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1 Introduction and summary

The infinite dimensional Virasoro algebra profoundly contrains the dynamics of Conformal

Field Theories (CFTs) in two dimensions. Certain “rational” theories have operator alge-

bras that truncate, allowing them to be solved exactly. But despite their phenomenological

relevance and beauty, rational theories are small islands in a largely uncharted sea of 2d

CFTs. Furthermore, we can only study quantum gravity in AdS3 by analyzing CFTs with

large central charge c, and relatively little is known about these ‘irrational’ 2d CFTs.
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Although it appears that large c CFTs cannot be solved exactly, it is still possible to

take some of the methods [1, 2] that make rational CFTs tractable and apply them [3] to

irrational theories. The reason is that correlation functions in any CFT2 can be decomposed

into Virasoro conformal blocks Vhi,h,c(z) as1

〈O1(∞)O2(1)O3(z)O4(0)〉 =
∑
h,h̄

Ph,h̄Vhi,h,c(z)Vh̄i,h̄,c(z̄). (1.1)

The Virasoro blocks are the contributions to the Operator Product Expansion (OPE) of

O3(z)O4(0) from irreducible representations of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (1.2)

The hi, h̄i are weights of the external operators Oi, while h, h̄ are intermediate operator

weights. When O1 = O2 and O3 = O4, a universal contribution in equation (1.1) is the

Virasoro vacuum block, which encapsulates the exchange of any number of pure AdS3

‘graviton’ states between the external operators.

The Virasoro blocks have turned out to be extremely useful as a source of information

about gravity in AdS3, and in fact BTZ black hole [4] thermodynamics [5] emerges in a

universal, theory-independent way from the heavy-light, large central charge limit of the

Virasoro blocks [6–15]. Information loss from black hole physics appears to be due to the

behavior of the blocks in this limit [3, 7, 11]. The blocks are also the basic components

of the conformal bootstrap program [16–20]. Knowing their explicit forms would greatly

assist the study of 2d CFTs and 3d gravity using the bootstrap [5, 21–26].

Each conformal block depends only on the quantum numbers (hi, h, c) of the represen-

tations involved and not on the specific theory. A strategy for computing the blocks is to

work with a theory where operator truncation occurs, and then use the fact that the result

is theory-independent. This technique becomes even more useful when augmented by the

fact that the conformal blocks are analytic functions of their defining quantum numbers,

so that one can compute the blocks for special values of the external dimensions hi and

then analytically continue. In this paper, we will use this technique to develop an efficient

method to compute and study the blocks order-by-order in a 1/c expansion, and to perform

certain all-orders Lorentzian resummations.2

We will organize the series expansion in terms of the ansatz3

VhH ,hL,0,c(z) = exp

[
hL

∞∑
n,m=0

(
1

c

)m(hL
c

)n
fmn (ηH , z)

]
, (1.3)

1We have explicitly indicated the decomposition into a product of holomorphic and anti-

holomorphic parts.
2Currently, closed form expressions for Virasoro blocks have been obtained in an expansion about various

limits, such as h→∞ [27], as well as at c→∞ in the all light and the heavy-light limit [6–13]. In addition,

as a function of c and of intermediate operator dimensions, the Virasoro blocks are meromorphic functions

with only simple poles. These properties imply recursion relations [27, 28] that efficiently compute the

series expansion [29] of the vacuum blocks near z = 0 with generic hi, h, c.
3In this paper, we denote by V the vacuum Virasoro block component of the correlator

〈OL(0)OL(z)OH (1)OH (∞)〉
〈OH (1)OH (∞)〉 , while we use Ṽ for the normalized vacuum block, i.e. the vacuum block com-

ponent of 〈OL(0)OL(z)OH (1)OH (∞)〉
〈OL(0)OL(z)〉〈OH (1)OH (∞)〉 ⊃ Ṽ begins with Ṽ = 1 + · · · in the small z expansion.
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where ηH = hH
c is fixed at large c, and we will compute the function fmn. This is a natural

expansion to use in the semiclassical limit [6, 13, 27, 30, 31], which keeps only the terms

with m = 0, but direct calculations [8] indicate that it is also justified to all orders in the

1/c expansion (see section 2 for a more detailed discussion). We explicitly compute up to

order 1/c3, i.e. m + n ≤ 3, relegating many of the detailed forms of the functions fmn to

appendix A.

We have verified that our results match with a direct computation of the blocks to

high orders in a series expansion in z, providing further direct evidence for the validity of

our methods and for their application to information loss [3]. We also apply this method

to compute the heavy-light super-Virasoro vacuum block in the case of N = 1 and N = 2

superconformal symmetry. With some straightforward but tedious work, the method could

certainly be extended to theories with more supersymmetry, which have been studied

recently using the bootstrap [24].

One physically interesting regime where our techniques prove to be particularly effec-

tive is in the limit where z → 0 in the Lorentzian region. This limit would be trivial in

the Euclidean regime, z̄ = z∗, where z → 0 is the OPE limit of a conformal block and

is therefore dominated by the primary state contribution. However, the regime of small

z becomes highly non-trivial after analytically continuing through a branch cut to the

Lorentzian sheet. In particular, correlators in the Lorentzian regime depend on the order

of the operators, and continuing along different paths before taking z → 0 can produce

different results, which generally include singularities at small z.

This behavior is related to a variety of fascinating physical phenomena, including bulk

singularities [32], black hole scrambling [33], and universal CFT causality constraints [34],

to name a few. This regime was studied at subleading order in the large c, heavy-light

limit of the vacuum block [35], where it was found that certain 1
c log(z) terms appear.

These were argued to be 1/c corrections to the power-law behavior of singular terms. In

particular, at leading non-trivial order the growth of the singular terms is ∼ z−1, which

after mapping to the thermal cylinder z = e2πi(t+x)/β corresponds to exponential growth

with “Lyapunov” exponent 2π
β . In [35] a logarithmic correction at the next order in 1/c

was argued to be the leading term in a correction to this exponent, shifting it to 2π
β (1+ 12

c ).

In section 4, we will prove that there are indeed an infinite series of terms of the form

1

cz

(
log(z)

c

)n
(1.4)

with exactly the correct coefficients to resum into a correction to the Lyapunov exponent.

This might also be viewed as a quantum correction to the Regge trajectory. We will also

provide a simple way to understand subleading logarithms, ie terms of the form 1
cm

(
log(z)
c

)n
with m > 1.

As noted in [35], there are also power-law corrections that are larger than the logarith-

mic corrections. In the limit c → ∞ with cz fixed, there is an infinite sequence of terms

of the form (cz)−n that survive. The “Lyapunov” regime, where the onset of scrambling

first takes place, is the regime of large cz and is well-described by the first few terms in a

1/c expansion. However, eventually the behavior transitions to the “Ruelle” regime [36],

– 3 –
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related to the decay of quasi-normal mode excitations around a BTZ black hole, and to

describe this regime of small cz one must sum all the leading terms. As we will see, this

series is asymptotic, so one must Borel resum it. We will show how to do this in subsec-

tion 4.2, with a remarkably simple result that interpolates between the “Lyapunov” regime

and the “Ruelle” regime:

lim
c→∞
cz fixed

z2hLVhH ,hL,0(z) = G

(
hH , hL,

icz

12π

)
+G

(
hL, hH ,

icz

12π

)
,

G(h1, h2, x) ≡ (x)2h1(2h2)−2h1 1F1(2h1, 1 + 2h1 − 2h2, x). (1.5)

It should be remembered, however, that non-vacuum blocks may also significantly affect

the behavior of the correlator at intermediate and late times.

The idea that makes these Lorentzian resummations possible is that analytic continu-

ation from the Euclidean to the Lorentzian region simply transforms a degenerate vacuum

block into a finite sum of degenerate blocks. In other words, when evaluated on the second

(Lorentzian) sheet, the degenerate vacuum block V(1,s)(z) becomes a linear combination

of s degenerate blocks, which are to be evaluated on the first (Euclidean) sheet. Once we

understand the behavior of V(1,s)(z) in the Lorentzian region for all s, we can use this to

obtain the physical vacuum blocks with general hL. We justify and implement these ideas

in section 4.

The outline of this paper is as follows. In section 2 we review degenerate operators

and outline our method of computation. The in section 3 we use the method to compute

the heavy-light vacuum Virasoro block at order 1/c, and the all-light Virasoro block up

to order 1/c3, which would correspond to a 3-loop gravitational calculation in AdS3. We

use two methods, one based on solving differential equations, and another based on a 1/c

expansion of the Coulomb gas formalism. In section 4 we state and prove various results

on the resummation of logarithms and singularities in the Lorentzian regime, and discuss

the application of these results to the study of quantum chaos. Finally, in section 5 we

derive the super-Virasoro vacuum block for N = 1, 2 superconformal symmetry. Various

technical details have been relegated to the appendices.

2 Degenerate operators and heavy-light Virasoro blocks

In this section, we will review the properties of degenerate operators4 and explain how

to use them to extract information concerning the Virasoro vacuum block in the large

central charge or c� 1 limit. A degenerate operator is a Virasoro primary operator with

null descendants, which means that some of its Virasoro descendants have vanishing norm.

When discussing degenerate states it is useful to introduce a parameter b so that

c ≡ 1 + 6

(
b+

1

b

)2

. (2.1)

In this work, we take the c→∞ limit via b→∞. In this notation, the simplest example

of a null state is the second level descendant(
L2
−1 + b2L−2

)
|h1,2〉 = 0. (2.2)

4See [37] or [38] for more systematic reviews.
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One can check using the Virasoro algebra of equation (1.2) that the level 2 Gram matrix(
〈h|L2

1L
2
−1|h〉 〈h|L2

1L−2|h〉
〈h|L2L

2
−1|h〉 〈h|L2L−2|h〉

)
(2.3)

has a vanishing determinant when the holomorphic dimension satisfies h1,2 = −1
2 −

3
4b2

;

the level two descendant in equation (2.2) is the corresponding null vector. In general,

degenerate states can only occur for holomorphic dimensions satisfying the Kac formula

hr,s =
b2

4
(1− r2) +

1

4b2
(1− s2) +

1

2
(1− rs) (2.4)

for positive integers r, s. This formula determines the values of dimension h when the Kac

determinant, of which equation (2.3) is an elementary example, vanishes. Notice that r ↔ s

simply corresponds with b ↔ 1/b. For rational models, b2(≡ − p
p′ ) is a rational number,

and consequently so are hr,s and c. In this work we will mainly be interested in general

(irrational) values of b and hr,s.

Null conditions such as (2.2) translate into differential equations for the correlation

functions involving a degenerate state. This follows because within a correlator with oper-

ators of dimension hi, the Virasoro generators L−m act as differential operators due to the

stress tensor Ward identities. In the simplest case of O1,2, we have:(
∂2
z +

(
2

1 + b−2

z
+

b−2

1− z

)
∂z +

b−2hH
(1− z)2

)
〈OH(∞)OH(1)O1,2(z)O1,2(0)〉
〈OH(∞)OH(1)〉〈O1,2(z)O1,2(0)〉

= 0. (2.5)

At b → ∞, O1,2 has dimension h1,2 → −1
2 and is a light “probe” operator. The other

operator, OH , has arbitrary weight hH . Equation (2.5) is a version of the hypergeometric

differential equation; it is an exact relation for this correlator and its conformal blocks.

