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It is proved that every n x n Latin square has a partial transversal of length at
least n - 5.53(log  n)‘.

1. INTRODUCTION

A Latin square is an n x n array of cells each containing one of n distinct
symbols such that in each row and column every symbol appears exactly
once. We define a partial transversal of length j as a set of n cells with
exactly one in each row and column and containing exactly j distinct
symbols (this differs from the usual definition in that n - j extra positions
are added). Koksma [3]  showed that an n x n Latin square has a partial
transversal of length at least (2n + 1)/3.  This was improved by Drake [2]  to
3n/4,  and then simultaneously by Brouwer et al. [l] and by Woolbright [5]
to n - fi This paper will prove a lower bound of n - c(log n)2,  where
cz 5.53 (this bound is sharper than n - 6 for n > 2,000,000),  and also
give a recursive inequality which can be used to compute a bound sharper
than n - fi for much lower values of n. This is still well below Ryser’s
conjecture of n - 1, and n for odd n [4].

2. THE OPERATION #

Given a partial transversal T of length n -k, with k > 2, one can find
another partial transversal of equal or greater length in the following
manner: Choose two duplicated symbols in T,  in the cells (i, , j,) and (i,, j,),
such that T - ((iI,  jr), (i,, j,))  contains n - k distinct symbols. Replace
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these two cells with the cells (ii ,j*)  and (i,, j,). Since we chose cells
containing duplicated symbols, the new partial transversal has length at least
n  - k, as each of the symbols in the original transversal is represented in one
of the unchanged positions (see square 1). Call this operation #.

Consider a Latin square with a partial transversal of maximum length
n - k, with k > 2. By applying #  to this partial transversal, we get other
partial transversals, whose length must also be n  -k and whose symbols
must be the same as the first. Continuing in this manner, we obtain a set of
partial transversals closed under #. All of these partial transversals contain
only a certain set of n -k distinct symbols, so by ignoring all positions
except those in this set of partial transversals, we obtain a partial Latin
square (a partially tilled n x n  array such that in each row and column no
symbol appears more than once) with the following properties (we call this a
partial Latin square satisfying A,):

A,: The partial Latin square contains only n - k distinct symbols, and
these symbols are exactly those contained in the cells of a set of partial
transversals of length n - k generated from a single partial transversal by #
and closed under #.

LEMMA. Given a partial Latin satisfying A, such that no subsquare
satisfies A,, then no cell is contained in all partial transversals; i.e., given a
cell (i, j) and a partial transversal T containing (i, j), by a sequence of
operations #, one can obtain a partial transversal not containing (i, j) from
T .

Proof: Suppose there is a fixed position containing the symbol a. If a
appears anywhere else in the partial Latin square, then by applying # to the
transversal with two a’s (there must be a transversal with the second a, since
it is in the square, and this transversal must also contain the first a since all
partial transversals do), one obtains a partial transversal without the fixed
position, a contradiction. If a does not appear anywhere else in the partial
Latin square, then by deleting the row and the column containing the a, one



PARTIALTRANSVERSALS OFLATIN SQUARES 3

finds a subsquare satisfying A,, a contradiction of the hypothesis. Thus no
ceil can be fixed.

We have just proved that every cell in a transversal gets moved, so given a
tilled cell in the square, there is a partial transversal containing that cell and
another cell with the same symbol. Choose any filled cell, say (1, l), and
choose a partial transversal through it that duplicates the symbol in it, say a.
Now hold the position (1, 1) fixed, and consider the set of partial
transversals containing two a’s generated from that transversal by #,  i.e., the
set of partial transversals generated by # acting on the subsquare formed by
deleting the first two and column. These will give an (n - 1) x (n - 1)
partial Latin square satisfying A,-, .

LEMMA. In this (n - 1) x (n - 1) square the transversals generated by #
must have a *fixed position.

Proof Suppose they do not. Then every cell must be moved, so there is a
transversal which duplicates the symbol in any positions of the original
transversal. Thus by applying # to this transversal, deleting the fixed element
a in (1, 1) and the cell in the ith column of the original transversal, we
obtain a transversal of the original square with position (1, i) filled (see
square 2). Since i was arbitrary,.this gives us n filled cells in the first row of
the square, a contradiction since there are only n - k distinct sumbols. Thus
by fixing (1, l), a certain number of other cells of the transversal must also
become fixed.

THEOREM. In a partial Latin square satisfying A, such that no subsquare
satisfies A,, there are at least nk-, + k filled positions in each row and
column, where nk-, is the size of the smallest subsquare satisfying A, _ ,  .

Proof. Consider a transversal with a fixed position, say (1, l), and
consider the subsquare generated by this as above. Now, say m cells of this
transversal move and are in rows and columns 2-m + 1. By the same
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reasoning as in the above lemma there is a transversal with a duplicated
symbol in column i,  for all i, 2 < i < m + 1. Applying f, we find that there is
a symbol in positions (1, i), for 2 < i < m + 1. Similarly, the cells (i, I),
2 < i < m + 1, are filled. There are m - (k - 1) symbols in the small square,
leaving k - 1 symbols in (1, i), 2 < i < m + 1, which are not in the small
square (see square 3). Suppose one of these symbols, say c, is in the (1, i)
position. There is a c in the original transversal. Since it is not in the small
square, which contains all the moving positions, it must be in one of the
fixed positions. Say the c is in (j, j). Moreover, there is a transversal of the
small square with a duplicate letter, say b, in the ith column, say in (h, i).

