathbf{A}, a contradiction of the hypothesis. Thus no ceil can be fixed.

We have just proved that every cell in a transversal gets moved, so given a tilled cell in the square, there is a partial transversal containing that cell and another cell with the same symbol. Choose any filled cell, say $(1,1)$, and choose a partial transversal through it that duplicates the symbol in it, say a. Now hold the position $(1,1)$ fixed, and consider the set of partial transversals containing two a's generated from that transversal by \#, i.e., the set of partial transversals generated by \# acting on the subsquare formed by deleting the first two and column. These will give an $(n-1) \times(n-1)$ partial Latin square satisfying A_{k-1}.

Lеммд. In this $(\mathbf{n}-1) \times(\mathbf{n}-1)$ square the transversals generated by \# must have a fixed position.

Proof Suppose they do not. Then every cell must be moved, so there is a transversal which duplicates the symbol in any positions of the original transversal. Thus by applying \# to this transversal, deleting the fixed element a in $(1,1)$ and the cell in the ith column of the original transversal, we obtain a transversal of the original square with position (1, i) filled (see square 2). Since \mathbf{i} was arbitrary, this gives us n filled cells in the first row of the square, a contradiction since there are only $n \mathbf{- k}$ distinct sumbols. Thus by fixing $(1,1)$, a certain number of other cells of the transversal must also become fixed.

тнеовем. In a partial Latin square satisfying A, such that no subsquare satisfies \mathbf{A}, there are at least $n_{k-1}+\mathbf{k}$ filled positions in each row and column, where n_{k-1} is the size of the smallest subsquare satisfying A, \ldots,

Proof. Consider a transversal with a fixed position, say (1,1), and consider the subsquare generated by this as above. Now, say \mathbf{m} cells of this transversal move and are in rows and columns 2-m +1 . By the same

SQuARE 2

reasoning as in the above lemma there is a transversal with a duplicated symbol in column i, for all $i, 2 \leqslant i \leqslant \mathrm{~m}+1$. Applying \#, we find that there is a symbol in positions $(1, i)$, for $2 \leqslant i \leqslant \mathrm{~m}+1$. Similarly, the cells $(i, 1)$, $2 \leqslant i \leqslant m+1$, are filled. There are $m-\left(\begin{array}{ll}\mathrm{k} & 1\end{array}\right)$ symbols in the small square, leaving $k-1$ symbols in $(1, i), 2 \leqslant i \leqslant m+1$, which are not in the small square (see square 3). Suppose one of these symbols, say c, is in the (1, i) position. There is a c in the original transversal. Since it is not in the small square, which contains all the moving positions, it must be in one of the fixed positions. Say the c is in (j, j). Moreover, there is a transversal of the small square with a duplicate letter, say b, in the ith column, say in (h, i).

Apply \# to remove the $(1,1)$ and the (k, i) positions and till the $(1, i)$ and $(k, 1)$ positions. Now, c in the (j, j) position and the symbol in the $(k, 1)$ position are both duplicates, so by applying \# again we can fill the $(j, 1)$ and (k, j) positions. Thus, the $(j, 1)$ position is tilled. Since there are at least $k-1$ symbols in the $(1, i)$ cells, $2 \leqslant i \leqslant m+1$, which are not in the small square, we can apply the same process to obtain $k-1$ tilled positions in the first column below the $(m+2)$ nd row. This gives at least $m+k$ filled positions in the first column, since the first $m+1$ positions are tilled. Now, $m \geqslant n_{k-1}$, because m is the size of a subsquare satisfying A, and n_{k-1} was the minimal such subsquare.

3. An Inequality

Let S_{k} be a square satisfying A, such that no subsquare satisfies A,. Choose S_{k-1} to be the smallest subsquare of S_{k} satisfying A_{k-1}, S_{k-2} the

SQUARE 4
smallest subsquare of S_{k-1} satisfying A_{k-2}, and, in general, S_{m} the smallest subsquare of S_{m+}, satisfying A_{m}, , until the sequence ends at S_{2}, Let n_{j} be the size of \boldsymbol{S}_{j}.

тнеовем. In $\boldsymbol{S}_{\boldsymbol{k}}$, as defined above, for all $\mathrm{j}<\mathrm{k}$,
$\left(n_{k-1}+n_{j}-n_{k}+k\right)\left(n_{k}-n_{j}\right) \leqslant n_{j}\left(n_{j}-n_{j-1}-2 j\right)+\left(n_{k}-n_{j}\right)\left(n_{k}-\mathbf{k}-n_{j}+j\right)$.

Proof. Consider square 4. We will count the number of filled cells in the rectangle \mathbf{P} in two different ways. First, there are $n_{k} \quad n_{j}$ columns in \mathbf{P}, and since each column of S_{k} has $n_{k-1}+\mathbf{k}$ filled positions, and there are $n_{k}-n_{j}$ columns in \mathbf{P}, we have $n_{k-1}+n_{j}-n_{k}+\mathbf{k}$ filled positions in each column of \mathbf{P}, and at least $\left(n_{k}-n_{j}\right)\left(n_{k-1}+n_{j}-n_{k}+\mathbf{k}\right)$ filled positions in \mathbf{P}.