One of its solutions, corresponding to the vacuum conformal block, is given by

〈OH(∞)OH(1)O1,2(z)O1,2(0)〉
〈OH(∞)OH(1)〉〈O1,2(z)O1,2(0)〉

= (1− z)
βH
b 2F1

(
1 + b−2, 2βH , 2(1 + b−2), z

)
, (2.6)

where βH is a parameterization of the operator dimension hH and is related to its Coulomb

gas charge:

βH =
1

2b

(
Q−

√
Q2 − 4hH

)
, hH = b βH(Q− b βH), Q ≡ b+ b−1. (2.7)

We will be interested both in the “light-light” limit, where hH is O(1), as well as in the

“heavy-light” limit where b−2hH is fixed in the large b limit. In the heavy-light limit, OH
represents a heavy operator generating a background probed by O1,2. More specifically,

in a putative AdS3 dual description, OH will create either a deficit angle or BTZ black

hole [4]. At c→∞ in the heavy-light limit, (2.6) simplifies to

e−
1
2
tE

sin(πTHtE)

πTH
, (2.8)

where tE = − log(1 − z) is the Euclidean time and TH = 1
2π

√
24hH
c − 1 is the Hawking

temperature of a BTZ black hole created by acting with OH on the vacuum.

– 5 –
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More generally, the vacuum block for the correlator 〈OH(∞)OH(1)Or,s(z)Or,s(0)〉 sat-

isfies a finite order differential equation for all of the degenerate operators Or,s. Since the

conformal blocks depend only on the parameters hi, hp, b, and not on the particular theory,

this suggests that one can compute them in general by solving the resulting differential

equations. Of course, there is an obvious obstacle: the light weights hr,s are not quite

independent free parameters. We can dial their value by changing their indices r and s,

but within some limitations. First, r and s must be positive integers, and at large c > 0

this means hr,s are always in the non-unitary regime. This is not as significant a limitation

as it may seem, because the conformal blocks are meromorphic functions of hr,s (for a

detailed discussion see [3]). Thus, one can hope to analytically continue the blocks as a

function of integer (r, s) to non-integer values.5 And in fact this method was used in [3] to

study contributions to the vacuum block that are non-perturbatively small in the large c

limit, which are associated with the resolution of information loss problems.

A second, more serious obstacle is that increasing r and s produces new differential

equations of increasingly high orders. Thus, solving for more values of hr,s requires solving

increasingly complicated differential equations of increasingly high order. We will see that

this translates into increasing complexity in using the method to solve for the vacuum

block at increasingly high orders in 1/c. Nevertheless, comparison with other methods [6–

8] suggests that this may be the most efficient available procedure for determing the large

c vacuum blocks, especially if one wishes to go beyond the semi-classical limit.

To be more precise about the method we use, we write a generic vacuum block (which

will not involve any degenerate operators) in a double expansion in 1
c and hL

c :6

VhH ,hL,0,c(z) = exp

[
hL

∞∑
n,m=0

(
1

c

)m(hL
c

)n
fmn (ηH , z)

]
, (2.9)

where ηH = hH
c . This ansatz can be justified as follows. In the semiclassical limit of c→∞

with all hi/c fixed, we have a great deal of evidence [6, 13, 27, 30, 31] that the vacuum

block can be written as exp
(
c g(hLc ,

hH
c , z)

)
for some function g that is analytic in hL/c

and hH/c in a neighborhood around the origin. This explains why equation (2.9) does not

5Continuing a function on the integers to the entire complex plane generally requires some additional

knowledge of its behavior at ∞; we will see that order-by-order in the large c expansions we employ in this

paper, the required information is provided by the OPE.
6A limitation of this method is that it is much more complicated to get results for general internal

dimension hI of the conformal block. The reason for this is that once the external dimensions hL, hH are

fixed and OL is chosen to be a degenerate operator, then the dimensions of the allowed internal operators

are also fixed to lie in a finite set. In principle, one could hope to get around this by using the fact that

degenerate operators O1,s contain more and more operators in the OPE as s is increased, and in the limit

that s becomes large one would have access to a tower of operators with a discretum of dimensions. However,

each order in 1/c has a complicated dependence on hI , in contrast to the simple polynomial dependence

on the external dimensions hL, hH (for instance, the c→∞ piece is the global block, which is independent

of hH and hL but a hypergeometric function 2F1(hI , hI , 2hI , z) of hI), so extracting this dependence from

the discretum of exchanged operators really requires the entire infinite tower, which in turn requires solving

the large c degenerate blocks in the s → ∞ limit. Thus we are focusing entirely on the vacuum Virasoro

block in this paper.

– 6 –



J
H
E
P
0
3
(
2
0
1
7
)
1
6
7

contain terms such as e.g. h4
L/c

2, which would behave very differently in the semi-classical

limit. Corrections to the semi-classical limit can then be expanded in powers of 1/c, leading

to equation (2.9).

The exponential form of the ansatz will be convenient for our purposes, but beyond

the semiclassical limit it is not obligatory, and it would be just as natural to write the 1/c

corrections in a power-series multiplying the exponential semiclassical part. One can also

justify the ansatz to any order in z via a direct, brute force computation [8] of the vacuum

block using the Virasoro algebra. Finally, note that although we have expanded the ansatz

in a heavy-light limit, the conformal blocks will be symmetric under hL ↔ hH .

As mentioned previously, the vacuum block in equation (2.9) is analytic in hL and

hH [3, 27]. Therefore, when taking hL = hr,s, we must recover the null state vacuum block

such as solution (2.6). Matching order by order in 1
c and hL

c to these solutions, we can

determine fmn(ηH , z). Note that our knowledge of the block in the heavy-light semiclassical

limit strongly constrains its behavior at large values of the external dimensions, so it seems

very unlikely that there are any ambiguities in the analytic continuation from hL = hr,s.

The method can be generalized to study theories with supersymmetry. In particular,

we work out heavy-light large c limit of the holomorphic part of super-Virasoro vacuum

blocks with N = 1, 2 supersymmetries in section 5. It turns out that the super-Virasoro

vacuum block of the lowest component fields in these theories do not get contributions

from the fermionic supersymmetry generators at leading order of the large c limit, so they

largely match with results extrapolated from [7], but it is interesting to understand the

supermultiplet structure and the correlators of superconformal descendant fields.

Although the method is straightforward, it becomes quite tedious beyond the first few

orders in (2.9). When r is large, it becomes a non-trivial task to construct the null state

differential equation for φ1,r, which is a complicated r-th order differential equation whose

exact solutions can be difficult to compute. But in specific limits of physical interest, these

equations simplify greatly and become extremely useful in determining key properties of

the higher order quantum corrections. One example of these are the leading log terms in

the 1
c corrections when all four operators are light, which we discuss in section 4. Such

terms plays an important role in the growth of quantum chaos [33, 35, 39] and can be

computed efficiently with the φ1,r null state differential equations.

Another very useful way to get higher order corrections in the large c limit is to use

the Coulomb gas formalism, which provides a straight-forward construction of integral

representations for the Virasoro blocks involving degenerate operators. We have used it

in [3] in order to study the non-perturbative part of the vacuum Virasoro block in the large

c asymptotic expansion. In this work, we will show that directly expanding the integrand in

the Coulomb gas formalism provides an efficient way to obtain higher order terms in (2.9).

This method is discussed in section 3.3.

3 Computing the 1/c expansion of the vacuum block

In this section, we will use the computational method explained in last section to calculate

the higher order corrections to the Virasoro block. The idea is to assume that the general

– 7 –
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heavy-light vacuum block V can be written as the ansataz (2.9). When OL is a degenerate

operator, V satisfies a null-state differential equation. At order 1
cp , there are p + 1 fmn

functions {f0,p, f1,p−1, . . . , fp,0}. Each one appears with a different power of hL in its

coefficient, i.e. log V ⊃ hn+1
L fm,n. By (2.4), the degenerate operators h1,s with r = 1

have weights

h1,s =
1

2
(1− s) +

1

4b2
(1− s2) ≈ 1

2
(1− s) +

3

2c
(1− s2) +O

(
1

c2

)
, (3.1)

that are O(1) at c → ∞. For any choice of s, the operator O1,s produces a differential

equation that we can solve for V and expand at large c to obtain the O(c−p) term as

logV ⊃ 1

cp

(
h1,sfp,0 + h2

1,sfp−1,1 + · · ·+ hp+1
1,s f0,p

)
, (3.2)

Unfortunately, for a single fixed s, h1,s is just a number and therefore knowledge of (3.2)

does not allow one to separate out the different contributions fmn.7 To accomplish this,

one needs to take p+1 different degenerate operators, which give p+1 differential equations

to be solved for these p+ 1 fmn functions.

This is the procedure that we will implement in sections 3.1 and 3.2 in order to obtain

1/cp corrections up to p = 3, corresponding to 3-loop gravitational effects in AdS3. In

section 3.3 we will study a different method that uses the Coulomb gas formalism to

replace differential equations with integrals.

A convenient and efficient formalism for keeping track of the null state differential

equations at large c was developed in [37, 40]. Let D1,s be the following matrix:

D1,s = −J− +

∞∑
m=0

(
J+

b2

)m
L−m−1, (3.4)

where J± are matrix generators of the spin (s− 1)/2 representation of SU(2):

(J0)ij =
1

2
(s− 2i+ 1)δij ,

(J−)ij =

{
δi,j+1 (j = 1, 2, . . . , s− 1)

0 else
,

[J+, J−] = 2J0,

[J0, J±] = ±J±.

(J+)ij =

{
i(s− i)δi+1,j (i = 1, 2, . . . , s− 1),

0 else
. (3.5)

7More precisely, h1,s is not just a fixed number but rather a fixed function of c. However, because of the

relation

h1,s = h
(0)
1,s +

1

b2
(h

(0)
1,s − (h

(0)
1,s)

2), (3.3)

where h
(0)
1,s = limc→∞ h1,s, we are free to perform an expansion in powers of h1,s or in powers of h

(0)
1,s, since

the difference between the two just corresponds to a redefinition of the fm,n functions.
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Then, the null state equation of motion is given by the equation f0 = 0 after eliminating

f1, . . . , fs−1 from the equation

D1,s


f1

f2

...

fs

 =


f0

0
...

0

 . (3.6)

At infinite c with hH held fixed and O(1), one can manifestly drop all terms in the

sum in D1,s except for m = 0, so the null state manifestly becomes

Ls−1O1,s = 0, (3.7)

and the infinite c differential equation for the conformal block becomes

∂szV(z) = 0, (3.8)

where the factor of zs−1 arises because our convention for V(z) factors out the

〈O1,s(z)O1,s(0)〉 two-point function. More generally, allowing hH to be O(c) with hH/c

fixed, at infinite c the differential equation for V(z) becomes [3, 37, 40] ∏
k=−(s−1)+2j
j=0,...,s−1

(
∂t −

k

2

√
1− 24ηH

) e s−1
2
tV(t) = 0, (3.9)

where t = − log(1− z).

Let us see how this works in the simplest case, namely at lowest order in 1/c in (2.9).