Apply # to remove the (1, 1) and the (k, i) positions and till the (1, i) and
(k, 1) positions. Now, c in the (j, j) position and the symbol in the (k, 1)
position are both duplicates, so by applying # again we can fill the (j,  1)
and (k,j)  positions. Thus, the (j, 1) position is tilled. Since there are at least
k - 1 symbols in the (1, i) cells, 2 < i < m + 1, which are not in the small
square, we can apply the same process to obtain k - 1 tilled positions in the
first column below the (m + 2)nd row. This gives at least m + k filled
positions in the first column, since the first m + 1 positions are tilled. Now,
man,-,, because m is the size of a subsquare satisfying A,, and nk  ~,  was
the minimal such subsquare.

3. AN INEQUALITY

Let S, be a square satisfying A, such that no subsquare satisfies A,.
Choose Sk_, to be the smallest subsquare of S, satisfying A,-, , S,-,  the
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smallest subsquare of Sk-, satisfying Ake2,  and, in general, S, the smallest
subsquare of S,, , satisfying A,,,, until the sequence ends at S,, Let nj be the
size of Sj.

THEOREM. In S,,  as defined above, for all j < k,

(nk-  I + nj- nk + k)(n,  - nj)  f  nj(nj--  nj-,  - 2j)  + (nk  - nJ(nk  - k - nj +j).
(1)

Proof. Consider square 4. We will count the number of filled cells in the
rectangle P in two different ways. First, there are nk - nj columns in P, and
since each column of S, has nkel  + k filled positions, and there are nk  - n,j
columns in P, we have nk-, + nj - nk + k filled positions in each column of
P, and at least (nk  - nj)(nk-,  + nj - nk t k) filled positions in P.

We will call the symbols in S, old symbols and those not in S,i new
symbols. There are nj - j old symbols and nk  - k - nj t j new symbols.
There are nj  rows in P. In each row there are at least nj-,  t j old symbols in
S. Since there are only nj - j distinct old symbols, this leaves at most
nj - j - nj- r - j old symbols in each row of P, or at most nj(nj  - nl-  I - 2j)
old symbols in P.

There are nk - k - nj + j new symbols, and nk - nj  columns in P. Thus
there are at most (n, - nj)(n,  -k - nj + j) new symbols in P. Adding the
number of old and new symbols, we get a maximum for the number of
symbols in P. Setting this maximum greater than or equal to the minimum,
we obtain the inequality stated above.

4. THE MAIN RESULT

We will now derive the inequality k < 5.53(log  n,J*  from the inequality
obtained in the previous theorem. We have a sequence n,,  n3 ,...,  nk  with the
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inequality (1) holding between any four elements n,-,,  n,,  nl-,, n! with
3<i<j<k. From (l),

(nk-1 + nj- nk + k)(nk-  nj) < nj(nj-nj-1 - y) + (nk-  nj)(nk-  k - nj +j),

Let

(nk - nj)(hj + nk-  1 - 2nk  $ 2k - j) < nj(nj  - nj- , - 2j).

Then

nk-n - dk - l  - k, nj-nj-, =dj.

dj-2j<y(2nj-d,-nk+2k-j).
J

Now we will assume

Thus, from (4),

dk=nk-nk-,<nk-nj<{nk,

nk+dk<$nkv

nj > $ (nk + dk).

dj Zy (2nj - d, - nk).
J

Applying (8), we get

dj > j (nk  - nj),

nj - nj-,  > fn,  - +nj,

:nj-tnj-1 >f(nk-nj-l),

nj-nj-1  >{(nk-nj-l)a

Thus, we have shown the following.

LEMMA. Either

n,<:n,

01

nj-nj-1  >f(nk-nj-1).

(2)

(3)

(4)

(5)

(6)

(7)
(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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5NOW , suppose nk < anj, SO

nj  - iZj_ 1  > f  (nk  - nj- I),

n,--nj<$(n,-nj-I)* (16)

By induction, we get, since this holds for all j, k, with j < k and n,/  > f  nk,

1 < nk - nk-,  < (51k-j(n,  - nj-l>y (17)

($)k-’  < (n,  - nj- I>, (18)

k - j < log,,,(n,  - nj- 1). (19)

Now, if

nj-1

then

log,,, y
( )

< log,,&,  - nj- 113

nj-1---<nk-nj-,,4

ini- < nk.

So if k - j > log,,,(nJ, then i nj < nk.
Now let k, = 2, and

ki = ki- 1 + log,&J

Using the above lemma and induction, we obtain

nj > (f)“’ for j> ki.

By induction we have, from (24) and (25),

ki 2 +.i(j + 1) log,,, 4
2 > ” h@/4)

2 log(3/2) *

(20)

(21)

(22)

(23)

(24)

(25)

(27)



8

Thus,

I'.  W. SHOR

(28)

112
k”* ,

(log n)*
k Q 2 log(3/2) log(5/4) ’ (30)

This means there is a transversal of length at least nk - k, or

(lot3  4’
n - 2 log(3/2) log(5/4)  ’ (31)

o r

n - 5.53(log  n)“.

The inequality (32) is clearly not the best result that can be derived from
the inequality (1). For instance, replacing t in (5) with another constant will
improve the constant in (32) slightly. In fact, even for relatively small values,
inequality (1) implies results better than n - &. Note that in the proof of
(1) we showed nk  - n k-, > 2k. This implies by induction nk > k*,  giving
partial transversal of length n - fi The inequality (l), however, cannot
imply anything better than n - (log, n), since the sequence nk  = 2k satisfies
(1).
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