We will call the symbols in S_{j} old symbols and those not in S_{j} new symbols. There are $n_{j}-\mathrm{j}$ old symbols and $n_{k}-\mathbf{k}-n_{j}+\mathrm{j}$ new symbols. There are n_{j} rows in \mathbf{P}. In each row there are at least $n_{j-1}+\mathrm{j}$ old symbols in S. Since there are only $n_{j}-\mathrm{j}$ distinct old symbols, this leaves at most $n_{j}-\mathrm{j}-n_{j-1}-\mathrm{j}$ old symbols in each row of \mathbf{P}, or at most $n_{j}\left(n_{j}-n_{j-1}-2 j\right)$ old symbols in \mathbf{P}.
There are $n_{k}-\mathbf{k}-n_{j}+\mathrm{j}$ new symbols, and $n_{k}-n_{j}$ columns in \mathbf{P}. Thus there are at most $\left(\mathbf{n},-n_{j}\right)\left(n_{k}-\mathrm{k}-n_{j}+\mathrm{j}\right)$ new symbols in \mathbf{P}. Adding the number of old and new symbols, we get a maximum for the number of symbols in \mathbf{P}. Setting this maximum greater than or equal to the minimum, we obtain the inequality stated above.

4. The Main Result

We will now derive the inequality $\mathbf{k} \leqslant 5.53\left(\log n_{k}\right)^{2}$ from the inequality obtained in the previous theorem. We have a sequence $n_{2}, n_{3}, \ldots, n_{k}$ with the
inequality (1) holding between any four elements $n_{i-1}, n_{i}, n_{j-1}, n_{j}$ with $3 \leqslant i<j \leqslant k$. From (1),

$$
\begin{gather*}
\left(n_{k-1}+n_{j}-n_{k}+k\right)\left(n_{k}-n_{j}\right) \leqslant n_{j}\left(n_{j}-n_{j-1}-2 j\right)+\left(n_{k}-n_{j}\right)\left(n_{k}-\mathbf{k}-n_{j}+j\right) \\
\left(\begin{array}{ll}
n_{k} & n_{j}
\end{array}\right)\left(2 n_{j}+n_{k-1}-2 n_{k}+2 \mathbf{k}-\mathbf{j}\right) \leqslant n_{j}\left(n_{j}-n_{j-},-2 j\right) \tag{2}
\end{gather*}
$$

Let

$$
\begin{equation*}
n_{k}-n_{k}^{-} .1-d_{k}, \quad n_{j}-n_{j-1}=d_{j} \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
d_{j}-2 j \leqslant \frac{n_{k}-n_{j}}{n_{j}}\left(2 n_{j}-d_{k}-n_{k}+2 k-j\right) . \tag{4}
\end{equation*}
$$

Now we will assume

$$
\begin{gather*}
n_{j} \geqslant \frac{4}{5} n_{k}, \tag{5}\\
d_{k}=n_{k}-n_{k-1} \leqslant n_{k}-n_{j} \leqslant \frac{1}{5} n_{k}, \tag{6}\\
n_{k}+d_{k} \leqslant \frac{6}{5} n_{k}, \tag{7}\\
n_{j} \geqslant \frac{2}{3}\left(n_{k}+d_{k}\right) . \tag{8}
\end{gather*}
$$

Thus, from (4),

$$
\begin{equation*}
d_{j} \geqslant \frac{n_{k}-n_{j}}{n_{j}}\left(2 n_{j}-d_{k}-n_{k}\right) . \tag{9}
\end{equation*}
$$

Applying (8), we get

$$
\begin{gather*}
d_{j} \geqslant \frac{1}{2}\left(n_{k}-n_{j}\right), \tag{10}\\
n_{j}-n_{j-1} \geqslant \frac{1}{2} n_{k}-\frac{1}{2} n_{j}, \tag{11}\\
\frac{3}{2} n_{j}-\frac{3}{2} n_{j-1} \geqslant \frac{1}{2}\left(n_{k}-n_{j-1}\right), \tag{12}\\
n_{j}-n_{j-1} \geqslant \frac{1}{3}\left(n_{k}-n_{j-1}\right) . \tag{13}
\end{gather*}
$$

Thus, we have shown the following.