At order c0, logV ⊃ hLf00 (ηH , z), there is only one unknown function f00, which means

that we only need the differential equation (3.9) with s = 2:8(
d2

dt2
− 1− 24ηH

4

)
e
t
2 eh1,2f00(z(t)), (3.11)

with h1,2 ' −1
2 . In terms of z = 1− e−t, we obtain

f ′′00 =
12ηH

(1− z)2 +
1

2

(
f ′00

)2
. (3.12)

And the solution that corresponds to the vacuum block is

f00 (ηH , z) = − (1− 2πiTH) log (1− z)− 2 log

(
1− (1− z)2πiTH

2πiTH

)
. (3.13)

with TH = 1
2π

√
24ηH − 1. This reproduces the result for the heavy-light limit of the vacuum

block first found in [6].

8For later reference, the exact equation for the vacuum block for O1,2 is(
∂2
z +

(
2

1 + b−2

z
+

b−2

1− z

)
∂z +

b−2hH
(1− z)2

)(
z2h1,2V(h1,2, ηH , z)

)
= 0. (3.10)

with b2 = − 3
2(2h1,2+1)

in this equation.
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3.1 The heavy-light Virasoro vacuum block at order 1/c

At order 1/c , there are two functions f01 and f10:

logV ⊃ hL
c

(f10 + hLf01)

which means that we need to use both the h1,2 null-state equation (3.10) and the h1,3

null-state equation:

0 =

(
1

z2

d3

dz3
z2 +

(
4 1
b2

2−z
1−z
z

)
d2

dz2
+

4( 1
b2

+ 2
b4

)hH(2− z)

(1− z)3z

+

(
2 1
b2

(9− 13z + (5 + 2hH)z2) + 1
b4

(3 + (z − 3)z)

z2(1− z)2

)
d

dz

)(
z2h1,3V (h1,3, η, z)

)
(3.14)

with b2 = − 2
h1,3+1 in this equation and h1,3 ' −1 − 12

c −
156
c2

+ O
(
1/c3

)
in the large c

limit. The c0 order of equation (3.14) only involves f00 and the solution for it is exactly

equation (3.12).

At order 1/c, equation (3.10) and (3.14) give the following two equations for f00, f01

and f10 :

0 = F ′′1 − f ′00F
′
1 − 8f ′′00 − 5f ′00

2 − 12(2z − 1)

z(z − 1)
f ′00 −

12(z + 1)

(z − 1)z2

0 = F ′′′2 − 3f ′00F
′′
2 + 3

(
f ′200 − f ′′00 +

8ηH
(z − 1)2

)
F ′2 + 12f ′′′00 +

(
24− 48z

(z − 1)z
− 72f ′00

)
f ′′00

+ 36f ′00
3 +

24(2z − 1)

z(z − 1)
f ′00

2 +
12((50ηH + 3)z2 − z − 1)

(z − 1)2z2
f ′00

+
24
(
(25ηH + 1)z3 − 2z + 1

)
(z − 1)3z3

(3.15)

where we define

F1 = 2f10 − f01, F2 = f10 − f01.

Note that the differential equations (3.15) involve the ‘zeroth order’ term f00, which also

appears at higher orders, since log V ⊃ h1,sf00 = (1−s
2 + 1−s2

4b2
)f00. There are a few significant

simplifications that occurred in the above equations. First, f10 and f01 show up only as a

certain combination (F1 and F2) in each equation. The reason is that these equations come

from the leading term in
h1,sf10

c +
h2

1,sf01

c . Since h1,s = 1−s
2 +O (1/c), the leading term in

h1,sf10

c +
h2

1,sf01

c is
1−s

2 f10

c
+

(
1−s

2

)2
f01

c
.

A similar phenomenon continues to be true for higher order calculations. This means that

these differential equations can be solved independently for F1 and F2. Second, only the

derivatives of F1 and F2 show up in these equations. This allows one to solve for the
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derivatives first, and then integrate. We have found this allows one to obtain a closed

form expression for F1(z) directly using Mathematica; on the other hand, the differential

equation for F2 is too complicated to be solved this way. Since the solutions are known

from previous work [11] (see also [12, 13] for semi-classical results), one can substitute them

into equations (3.15) and verify them. For completeness, these solutions are included in

appendix A.

3.2 The all-light Virasoro vacuum block at order 1/c2 and 1/c3

At order 1/c2, there are three functions f20, f11 and f02:

logV ⊃ hL
c2

(f20 + hLf11 + h2
Lf02).

To fully determine them, one needs to solve the h1,2 and h1,3 null-state equations and also

the h1,4 null state equation at order 1/c2. These equations are complicated, but at least

one can expand them in terms of ηH ≡ hH
c < 1 and obtain the result as an expansion in

ηH . Define the expansion of fmn as

fmn =

∞∑
k=0

ηk+1
H fmnk for m or n > 0

f00 =− 2 log(z) +

∞∑
k=0

ηk+1
H f00k

(3.16)

where the −2 log(z) in f00 is because we include the prefactor z−2hL in the definition of

the vacuum block. Since the vacuum block V (hL, hH , z) is symmetric under the exchange

hL ↔ hH , in our convention, this means that fijk = fikj .

The liner ηH and η2
H terms at order 1/c2 are

logV ⊃ hL
c2

(
ηH(f200 + hLf110 + h2

Lf020) + η2
H(f201 + hLf111 + h2

Lf021)
)
.

At order η1
H , using the symmetry under the exchange of hL and hH , we have f110 =

f101, f020 = f002, which can be calculated by expanding f10 (A.1) and f00 (3.13) in terms

of ηH . So the only unknown at this order is f200, which means that we only need to solve

the h1,2 null-state equation at this order to get this term. The result is

f200 =
1728(z2 − 1) (ζ(3)− Li3(1− z))

z2
+

288Li2(z)(7(z − 2)z − 12(z − 1) log(1− z))

z2

− 1728(z − 2)Li3(z)

z
− 144(z − 1) log2(1− z)(6(z + 1) log(z)− 7z + 7)

z2
+ 1128

+
12
(
24π2

(
z2 − 1

)
+ (z − 2)z

)
log(1− z)

z2
+

288(z − 2)(z − 1)2 log3(1− z)

z3
.

(3.17)

We have also checked that these results do satisfy the h1,3 and h1,4 null-state equations.

At order η2
H , only f021 = f012 can be determined by expanding the result we already

have (that is, f01), and we need to solve the h1,2 and h1,3 null-state equations at this order

to get f201 and f111. These results are complicated and given in appendix A.
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Using the symmetry fijk = fikj , we can also determine the liner ηH terms at order

1/c3 by just using the the h1,2 null-state equation. At this order,

logV ⊃ hLηH
c3

(f300 + hLf210 + h2
Lf120 + h3

Lf030).

Since f210 = f201, f120 = f102 and f030 = f003, only f300 cannot be obtained by expanding

the results we already have, that’s why we only need the h1,2 null-state equation. These

results are also given in appendix A.

3.3 Integral formulas from the Coulomb gas

As we mentioned in the previous sections, computation of fmn at higher orders becomes

extremely technically challenging, because upon the substitution hL → hr,s one needs to

solve a differential constraint equation of order rs. However, an integral representation of

the solutions to constraint equations such as (2.5) are known, thanks to the Coulomb gas

formalism [37, 41, 42]. This method makes it possible to write down explicit expressions

for all fmn in terms of multiple elementary integrals.

Explicitly, the vacuum block component of
〈O1,s(0)O1,s(z)OH(1)OH(∞)〉
〈O1,s(0)O1,s(z)〉〈OH(1)OH(∞)〉 , where O1,s is a

light degenerate operator, is given by the following integral representation:

Ṽ1,s(z) = N1,s

(
s−1∏
i=1

∫ 1

0
dwi

)
(1− z)(s−1)βHeI1,s , (3.18)

where the action I1,s is

I1,s =

s−1∑
i=1

{
s− 1

b2
log
[
wi(1− wi)

]
− 2βH log(1− zwi)

}
− 2

b2

∑
1≤i<j≤s−1

log(wi − wj) .

(3.19)

with βH given by (2.7). We have also introduced a normalization factor N1,s such that

Ṽ1,s(0) = 1. Notice that N1,s is independent of hH . Perturbatively in b, it is given by

N1,s(b) = 1 +
4(s− 1)2 − 3(s− 1)(s− 2)

2b2
+O(b−4) . (3.20)

In the limit b→∞ with fixed βH , we can expand the integrand of (3.18) in 1/b:

Ṽ1,s(z) = N1,s(b)(1− z)(s−1)βH

∫ 1

0

(
s−1∏
i=1

dwi

)
(1− zwi)−2βH

×
∞∑
k=0

1

k!b2k

(
s−1∑
i=1

(s− 1)Ki −
∑

1≤i<j≤s−1

2Uij

)k
. (3.21)

To lighten the notation, we denote

Ki = log(wi(1− wi)) , Uij = log |wi − wj | . (3.22)
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In the rest of this section, we will show how to extract various fmn from the inte-

gral (3.21). The general strategy is very simple. Recall that we postulated the ansatz of

the vacuum block to be

ṼhH ,hL,0,c(z) = z2hL exp

[
hL

∞∑
n,m=0

(
1

c

)m(hL
c

)n
fmn (ηH , z)

]
. (3.23)

When we set hL = h1,s = 1−s
2 + 1−s2

4b2
in the above ansatz and compare it with (3.21), we

can read off the fmn functions.

3.3.1 Leading order at large c

Let us begin by computing the well-known c =∞ heavy-light vacuum block as a warm-up.

Upon substitution hL → h1,s, eq. (3.23) in leading order in b is simply z2hL exp(1−s
2 f00).

Denoting X1,s the (s− 1) dimensional integral in (3.21), the comparison implies

z2hLe
1−s

2
f00 = N

(0)
1,sX

(0)
1,s =

s−1∏
i=1

[
(1− z)βH

∫ 1

0
dwi(1− zwi)−2βH

]
, (3.24)

where the superscript denotes the powers in 1
b2

, e.g. X1,s = X
(0)
1,s + 1

b2
X

(1)
1,s + . . . . From the

above equation one immediately obtains that

f00 = −2 log

(
(1− z)βH − (1− z)1−βH

(1− 2βH)

)
. (3.25)

Noting that in large b limit βH → 1−
√

1−24ηH
2 + O(b−2), we recognize the above equation

in agreement with (3.13).

3.3.2 Expansion at order 1/c

Now we arrive at the sub-leading order in c. They are two functions, f10 and f01, to be

determined at this order. The comparison of (2.9) with (3.21) yields

1− s2

4
(f00 + 2 log z) +

1− s
2

(
f10

6
+
f01

6

1− s
2

)
=
N

(1)
1,sX

(0)
1,s +N

(0)
1,sX

(1)
1,s

N
(0)
1,sX

(0)
1,s

. (3.26)

In the above equation, N
(0)
1,s and N

(1)
1,s on the r.h.s. are obtained from (3.20), while X

(0)
1,2

and X
(1)
1,2 are represented by elementary integrals. Staring at (3.21), one finds that

X
(0)
1,s =

(∫
w

1

)s−1

, X
(1)
1,s = X

(0)
1,s

(
(s− 1)2

∫
w1
K1∫

w1
1
− (s−1)(s−2)

∫
w1

∫
w2
U12

[
∫
w1

1]2

)
. (3.27)

Here we have used the abbreviation∫
wi

f(w1, . . . , wn) ≡ (1− z)βH
∫ 1

0
dwi(1− zwi)−2βHf(w1, . . . , wn) . (3.28)
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Combining all these pieces of information, one can easily solve for f10 and f01:

f10 = −18− 6(f00 + 2 log z)− 12

∫
w1

∫
w2
U12

[
∫
w1

1]2
,

f01 = 12 + 6(f00 + 2 log z) + 24

∫
w1
K1∫

w1
1
− 24

∫
w1

∫
w2
U12

[
∫
w1

1]2
, (3.29)

where f00 is given by (3.25). Now what remains to be computed are the two integrals in

the expressions above. After some cumbersome but straightforward algebra, one has∫
w1
K1∫

w1
1

=

∫ 1
0 dw(1− zw)−2βH log

∣∣w(1− w)
∣∣∫ 1

0 dw(1− zw)−2βH
(3.30)

=

(
−αH−α + α log

(
−1
z

)
− 2 + (1− z)α

(
2 + α

(
ψ(0)(α) + log

(
z
z−1

)
+ γ
))

α

+
2F1

(
1, α;α+ 1; 1

1−z

)
z + α

1−α(1− z)α 2F1

(
1, 1; 2− α; 1

z

)
αz

)
(1− (1− z)α)−1 ,∫

w1

∫
w2
U12

[
∫
w1

1]2
=

∫ 1
0 dw1

∫ 1
0 dw2

[
(1− zw1)(1− zw2)

]−2βH log |w1 − w2|(∫ 1
0 dw(1− zw)−2βH

)2 (3.31)

=

[
iπα+ 8(1− z)α − 2α log(z) + (1− z)2α

(
iπα− 2α log( z

1−z )− 1
)
− 1

2α

+
(1− z)2α

(
B(1− z,−α, 0)− 3B

(
1

1−z , α, 0
))

+B
(

1
1−z ,−α, 0

)
− 3B(1− z, α, 0)

2

+
π cot(πα)− 2Hα + (1− z)2α (π cot(πα)− 2Hα)

2

]
(1− (1− z)α)−2 ,

where B(x, β, 0) = xβ2F1(1,β,1+β,x)
β is the incomplete Beta function, Hn is the harmonic

function, γ is the Euler gamma constant, ψ(x) = Γ′(x)
Γ(x) is the digamma function and the

parameter α is related to the Hawking temperature by α ≡
√

1− 24ηH = 2πiTH . Hav-

ing (3.30) and (3.31) plugged into the expression of f10 and f01 (3.29), it is straightforward

to show that they match the results obtained in [11], which are also given in appendix A.

One can easily continue this procedure to higher orders in the 1/c expansion, but for

brevity we spare the reader the details, since the lengthy 1/c2 and 1/c3 results have already

been given in section 3.2 and in appendix A.

4 All-orders resummations in the Lorentzian regime

Our main focus in this section is to understand how the large c vacuum Virasoro block

behaves in the Lorentzian regime. More specfically, we are interested in the behavior of

the block after the argument z is analytically continued across the branch cut emanating

from z = 1 and then taken to small values of |z| on the second sheet. The behavior of
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Figure 1. Plot of the behavior of 1 − F (t) as a function of time t in the limit c → ∞ with cz

fixed, with hL = hH = 1
2 . F (t) is absolute value of the out-of-order correlator

〈OLOHOLOH〉β
〈OLOL〉〈OHOH〉 , and

t ≡ − log(cz/6). The initial “Lyapunov” growth and the later “Ruelle” decay are labeled as in [36].

We have plotted only the contribution of an approximation to the vacuum Virasoro block, but the

result has the qualitative features expected of the full correlator.

CFT correlators in this regime has interesting implications for causality [34, 43–45] and a

fascinating interpretation in terms of chaos [33, 35, 36, 39, 46–48].

In this section we will show that quantum corrections to the Lyapunov exponent re-

sum to all orders, and that one can also resum the full 1
cz expansion in order to obtain an

interpolation between the early onset of chaos and late time effects associated with ther-

malization. These are the Lyapunov and Ruelle regions of figure 1. We refer the reader

to [35] for a pertinent review of chaotic correlators and Lyapunov exponent bounds in the

context of CFT2 at large central charge.

4.1 Resummation of 1
c

log z effects

Consider the Virasoro vacuum block in a large c expansion with external dimensions fixed.

In a 1/c expansion, the leading correction near z ∼ 0 after analytically continuing around

the branch cut emanating from z = 1 is of the form

F (z) ≈ 1− 48iπhLhH
cz

+ . . . (4.1)

The first term comes from the vacuum itself, while the second term is due entirely to the

exchange of a single quasi-primary stress tensor or ‘graviton’ state along with its global

conformal descendants. The quantity F is the contribution of the vacuum block to the

out of time order correlator 〈OHOLOHOL〉β in a thermal background, normalized by the

〈OHOH〉〈OLOL〉 ; it is plotted in figure 1.

As z decreases towards 0, the 1/c correction grows like z−1 and becomes increasingly

important. Similarly, higher order terms in 1/c can become important at sufficiently small

z as well. In this subsection we will show how to resum one set of contributions that grow

large at small z, namely the terms that are leading logs in the 1/c expansion. That is, we

will see that terms of the form (1/zc)(log(z)/c)n appear exactly in the combination

A

cz1+γ/c
=
A

zc

∞∑
n=0

1

n!

(
−γ log(z)

c

)n
, (4.2)
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with constants A = −48iπhLhH , γ = 12. We provide another derivation of this resum-

mation in appendix B. We also checked the coefficients of these terms by analytically

continuing the fm00 functions given in appendix A directly to the second sheet up to and

including 1/c3 corrections. These effects provide a quantum correction [35] to the Lyapunov

exponents that characterize the early onset of chaos.

For degenerate external operators, there is a particularly transparent way of under-

standing this logarithmic resummation, because only a finite number of Virasoro blocks

appear in any channel. The crucial point is that passing through the branch cut in z simply

reshuffles one linear combination of blocks into a different linear combination.9 In other

words, on the second (Lorentzian) sheet, the vacuum block is equal to a sum of degenerate

blocks evaluated on the first (or Euclidean) sheet.

For the degenerate operator O1,s, the operators in the O1,s×O1,s OPE are degenerate

operators O1,p with p = 1, 3, . . . , 2s− 1. These have dimension

h1,p = −1

2
(p− 1)

(
1 +

1

2
b−2(p+ 1)

)
. (4.3)

where we recall c ≈ 6b2 � 1. So for a given value of s, analytic continuation of z around 1

transforms the vacuum block into a linear combination of terms of the form

Ṽ(1,s)(z) ∼
s−1∑
q=0

cq(h1,s, hH)

b2q
1

zq(1+b−2(q+1))
fq(h1,s, hH , z), (4.4)

where q ≡ (p−1)
2 and the fq(z) ∼ 1+O(z) parts of the blocks have a regular series expansion

around z ∼ 0. In the above, cq and fq are functions of b as well but we have factored out

explicit powers of b−2 so that they have a finite limit at b→∞. The reason this prefactor

of b−2q must be present is that cq vanishes up to O(b−2q+2), by the following argument.

If we expand at large b, we know that the b−2q+2 term is a (q − 1)-th order polynomial

in h1,s, and therefore given by q coefficients.10 These coefficient can be fixed by looking

at the OPE of the q degenerate operators {O1,s}1≤s≤q. From the above description of the

O1,s × O1,s OPE, we know that none of the operators {O1,s}1≤s≤q contains the O1,2q+1

operator, therefore this operator does not appear at O(b−2q+2) or lower. But, cq is just

the OPE coefficient for the O1,2q+1 operator; therefore the lowest order where it appears

is b−2q.

Now, to see explicitly the behavior of leading logs, sub-leading logs, sub-sub-leading

logs, etc, we can simply expand in large b and look for terms of order (b−2 log(z))n,

b−2(b−2 log(z))n, etc. Logarithms manifestly arise only from expanding an exponent of

z in the above expression, so any term of the form

(b−2)m(b−2 log(z))n (4.5)

9One way of understanding this is that crossing symmetry z → 1 − z acts as a linear operator that

changes blocks in one channel into blocks in the other channel. In the other channel, taking z around 1

acts on each block by simply introducing a phase (1− z)hI → e2πihI (1− z)hI given by the weight hI of the

corresponding primary operator. Transforming back to the original channel again acts with the inverse of

the first linear operator, producing a linear combination of blocks in the original channel.
10These coefficients are functions of z and hH .
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must come from expanding an exponent n times after expanding the prefactor up to m-th

order. There are manifestly no terms with m = 0. Terms with m = 1 must clearly come

from the first term, q = 1, and are the leading logs. Consequently, we immediately see that

all these leading logs arise from the expansion of the term

c1(h1,s, hH)f1(h1,s, hH , z)

b2z1+2b−2 (4.6)

and thus manifestly just resum back to this form. This result holds for all values of s.

Since we expect that the vacuum block V is analytic in hL, and because this result obtains

for hL = h1,s for all s, we expect that it also holds if we analytically continue to general

hL. The correction to the power-law in the denominator is

1→ 1 + 2b−2 = 1 +
12

c
+O(c−2), (4.7)

proving equation (4.2) with γ = 12. This also provides a quick alternative check of the

magnitude and sign of the correction to this (Lyapunov) exponent.

The above considerations also make it easy to understand the effect of sub-leading

logs, sub-sub-leading logs, etc. For instance terms with m = 2 must come from either the

first term or the second term in (4.4), and therefore are of the form

z2h1,s〈OH(∞)OH(1)O1,s(z)O1,s(0)〉 ⊃ (4.8)

∞∑
n=0

(b−2)2

(
[c1f1(z)]O(b−2) (−2b−2 log(z))n

zn!
+

[c2f2(z)]O(b0) (−6b−2 log(z))n

z2n!

)
.

It is easy to expand in large b to obtain similar higher order results.

4.2 Resumming leading singularities in 1
cz

Resumming the leading logarithms tells us something about the functional form of the

large c expansion, but because of the power-law singularities ∼ (cz)−n, the leading logs

never dominate the behavior of the blocks. In this subsection, we will derive and resum the

leading (cz)−n singularities, which do give the dominant behavior at small z in the limit

c→∞ with cz fixed.