Lemma. Either

$$
\begin{equation*}
n_{j} \leqslant \frac{4}{5} n_{k} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
n_{j}-n_{j-1} \geqslant \frac{1}{3}\left(n_{k}-n_{j-1}\right) . \tag{15}
\end{equation*}
$$

Now, suppose $n_{k} \leqslant \frac{5}{4} n_{j}$, so

$$
\begin{align*}
n_{j}-n_{j-1} & \geqslant \frac{1}{3}\left(n_{k}-n_{j-1}\right), \\
n_{k}-n_{j} & \leqslant \frac{2}{3}\left(n_{k}-n_{j-1}\right) . \tag{16}
\end{align*}
$$

By induction, we get, since this holds for all j, \mathbf{k}, with $\mathrm{j}<\mathbf{k}$ and $n_{j} \geqslant \frac{4}{5} n_{k}$,

$$
\begin{gather*}
1 \leqslant n_{k} \quad n_{k-1} \leqslant\left(\frac{2}{3}\right)^{k-j}\left(n_{k}-n_{j-1}\right), \tag{17}\\
\left(\frac{3}{2}\right)^{k-j}
\end{gather*} \leqslant\left(n_{k}-n_{j-1}\right), ~\left\{\begin{array}{l}
\text { k } \quad j \leqslant \log _{3 / 2}\left(n_{k}-n_{j-1}\right) . \tag{18}
\end{array}\right.
$$

Now, if

$$
\begin{equation*}
k-j \geqslant \log _{3 / 2} \frac{n_{j-1}}{4}, \tag{20}
\end{equation*}
$$

then

$$
\begin{align*}
\log ,,,\left(\frac{n_{j-1}}{4}\right) & \leqslant \log _{3 / 2}\left(n_{k}-n_{j-1}\right) \tag{21}\\
\frac{n_{j-1}}{4} & \leqslant n_{k}-n_{j-1} \tag{22}\\
\frac{5}{4} n_{j-1} & \leqslant n_{k} . \tag{23}
\end{align*}
$$

So if $\mathrm{k}-\mathrm{j} \geqslant \log _{3 / 2}\left(n_{j}\right)$, then $\frac{5}{4} n_{j} \leqslant n_{k}$.
Now let $k_{4}=2$, and

$$
\begin{equation*}
k_{i}=k_{i-1}+\log _{3 / 2}\left(n_{k_{i-1}}\right) \tag{24}
\end{equation*}
$$

Using the above lemma and induction, we obtain

$$
\begin{equation*}
n_{j} \geqslant\left(\frac{5}{4}\right)^{i+1} \quad \text { for } j \geqslant k_{i} . \tag{25}
\end{equation*}
$$

By induction we have, from (24) and (25),

$$
\begin{gather*}
k_{i} \geqslant \sum_{j=1}^{i} \log _{3 / 2}\left(\frac{5}{4}\right)^{j}, \tag{26}\\
k_{i} \geqslant \frac{1}{2} j(j+1) \log _{3 / 2} \frac{5}{4}>\frac{i^{2}}{2} \frac{\log (5 / 4)}{\log (3 / 2)} \tag{27}
\end{gather*}
$$

Thus,

$$
\begin{align*}
n_{k} \geqslant\left(\frac{5}{4}\right)^{1+i} & , \quad \text { where } \quad i=\left(2 \frac{\operatorname{lng}(3 / 2)}{\log (5 / 4)} k\right)^{1 / 2} \tag{28}\\
\log n_{k} & \geqslant\left(2 \log \frac{3}{2} \log \frac{5}{4}\right)^{1 / 2} k^{1 / 2} \tag{29}\\
k & \leqslant \frac{(\log n)^{2}}{2 \log (3 / 2) \log (5 / 4)} \tag{30}
\end{align*}
$$

This means there is a transversal of length at least $n_{k}-k$, or

$$
\begin{equation*}
n-\frac{(\log n)^{2}}{2 \log (3 / 2) \log (5 / 4)}, \tag{31}
\end{equation*}
$$

or

$$
n=5.53(\log n)^{2} .
$$

The inequality (32) is clearly not the best result that can be derived from the inequality (1). For instance, replacing $\frac{4}{5}$ in (5) with another constant will improve the constant in (32) slightly. In fact, even for relatively small values, inequality (1) implies results better than $n-\sqrt{n}$. Note that in the proof of (1) we showed $n_{k}-n_{k-1} \geqslant 2 k$. This implies by induction $n_{k}>k^{2}$, giving partial transversal of length $n-\sqrt{n}$. The inequality (1), however, cannot imply anything better than $n-(\log , n)$, since the sequence $n_{k}=2^{k}$ satisfies (1).

References

1. A. E. Brouwer, A. J. de Vries, and R. M. A. Wieringa, A lower bound for the length of partial transversals in a Latin square, Nieuw Arch. Wisk. (3) 24 (1978), 330-332.
2. D. A. Drake, Maximal sets of Latin squares and partial transversals, J. Statist. Plann. Inference I (1977), 143-149.
3. K. K. К окऽмА, A lower bound for the order of a partial transversal in a Latin square, J. Combin. Theory Ser. A 7 (1969), 94-95.
4. H. J. Ryser, Neuere Probleme der Kombinatorik, in "Vorträge über Kombinatorik." pp. 69-9 1, a collection of papers presented at the Mathematischen Forschungsinstitute, Oberwolfach, July 24-29, 1967.
5. D. E. Woolbright, An $n \times n$ Latin square has a transversal with at least $n=\sqrt{n}$ distinct symbols, J. Combin. Theory Ser. A 24 (1978), 235-237.

[^0]: * This research was supported in part by a Richter Fellowship from Caltech.
 \dagger Present address: Department of Mathematics, Massachusetts Institute of Technology. Cambridge, Mass. 02139.