The arguments in the previous subsection already provide a significant amount of

information on the coefficients of these singularities in equation (4.4): they are polynomials

in hL and hH of order n, they have to vanish when hL is a degenerate operator h1,s with

s ≤ n, and they have to be symmetric in hL ↔ hH . This in fact completely determines the

coefficients cq(hL, hH) of equation (4.4) up to an hH , hL-independent prefactor:

cq(hL, hH) = aq(2hL)q(2hH)q, (4.9)

where aq depends only on q and not on hH or hL. To obtain its value, we just need to

calculate it for some chosen hH , in the limit c → ∞. A convenient choice is hH = ηHc
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Figure 2. Plots comparing the exact behavior from eq. (4.14) (black, dashed) for 1 − F (t) in the

limit c→∞ with cz fixed, to the heavy-light approximation (4.10) (red, solid). Left : hL = hH = 1
2 ,

Right : hL = 3
2 , hH = 3

10 . F (t) and t are as in figure 1. Note that both curves only include

contributions from the vacuum block, neglecting double-trace operators which could affect an AdS3

calculation.

fixed, followed by ηH small, since in that case we know from the form of the heavy-light

blocks in the c→∞ limit that, on the second sheet [33, 35], the vacuum block is [6]

z2hLV(z) ≈

(
1

1− 24iπhH
cz

)2hL

. (4.10)

Series expanding in 1/c, we can read off the cq coefficients in this limit and determine the

prefactor aq, with the result11

cq(hL, hH) =
(2iπ)q(2hH)q(2hL)q

q!
(4.11)

Substituting these coefficients back into the sum over singular terms

∞∑
q=0

cq(hL, hH)

b2qzq
, (4.12)

we see that the sum on q is an asymptotic series, ie it has zero radius of convergence. One

can nevertheless Borel resum it:

B(t) =

∞∑
q=0

cqt
q

q!
= 2F1(2hL, 2hH , 1, 2iπt). (4.13)

Performing the Borel integral
∫∞

0 e−tB( t
b2z

)dt, we obtain a relatively compact expression

for the resummation of the leading singular terms:

lim
c→∞
cz fixed

(z2hL)V(z) = G

(
hH , hL,

icz

12π

)
+G

(
hL, hH ,

icz

12π

)
(4.14)

11Note that since the approximation (4.10) retains some of the hH -dependence and all of the hL-

dependence of the coefficients cq in its 1/c series expansion, this also provides a non-trivial consistency

check of equation (4.9).
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where

G(h1, h2, x) ≡ (x)2h1(2h2)−2h1 1F1(2h1, 1 + 2h1 − 2h2, x). (4.15)

This might be compared with the integral formulas from [47] derived from AdS physics.

As one might expect, we see that the singular terms all resum into something that shuts

down at z ∼ 0. The two terms above decay like z2hH and z2hL , respectively. Suggestively,

these exponents would naively correspond to the contributions from a OHOH double-trace

operator and a OLOL double-trace operator. This is closely related to the fact that if one

takes the expression for the vacuum block in the heavy-light limit

V ∝
(

πTH

sin2(πTH(t+ iφ)

)2hL
(

πT̄H

sin2(πT̄H(t− iφ)

)2hL

(4.16)

and promotes it to a periodic function of φ (which the full correlator must be) by adding

all its images under φ → φ + 2πn, then this generates additional contributions in the

conformal block decomposition that behave like double-trace operators in the OLOL OPE.

It is interesting that, unlike the global conformal blocks, the Virasoro conformal blocks

thereby “know” about double-trace operator contributions in the same channel OLOL →
OHOH as the vacuum.

Adopting the nomenclature of [36], the above expression interpolates between the

“Lyapunov” regime, where c is large with cz fixed and large, and the “Ruelle” regime,

where c is large with cz fixed and small. For hH = hL, the expression simplifies somewhat:

lim
hH→hL

G(hL, hH , x) +G(hH , hL, x) = x2hLU(2hL, 1, x). (4.17)

where U(a, b, x) is a confluent hypergeometric function.12 It is particularly simple at hL =

1/2, since U(1, 1, x) = exΓ(0, x). In figure 1, we have plotted the resulting behavior for

the correlator (only including the vacuum block contributions) interpolating between the

Lyapunov and Ruelle regime for hL = hH = 1
2 . In figure 2, we compare the behavior of

the vacuum block with that of the approximate formula (4.10) from the heavy-light limit.

Although all of these plots only include vacuum block contributions, they seem to agree

with qualitative expectations for the behavior of the full correlator.

We make one final comment on the relation of this result to the heavy-light limit.

One open question has been whether or not taking the heavy-light limit, then analytically

continuing around z ∼ 1, and finally taking c large with hL, hH , and cz fixed is the same as

simply analytically continuing the exact Virasoro block and then taking the limit c large

with hL, hH , and cz fixed. So far, all indications are that these different orders of limits

do commute for the O(1/c) singular term (4.1), which was the main interest of [33], but in

the above we see explicitly that they do not commute for most other terms. In particular,

taking the heavy-light limit followed by small hH completely discards the contribution

12For b /∈ Z,

U(a, b, x) =
Γ(b− 1)

Γ(a)
z1−b

1F1(a− b+ 1, 2− b, x) +
Γ(1− b)

Γ(a− b+ 1)
1F1(a, b, x) (4.18)
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in (4.15) that decays like z2hH , since by inspection we see that (4.10) contains only the

∼ (cz)2hL piece at small cz. This is perhaps not so surprising, since the full result has

to be symmetric under hL ↔ hH , but taking the heavy-light limit breaks this symmetry

and makes the O(z2hH ) contributions become formally non-perturbative ∼ e2ηHc log(z). By

contrast, by working out the exact coefficient of the leading singularities, we have kept the

hH ↔ hL symmetry at all stages of the computation.

5 Heavy-light super-Virasoro vacuum blocks at large c

Similar to the case of non-supersymmetric CFTs that we have being discussing so far, in

two-dimensional superconformal theories (SCFTs) there are degenerate operators whose

correlators satisfy super null-state differential equations. In this section, we will use these

super null-state equations to calculate the large c heavy-light super-Virasoro vacuum block

for these degenerate operators, and then analytically continue the result to obtain the super-

Virasoro vacuum block for operators with general conformal dimensions. Specifically, we

will focus on the holomorphic part of the Neveu-Schwarz (NS) sector of 2d N = 1 [49–54]

and N = 2 [55–60] SCFTs (see e.g. [61] for a review of these theories). Previously, the

N = 1 super-Virasoro blocks in NS sector have been studied using recursion relations [62–

64], while those of N = 2 are less investigated [24, 65].

5.1 The N = 1 super-Virasoro vacuum block

5.1.1 Brief review of 2d N = 1 SCFTs

In the N = 1 super-space, a point is denoted by Z ≡ (z, θ), where θ is a Grassmann

variable. A primary superfield Φh(Z) of conformal dimension h can be expanded in terms

of θ as Φh(Z) = φh(z)+θψh+ 1
2
(z), where φh(z) and ψh+ 1

2
(z) are two component fields with

conformal dimension h and h + 1
2 , respectively . In the NS sector, the energy-momentum

superfield T (Z), which has conformal dimension 3/2, can be expanded around the origin as

T (Z) =
∑

r∈Z+ 1
2

1

2zr+3/2
Gr + θ

∑
n∈Z

1

zn+2
Ln, (5.1)

where the fermionic generators Gr are the supersymmetry generators and the bosonic

generators Ln are Virasoro generators. The (anti-)commutation relations between these

generators are:

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m,0,

{Gr, Gs} = 2Lr+s +
c

3

(
r2 − 1

4

)
δr+s,0,

[Ln, Gr] =
(n

2
− r
)
Gn+r, m, n ∈ Z; r, s ∈ Z +

1

2
.

(5.2)

The singular terms in the OPE of T (Z1) and Φ(Z2) are

T (Z1)Φ(Z2) ∼ hθ12

Z2
12

Φ(Z2) +
1

2Z12
D2Φ(Z2) +

θ12

Z12
∂2Φ(Z2),
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where Zij = zij − θiθj , zij = zi − zj and Di = ∂θi + θi∂zi . Descendant superfields are

obtained by acting on a primary with L−n and G−r for n, r > 0. From the above OPE,

one can derive that correlation functions with one descendant superfield can be written

in terms of a differential operator acting on the correlation functions with only primary

superfields [54] via

〈(L−nΦ1)(Z1)X〉 = L−n 〈(Φ1)(Z1)X〉 , 〈(G−rΦ1)(Z1)X〉 = G−r 〈(Φ1)(Z1)X〉 , (5.3)

where X = Φ2(Z2) · · ·ΦN (ZN ) is an assembly of primary superfields, and Φi has conformal

dimension hi. These two super-differential operators are

L−n = −
N∑
i=2

Z−ni1 [(1− n)(hi +
1

2
θi1Di) + Zi1∂zi ] 〈Φ1(Z1)X〉 ,

G−r = −
N∑
i=2

Z
−(r+ 1

2
)

i1 [(2r − 1)hiθi1 + Zi1(Di − 2θi1∂zi)] 〈Φ1(Z1)X〉 . (5.4)

N -point functions of the superfields FN ≡ 〈Φ1(Z1)Φ2(Z2) · · ·ΦN (ZN )〉 should be in-

variant under the global superconformal transformations generated by L±1, L0, G± 1
2
, which

leads to the superconformal Ward identities [53]:

L−1 :

N∑
i=1

∂ziFN = 0,

G− 1
2
, G 1

2
:

N∑
i=1

(∂θi − θi∂zi)FN =

N∑
i=1

(2hiθi + zi(θi∂zi − ∂θi))FN = 0,

L0 :

N∑
i=1

(2zi∂zi + 2hi + θi∂θi)FN = 0,

L1 :

N∑
i=1

(z2
i ∂zi + zi(2hi + θi∂θi))FN = 0.

(5.5)

Due to these constraints, the two-point function is fixed (up to normalization) to be

〈Φ1 (Z1) Φ2 (Z2)〉 =
1

Z2h1
21

δh1,h2 =

(
1

z2h1
21

+ θ1θ2
−2h1

z2h1+1
21

)
δh1,h2 . (5.6)

where each term on the r.h.s. corresponds to a two-point function of the component fields.

5.1.2 N = 1 super-Virasoro vacuum blocks at leading oder

The heavy-light super-Virasoro vacuum block VΦLΦLΦHΦH is the contribution to the heavy-

light four-point function 〈ΦL (Z1) ΦL 〈Z2〉ΦH 〈Z3〉ΦH (Z4)〉 from an irreducible represen-

tation of the superconformal algebra whose highest weight state is the vacuum |0〉. In the

following calculation, we will take the heavy-light limit, meaning that

ηH ≡
hH
c
, hL fixed as c→∞.
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Our result of this part is VΦLΦLΦHΦH given in (5.8) with fhL and ghL given in (5.17)

and (5.19).

As the four-point function, the super-Virasoro vacuum block VΦLΦLΦHΦH also satisfies

the superconformal Ward identities. There are eight coordinate variables (four Grassmann

even and four Grassmann odd) in VΦLΦLΦHΦH and it satisfies five global superconformal

Ward identities, which means that there are only three independent superconformal invari-

ants, two Grassmann even and one Grassmann odd. The two Grassmann even invariants

that we choose are [50]

x0 ≡
Z12Z34

Z13Z24
, x1 ≡

Z14Z23

Z13Z24
− (1− x0) . (5.7)

It is easy to verify that x2
1 = 0 and superformal Ward identities fix VΦLΦLΦHΦH (which is

Grassmann even) to be of the following general form:

VΦLΦLΦHΦH =
1

Z2hL
21 Z2hH

34

[fhL (x0) + x1ghL (x0)] . (5.8)

The conformal dimensions of the degenerate fields in the NS sector of an N = 1 SCFTs

can be parameterized by

hr,s =
[(m+ 2) r −ms]2 − 4

8m (m+ 2)
, c =

3

2
− 12

m (m+ 2)
r, s ∈ Z+; r − s ∈ 2Z. (5.9)

and the corresponding null-state is at level rs
2 . The first non-trivial null state

(r = 1, s = 3) is (
2

2h1,3 + 1
L−1G−1/2 −G−3/2

)
|Φ1,3〉 = 0, (5.10)

with h1,3 = −1
2−

3
c +O

(
1/c2

)
in the large c limit. If ΦL = Φ1,3 in the heavy-light four-point

function 〈ΦLΦLΦHΦH〉, then〈(
2

2h13 + 1
L−1G−1/2 −G−3/2

)
Φ1,3 (Z1) Φ1,3 (Z2) ΦH (Z3) ΦH (Z4)

〉
= 0. (5.11)

Using (5.4), we get a null-state equation satisfied by the four-point function, which also

satisfied by the super-Virasoro vacuum block. Simplifying this equation using the super-

conformal Ward identities (L−1 becomes just ∂z1 and G−1/2 becomes just D1 = ∂θ1 +θ1∂z1),

we find{
2∂z1 (∂θ1 + θ1∂z1)

2h1,3 + 1
+

4∑
i=2

[
Z−1
i1 (∂θi − θi∂zi + 2θ1∂zi) + 2hiθi1Z

−2
i1

]}
VΦ1,3Φ1,3ΦHΦH = 0.

This is a super-differential equation with two unknown function f(x1) and g(x1). To solve

it, we can expand it in terms of θis and require that all the coefficients of θis equal to zero.

First, we can send the zis to (0, z, 1,∞), in which case, x0 and x1 become

x0 → z + θ1θ2 − zθ1θ3,

x1 → θ1θ2 − θ1θ3 + θ2θ3.
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Expanding the super-differential equation in terms of θis, we get two differential equations

from the coefficients of θ1 and θ2 (differential equations from coefficients of other θis are

dependent with these two). In the large c limit, with h1,3 = −1
2−

3
c +O

(
1/c2

)
and ηH = hH

c

fixed, the leading order (c0) of these two equations are13

(z − 1)2
(
zf ′′h1,3

(z) + 2f ′h1,3
(z)
)

+ zηHfh1,3(z) = 0,

z
(
f ′′h1,3

(z) + g′h1,3
(z)
)

+ 2f ′h1,3
(z) + gh1,3(z) = 0.

Solving these equations and fixing the constants of integration to match the expansion of

the vacuum block in terms of small z, we find

fh1,3 (z) = z−1e−
1
2
f00(z), (5.12)

gh1,3 (z) =
1

z
−
fh1,3 (z)

z
− f ′h1,3

(z) . (5.13)

where f00 (z) is defined in equation (3.13). These solutions only apply to hL = h1,3 in

the large c limit. But the appearance of f00(z) in fh1,3(z) gives us some hints for how to

analytically continue to find fhL(z) for general hL, which is what we are going to do in the

following. After getting fhL(z), we can use it to obtain ghL(z) without using the null-state

equations.

Expanding both sides of the vacuum block of the superfields (5.8) in terms of θis and

matching the coefficients of θis, we can obtain relations between vacuum blocks of the

component fields14 and the functions fhL(z) and ghL(z):

VφLφLφHφH =z−2hLfhL (z) , (5.14)

VψLψLφHφH =− z−2hL

(
f ′hL(z)− 2hLfhL(z)

z
+ ghL(z)

)
. (5.15)

where VφLφLφHφH is from the term without θi in it and VψLψLφHφH is from the coefficient

of θ1θ2. In (5.15), the minus sign in front is due to the fact that θ anti-commutes with

ψ. Using equation (5.14) for h1,3 = −1
2 + O (1/c) in the leading large c limit, we have

Vφ1,3φ1,3φHφH = zfh1,3 = e−
1
2
f00(z), which suggests that for general hL, we should have

VφLφLφHφH = ehLf00(z). (5.16)

Using equation (5.14) again, we have

fhL (z) = z2hLehLf00(z). (5.17)

13For later reference, the exact differential equations are

f ′′h1,3
+

2(3− z)h1,3 + 3z − 1

2(z − 1)z
f ′h1,3

− (2h1,3 + 1)hH
(z − 1)2

fh1,3 +
2h1,3 + 1

2(z − 1)z
gh1,3 = 0

f ′′h1,3
+

(6− 4z)h1,3 + 2z − 1

2(z − 1)z
f ′h1,3

+ g′h1,3
+
z − 2(z − 2)h1,3

2(z − 1)z
gh1,3 = 0

14These vacuum blocks are normalized such that the first term of the small z expansion of a vacuum

block VOL(0)OL(z)OH (1)OH (∞) is 〈OL(0)OL(z)〉.
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From equation (5.16), one can see that the super-Virasoro vacuum block VφLφLφHφH in

N = 1 SCFTs is the same as the vacuum block in non-susy CFTs at leading order of the

large c limit. We explain in detail why this is true in appendix C, but the basic point is that

in this limit, only the pure Virasoro generators contribute to the sum over intermediate

states in this block.

To get ghL(z), we need to know VψLψLφHφH . At leading order of the large c limit,

the only difference between VψLψLφHφH and VφLφLφHφH (up to normalization) is that the

conformal dimensions of the light operators are different (hφL = hL, hψL = hL+ 1
2).15 Since

we know VφLφLφHφH = ehLf00(z), we can immediately see that

VψLψLφHφH = 2hLe
(hL+ 1

2)f00(z), (5.18)

where the prefactor 2hL is due to our convention of the vacuum block and can be read

off from the two-point function of superfields (5.6). Equating the above vacuum block

to (5.15), we find

ghL (z) = −2hLz
2hLe(hL+ 1

2)f00(z) +
2hLfhL (z)

z
− f ′hL (z) . (5.19)

One can check that setting hL = −1
2 gives us back gh1,3 (5.13).

Having the expressions for fhL and ghL , we can restore their argument to x0, then other

super-Virasoro vacuum blocks of the component fields can be read off from the expansion

of VΦLΦLΦHΦH (5.8) in terms of the θi variables.

5.2 The N = 2 super-Virasoro vacuum block

5.2.1 Brief review of 2d N = 2 SCFTs

In the N = 2 superspace, a point is denoted by Z ≡
(
z, θ, θ

)
, where z is the usual

complex coordinate, while θ and θ are two Grassmann coordinates. The energy-momentum

superfield can be expanded as

J (Z) = J (z) + θG (z)− θG (z) + θθ2T (z) . (5.20)

where J(z) is the U(1) R-current. The mode expansions are defined in the usual way

J(z) =
∑
n∈Z

Jn
zn+1

, G(z) =
∑

r∈Z+ 1
2

Gr

zr+
3
2

, G =
∑

r∈Z+ 1
2

Gr

zr+
3
2

, T (z) =
∑
n∈Z

Ln
zn+2

.

15This point can be seen from the commutation relations of the Virasoro generators with these component

fields (C.1), and at leading order of large c limit, only Virasoro generators contribute to these two vacuum

blocks.
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The full N = 2 superconformal algebra of these generators takes the following form:

[Lm, Ln] = (m− n)Lm+n +
c

12

(
m3 −m

)
δm+n,0,

[Lm, Gr] =
(m

2
− r
)
Gm+r,

[
Lm, Gr

]
=
(m

2
− r
)
Gm+r,

[Jm, Jn] =
c

3
mδm+n,0, [Lm, Jn] = −nJm+n,

[Jm, Gr] = Gm+r,
[
Jm, Gr

]
= −Gm+r,{

Gr, Gs
}

= 2Lr+s + (r − s) Jr+s +
c

3

(
r2 − 1

4

)
δr+s,0

{Gr, Gs} =
{
Gr, Gs

}
= 0, m, n ∈ Z; r, s ∈ Z +

1

2
.

(5.21)

A superfield Φ (Z) can be expanded in terms of θ and θ as

Φq
h (Z) = φqh (z) + θψ

q−1

h+ 1
2

(z) + θψq+1

h+ 1
2

(z) + θθλqh+1 (z) , (5.22)

where the superscripts and subscripts are the conformal dimensions and U (1) charges of

the component fields. The OPE of J (Z1) and Φ(Z2) is

J (Z1)Φ(Z2) ∼ 2hθ12θ12

Z2
12

Φ(Z2) +
θ12D2 − θ12D2

Z12
Φ(Z2) +

2θ12θ12

Z12
∂z2Φ(Z2) +

q

Z12
Φ(Z2).

where the super derivatives and super-translationally invariant distance are

Di = ∂θi + θi∂zi , Di = ∂θi + θi∂zi , Zij ≡ zij − θiθj − θiθj , (5.23)

with zij = zi − zj , θij = θi − θj and θij = θi − θj .
The highest weight states in the NS sector are characterized by their eigenvalues under

L0 and J0 :

L0 |Φ〉 = h |Φ〉 , J0 |Φ〉 = q |Φ〉 , (5.24)

and they satisfy

Ln |Φ〉 = Jn |Φ〉 = Gr |Φ〉 = Gr |Φ〉 = 0, for n, r > 0. (5.25)

Acting on primary superfield with L−n, G−r, G−r, J−n(n, r > 0), we get the descendent

superfields. Using the OPE of J and Φ, one can show that the correlation function with

one descendant superfield can be written in terms of a super-differential operator acting

on a correlation function with only primary fields:

〈(L−nΦ1)(Z1)X〉 = L−n 〈Φ1(Z1)X〉 , 〈(J−nΦ1)(Z1)X〉 = J−n 〈Φ1(Z1)X〉 ,
〈(G−rΦ1)(Z1)X〉 = G−r 〈Φ1(Z1)X〉 ,

〈
(G−rΦ1)(Z1)X

〉
= G−r 〈Φ1(Z1)X〉 .

(5.26)
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where X = Φ2(Z2) · · ·ΦN (ZN ) is an assembly of primary fields with conformal dimension

hi and U(1) charge qi. These super-differential operators are [60]

L−n = −
N∑
i=2

Z−ni1

[
(1− n)

(
hi +

1

2
θi1Di +

1

2
θi1Di

)
+ Zi1∂zi −

qi
2
θi1θi1Z

−1
i1 n(1− n)

]
,

J−n = −
N∑
i=2

Z−ni1
(
θi1Di − θi1Di + 2θi1θi1∂zi + qi − 2hiθi1θi1nZ

−1
i1

)
,

G−r = −
N∑
i=2

Z
−r− 1

2
i1

[(
r − 1

2

)
θi1(2hi + qi + θi1Di) + Zi1(Di − 2θi1∂zi)

]
,

G−r = −
N∑
i=2

Z
−r− 1

2
i1

[(
r − 1

2

)
θi1(2hi − qi + θi1Di) + Zi1(Di − 2θi1∂zi)

]
.

(5.27)

N-point correlation functions of the primary superfields should be invariant under the

global super-conformal transformations generated by L±1, L0, J0, G± 1
2
, G± 1

2
, which leads

to the superconformal Ward identities (D.1). These Ward identities completely fix the

two-point functions to be

〈Φ1(Z1)Φ2(Z2)〉 =
1

Z2h1
21

e
q2
θ12θ12
Z12 δq1+q2,0δh1,h2

=

(
1

z2h1
21

+
−q2

z2h1+1
21

θ1θ1 +
−2h1 + q2

z2h+1
21

θ1θ2 +
−2h1 − q2

z2h1+1
21

θ1θ2

+
−q2

z2h1+1
21

θ2θ2 +
2h1 (2h1 + 1)

z2h1+2
21

θ1θ1θ2θ2

)
δq1+q2,0δh1,h2 , (5.28)

up to a normalization constant. Each term in the above equation corresponds to a two-

point function of the component fields. Notice that only the two-point function of the

lowest component field φ is normalized as usual.

5.2.2 Super null-state equations

The heavy-light super-Virasoro vacuum block V
Φ
−qL
L Φ

qL
L Φ

−qH
H Φ

qH
H

is the contribution to the

heavy-light four-point function 〈Φ−qLL (Z1)ΦqL
L (Z2)Φ−qHH (Z3)ΦqH

H (Z4)〉 from an irreducible

representation of the superconformal algebra whose highest weight state is the vacuum |0〉.
In this paper, we will take the following heavy-light limit:

hL, qL, ηH ≡
hH
c
, ηq ≡

qH
c

fixed as c→∞.

Our main result of this part is V
Φ
−qL
L Φ

qL
L Φ

−qH
H Φ

qH
H

given in (5.29), with F (x0, x1, x2, x3, x4)

given in (5.31) and the gi,hL functions given in next subsection 5.2.3.

Superconformal Ward identities fix the vacuum block (and the four-point function) to

take the following form [58]

V
Φ
−qL
L Φ

qL
L Φ

−qH
H Φ

qH
H

=
1

Z2hL
21 Z2hH

34

exp

(
qL
θ12θ12

Z12
+ qH

θ34θ34

Z34

)
F (x0, x1, x2, x3, x4) , (5.29)
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where F (x0, x1, x2, x3, x4) is a function of five superconformal invariants

x0 =
Z12Z34

Z13Z24
, x1 =

Z14Z23

Z13Z24
+ x0 − 1,

x2 =
θ23θ23

Z23
+
θ34θ34

Z34
− θ24θ24

Z24
,

x3 =
θ12θ12

Z12
+
θ24θ24

Z24
− θ14θ14

Z14
, (5.30)

x4 =
θ13θ13

Z13
+
θ34θ34

Z34
− θ14θ14

Z14
.

It is easy to verify that these super-conformal invariants satisfy the relations

x3
1 = 0, x2

2 = 0, x2
3 = 0, x2

4 = 0, x1x2 = x1x3 = x1x4 = 0,

x2x3x0 = x2x4, x2x3 = x2x4 + x3x4, x2
1 = 2x2x3x0 (1− x0) .

which means that the most general form of F (x0, x1, x2, x3, x4) can be written as

F = g0,hL(x0)+x1g1,hL(x0)+x2g2,hL(x0)+x3g3,hL(x0)+x4g4,hL(x0)+x2x3g5,hL(x0). (5.31)

The conformal dimensions of the degenerate fields in the NS sector of N = 2 SCFTs

can be parameterized by16 [60]

hr,s =
r2 − 1

8
t− rs

4
+
s2 − 1

8t
− 4q2 − 1

8t
, c = 3− 3t r ∈ Z+; s ∈ 2Z+. (5.32)

For each degenerate field with dimension hr,s, there is a null-field at level rs
2 . The first

non-trivial null-state (r = 1, s = 2) is:[
(q − 1)L−1 − (2h1,2 + 1) J−1 +G− 1

2
G− 1

2

] ∣∣∣Φq
1,2

〉
= 0, (5.33)

with h1,2 = c−3q2

6−2c = −1
2 +

3(q2−1)
2c + O

(
1/c2

)
. Notice that the U(1) charge q is a free

parameter here. If hL = h1,2 in the heavy-light four-point function, then〈(
(−qL − 1)L−1 − (2h1,2 + 1)J−1 +G− 1

2
G− 1

2

)
Φ−qL1,2 (Z1)ΦqL

1,2(Z2)Φ−qHH (Z3)ΦqH
H (Z4)

〉
= 0.

Using equations (5.26), we get a super-differential equation satisfied by the four-point

function, which is also satisfied by the vacuum block V
Φ
−qL
L Φ

qL
L Φ

−qH
H Φ

qH
H

. Simplifying this

super-differential equation using the superconformal Ward identities (D.1) (L−1 → ∂z1 ,

G− 1
2
→ D1 and G− 1

2
→ D1), we find[

(−qL − 1) ∂z1 − (2hL + 1)J−1 +D1D1

]
V

Φ
−qL
1,2 Φ

qL
1,2Φ

−qH
H Φ

qH
H

= 0, (5.34)

with J−1 given in (5.27) and D1, D1 given in (5.23).

16Besides hr,s, there are other degenerate fields whose conformal dimensions can be parameterized by

hk = kq+ 1
2
t(k2− 1

4
), k ∈ Z+ 1

2
and having a null field at level |k|, but these will not be used in this paper.
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To solve this super-differential equation, we can expand it in terms of θis and θis to get

six independent differential equations to solve for the six unknown functions17 g0,h1,2(z), · · · ,
g5,h1,2(z). These solutions gi,h1,2(z) only apply to those vacuum blocks whose light oper-

ators are degenerate operators with hL = h1,2. To get gi,hL(z) for general hL we need to

analytically continue these solutions, as what we did for the non-susy Virasoro blocks. But

in the non-susy case, there was only one unknown function and we already knew its anzatz

for general hL (2.9), so things were easier there. Here, we have six gi,h1,2(z) functions and

some of them are complicated and hard to know how to analytically continue them. But

it turns out that once we solve the differential equation for g0,h1,2(z), then analytically

continue the solution to get g0,hL(z), we can derive the other gi,hL(z) functions from it,

which will be shown in next subsection 5.2.3. The equation that only involves g0,h1,2(z) is

g′′0,h1,2
(z) +

(
6qLηq
z−1

+
2

z

)
g′0,h1,2

(z) +
6zηH + 3ηq

(
3z
(
q2
L−1

)
ηq + (z−2)qL

)
(z − 1)2z

g0,h1,2(z) = 0.

The solution is

g0,h1,2(z) = z−1e−
1
2
f̃(z) (1− z)−3ηqqL , (5.35)

where

f̃ (z) = −(1− α̃) log (1− z)− 2 log

(
1− (1− z)α̃

α̃

)
, (5.36)

with ã =
√

1− 24ηH + 36η2
q . In the above solution, the constants of integration have been

fixed such that the first term in the expansion of g0,h1,2(z) in small z is 1, which corresponds

to the vacuum block.

5.2.3 Solutions for general hL

In this subsection, we are going to analytically continue g0,h1,2 to get g0,hL , then use it to

derive the other gi,hL functions. Expanding the ansatz (5.29) in terms of θis and θis, we

can express the vacuum blocks of the component fields in terms of gi,hL(z):18

V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

= z−2hLg0,hL , (5.37)

V
ψ
−qL−1

L ψ
qL+1

L φ
−qH
H φ

qH
H

= −z−(2hL+1)
[
(qL − 2hL) g0,hL + zg1,hL + g3,hL + zg′0,hL

]
, (5.38)

V
ψ
−qL+1

L ψ
qL−1

L φ
−qH
H φ

qH
H

= z−(2hL+1)
[
(qL + 2hL) g0,hL − zg1,hL + g3,hL − zg

′
0,hL

]
, (5.39)

V
φ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

= z−(2hL+1)

(
−qLg0,hL − g3,hL +

z

z − 1
g2,hL

)
, (5.40)

V
λ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

= −z−(2hL+1) (qLg0,hL + g3,hL + zg4,hL) , (5.41)

V
λ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

= z−2hL

[
g′′0,hL −

4hL
z

(
g′0,hL + g1,hL

)
+

2hL (2hL + 1)

z2
g0,hL

+2g′1,hL +
1

(1− z)z
(qLg2,hL + g5,hL) +

qL
z
g4,hL

]
. (5.42)

17Again, we send the coordinates zi to (0, z, 1,∞), in which case, x0 → z + · · · , where · · · represents

terms proportional to θi, θi or their products.
18These vacuum blocks are normalized such that the first term of the small z expansion of a vacuum

block VOL(0)OL(z)OH (1)OH (∞) is 〈OL(0)OL(z)〉.
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The basic idea of these derivations is to derive the vacuum blocks on the l.h.s. , then solve

the above equations to get the functions gi,hL(z) on the r.h.s. .

First, the most important function is g0,hL(z), which is associated with

V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

. From equation (5.37), for hL = h1,2 = −1
2 + O(1/c), we have

V
φ
−qL
1,2 φ

qL
1,2φ

−qH
H φ

qH
H

= zg0,h1,2 = e−
1
2
f̃(z)(1 − z)−3ηqqL , which suggests that for general hL,

we should have

V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

= ehLf̃(z)(1− z)−3ηqqL . (5.43)

Indeed, this matches the Virasoro vacuum block for CFT2s with a global U (1) symmetry,

which have been computed in [7]. The fact that this super-Virasoro vacuum block only

gets contributions from the Virasoro generators and U(1) generators at leading order of

the large c limit can be seen from the commutation relations of these generators with the

component field φ, as we explain in the appendix D.2. Using equation (5.37) again, we

have

g0,hL (z) = z2hLehLf̃(z) (1− z)−3ηqqL . (5.44)

Next, to get g1,hL(z) and g3,hL(z), we need to know the blocks V
ψ
−qL−1

L ψ
qL+1

L φ
−qH
H φ

qH
H

and V
ψ
−qL+1

L ψ
qL−1

L φ
−qH
H φ

qH
H

. At leading order of the large c limit, the only differences between

these two blocks and V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

are that the conformal dimensions and U(1) charges

of the light fields are different (note that the conformal dimensions of ψL and ψL are hL+ 1
2 ,

while that for φL is hL), which means that we can change the parameters accordingly in

the expression of V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

to get these two blocks:

V
ψ
−qL−1

L ψ
qL+1

L φ
−qH
H φ

qH
H

= (2hL − qL)e(hL+ 1
2)f̃(z) (1− z)−3ηq(qL+1) ≡ z−2hL−1gqL+1(z),

V
ψ
−qL+1

L ψ
qL−1

L φ
−qH
H φ

qH
H

= (2hL + qL)e(hL+ 1
2)f̃(z) (1− z)−3ηq(qL−1) ≡ z−2hL−1gqL−1(z).

where the prefactor 2hL ∓ qL is due to our convention of the definition of the vacuum

blocks and can be read off from the two-point function (5.28). Equating these two blocks

to equations (5.38) and (5.39) respectively, we can solve for g1,hL(z) and g3,hL(z)

g1,hL =
1

2z

(
4hLg0,hL − 2zg′0,hL − gqL+1 − gqL−1

)
, (5.45)

g3,hL =
1

2
(−2qLg0,hL − gqL+1 + gqL−1) . (5.46)

The remaining functions g2,hL(z), g4,hL(z) and g5,hL(z) are related to the vacuum

blocks V
φ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

, V
λ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

and V
λ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

(5.40)–(5.42), respectively.

As is shown in appendix D.4, λqLL can be written as descendant fields plus a Virasoro and

U(1) primary

λqLL (z) =
12h2 − 3q2

2ch− 3q2
(J−1φ

qL
L )(z) +

q(c− 6h)

2ch− 3q2
(L−1φ

qL
L )(z) + λ̃qLL (z) (5.47)

The Virasoro and U(1) primary part λ̃qLL has conformal dimension hL + 1 and U(1) charge

qL, which are the same as λqLL . Using this decomposition, we can calculate these three
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vacuum blocks from V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

. Some details for performing these calculations are

given in appendix D.4. Equating these three vacuum blocks to equations (5.40), (5.41)

and (5.42), we can solve for g2,hL(z), g4,hL(z) and g5,hL(z). At leading order of the large c

limit, these functions are

g2,hL =
3zηq

(
q2
L − 4h2

L

)
g0,hL + 2(z − 1)hLg3,hL + (z − 1)zqLg

′
0,hL

2hLz
, (5.48)

g4,hL = g2,hL − g3,hL , (5.49)

g5,hL =
(z − 1)z

4

(
(z − 1)q2

L

h2
L

+ 4

)
g′′0,hL + (z − 1)

(
2zg′1,hL − 4hLg1,hL + qLg4,hL

)
− qLg2,hL −

(z − 1)
(
6zηqqL(4h2

L − q2
L) + q2

L (2(z − 2)hL − z) + 16h3
L

)
4h2

L

g′0,hL

+

(
4h2

L − q2
L

)2
2hLz

(
(z2ef̃ − 1)(1− z) (2hL + 1) + 3(z − 2)zηqqL

4h2
L − q2

L

+
9η2
qz

2

2hL

)
g0,hL .

(5.50)

with f̃ in g5,hL given in (5.36). One can easily check that setting hL = h1,2 ' −1
2 , these

gi,hL(z) functions will become gi,h1,2(z) and they are indeed the solutions to the null-state

equation (5.34) at leading order of the large c limit. Restoring the argument of gi,hL to

x0, other super-Virasoro vacuum blocks of the component fields can be read off from the

expansion of V
Φ
−qL
L Φ

qL
L Φ

−qH
H Φ

qH
H

in terms of θis and θis. We’ve checked the first few terms

of the expansion of these other blocks in terms of small z, and they match the results from

the direct calculation of these blocks.19
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A Summary of corrections to the vacuum block

In this appendix, we will list results concerning the large c expansion of the vacuum block.

At order c0 and 1/c, f00 (3.13) and f10, f01 are known in closed form. The functions

f10 and f01 are known from the work of [11] to be

f10 =
csch2

(
αt
2

)
2

×
[
3
(
e−αtB

(
e−t,−α, 0

)
+ eαtB

(
e−t, α, 0

)
+ eαtB

(
et,−α, 0

)
+ e−αtB

(
et, α, 0

))
19By direct calculation, we mean to calculate the vacuum block by inserting the vacuum state and its

descendants into the four-point function, and then summing over all these contributions.
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+
1

α2
+ cosh(αt)

(
− 1

α2
+ 6H−α + 6Hα + 6iπ − 5

)
+ 12 log

(
2 sinh

(
t

2

))
+ 5

]
− t
(
13α2 − 1

)
coth

(
αt
2

)
2α

+ 12 log

(
2 sinh

(
αt
2

)
α

)
,

f01 = 6

(
csch2

(
αt

2

)[
B(e−t,−α, 0) +B(et,−α, 0) +B(e−t, α, 0) +B(et, α, 0)

2

+H−α +Hα + 2 log

(
2 sinh

(
t

2

))
+ iπ

]
+ 2

(
log

(
α sinh

(
t

2

)
csch

(
αt

2

))
+ 1

))
. (A.1)

where B(x, β, 0) = xβ2F1(1,β,1+β,x)
β is the incomplete Beta function, z ≡ 1 − e−t, α =√

1− 24ηH , Hn is the harmonic function.

At order 1/c2, we calculated the order ηH and η2
H terms in the expansion of the vacuum

block in the parameter ηH = hH
c , and at order 1/c3, we calculated the linear ηH terms.

At order 1/c2,

logV ⊃ hL
c2

∞∑
k=0

ηk+1
H

(
f20k + hLf11k + h2

Lf02k

)
.

The linear ηH terms are f200, f110 = f101 and f020 = f002. This first term is given in

equation (3.17), while the last two terms can be obtained from the expansion of f10 and

f00. The η2
H terms are

f201 =
432

(
(z − 1)z(15z − 46) + 4π2(z((z − 2)z − 10) + 12)

)
log2(1− z)

z3

+
864(z(z(z(5z − 44) + 103)− 96) + 33) log4(1− z)

z4
+

10368(z − 2)2Li2(z)2

z2

+
864

(
(9z − 46)(z − 1)2 + (4z(15− 2(z − 2)z)− 72) log(z)

)
log3(1− z)

z3

+
5184Li2(z) log(1− z)(z(z(7z − 32) + 32) + 2(z − 9)(z − 2)(z − 1) log(1− z))

z3

+
5184Li3(1− z)(z(z(5z − 14) + 16)− 4(z − 3)(z − 1)(z + 2) log(1− z))

z3

+
10368Li3(z)((z − 2)z + 2((z − 8)z + 8) log(1− z))

z2
+

20736(z − 2)Li4(1− z)

z

+
20736((z − 6)z + 6)

(
Li4

(
z
z−1

)
+ Li4(z)

)
z2

+
12960(z − 2)Li2(z)

z

+
216

(
(z − 2)z2 + 96(6− 5z)ζ(3)− 4π2(z(5z − 14) + 16)z

)
log(1− z)

z3

−
144

(
−525z2 + 180(z(5z − 14) + 16)ζ(3) + 8π4(z − 2)z

)
5z2

+
2592(z(5z − 14) + 16) log(z) log2(1− z)

z2
,

(A.2)
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f111 =
864

(
3z
(
z2 − 8z + 7

)
+ 8π2

(
2z2 − 9z + 8

))
log2(1− z)

z3
+

5184(z − 2)Li2(z)

z

+
1728(z(z(z(3z − 44) + 127)− 136) + 51) log4(1− z)

z4
− 41472(z − 1)Li2(z)2

z2

+
3456((z − 1)((z − 17)z + 21)− 6(z(2z − 9) + 8) log(z)) log3(1− z)

z3

+
10368((z − 7)z + 7) log(z) log2(1− z)

z2
− 41472((z − 6)z + 6)Li3(z) log(1− z)

z2

+
20736Li2(z) log(1− z)(z((z − 9)z + 9) + (z((z − 14)z + 34)− 22) log(1− z))

z3

+
20736Li3(1− z)(z((z − 7)z + 7)− 2(z(2z − 9) + 8) log(1− z))

z3

+
41472((z − 6)z + 6)

(
Li4(z) + Li4

(
z
z−1

))
z2

+ 20736

(
2− ((z − 7)z + 7)ζ(3)

z2

)
+

432
(
3(z − 2)z2 + 96(z(2z − 9) + 8)ζ(3)− 8π2((z − 7)z + 7)z

)
log(1− z)

z3
,

(A.3)

and f021 = f012 can be obtained from the expansion of f01.

At order 1/c3,

logV ⊃ hL
c3

∞∑
k=0

ηk+1
H

(
f30k + hLf21k + h2

Lf12k + h3
Lf03k

)
,

The linear ηH terms are

f300 =
864(2z(z(z2 − 8z + 17)− 14) + 9) log4(1− z)

z4
− 20736(z − 1)Li2(z)2

z2

+
216 log2(1− z)

(
8π2(z − 2)

(
z2 − 2

)
− 108z

(
z2 − 1

)
log(z) + 73z(z − 1)2

)
z3

−
864(z − 2) log3(1− z)

(
4
(
2z2 − 3

)
log(z)− 9(z − 1)2

)
z3

+
432Li2(z)

(
73(z − 2)z2 + 24(z − 1) log(1− z)((6− 4z) log(1− z)− 9z)

)
z3

+
5184

(
z2 − 1

)
Li3(1− z)(9z + 4(z − 2) log(1− z))

z3
−

20736(2z − 3)Li4

(
z
z−1

)
z2

− 5184(z − 2)Li3(z)(9z + 4(z − 2) log(1− z))

z2
+

20736(z − 3)(z − 1)Li4(z)

z2

+
20736(z − 2)Li4(1− z)

z
+

192
(
1215

(
z2 − 1

)
ζ(3) + 320z2 − 6π4(z − 2)z

)
5z2

+
12
(
(z − 2)

(
z2 − 1728ζ(3)

)
+ 648π2z

(
z2 − 1

))
log(1− z)

z3
,

(A.4)

f210 = f201, and f120 = f102, f030 = f003 can be obtained from the expansions of f10 and

f00, respectively.

The terms f200,f201,f111 and f300 were derived for the first time in this work. We’ve

checked these expressions against a direct small z expansion up to O(z9) using the methods
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of [2]. We’ve also analytically continue these results to the second sheet and checked that

the they do contain the first few terms of (4.2) and (4.12). Under this analytic continuation,

the various logarithms and polylogarithms have monodromies

log(1− z)→ log(1− z)− 2πi,

Lin(z)→ Lin(z) +
2πi

(n− 1)!
logn−1(z),

Lin(1− z)→ Lin(1− z),

Lin

(
z

z − 1

)
→ Lin

(
z

z − 1

)
− 2πi

(n− 1)!
logn−1

(
z

z − 1

)
,

(A.5)

which can be derived from Lin(z) =
∫ z

0
Lin−1(t)

t dt and Li1(z) = − log(1− z).

B Direct derivation of leading logs in the Lorentzian regime

In subsection 4.1, we presented a proof that the “leading logs” in the Lorentzian regime

resum to form a correction to the leading singularity (cz)−1 that appears at O(1/c) in a

large c expansion. The proof given was somewhat indirect, however, and in this appendix

we will give another proof that is more cumbersome, but more directly connected to the

structure of the differential equations for the degenerate operators that are used order-by-

order in 1/c in the rest of the paper. In this appendix, for convenience we define

Ṽ(z) = z2hLV(z), (B.1)

so that for the vacuum block, Ṽ(z)
z→0→ 1 on the first sheet.

From equation (3.7), at large c the null equation of motion for the degenerate operator

O1,s takes the form

(Ls−1 +O(1/c))O1,s = 0. (B.2)

In terms of Ṽ, (B.2) translates into the differential equation

(∂sz +O(1/c))
(
zs−1Ṽ(z)

)
= 0. (B.3)

We will organize the solution to (3.8) in a series expansion of Ṽ:

Ṽ(z) ≡ Ṽ0(z) +
1

c
Ṽ1(z) +

1

c2
Ṽ2(z) + . . . . (B.4)

The lowest-order term then obey the following differential equation

∂sz(z
s−1Ṽ0(z)) = 0, (B.5)

whose general solution takes the form

Ṽ0(z) =

s−1∑
i=0

ci
zi

(B.6)
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with s free coefficients ci. Of course, the relevant solution for the vacuum at c → ∞ is

c0 = 1, ci 6=0 = 0. But equally importantly, when we work to higher orders, all the solutions

above will continue to be homogeneous solutions, and there will also be one particular

solution at each order that arises because of the “source” from the lower order terms.

There is a drastic simplification that occurs if we are interested only in the leading

log terms. First, notice that none of the homogeneous solutions (B.6) have logarithms in

them. As a result, logarithms can be produced only by the “particular” solutions, which

are integrals of the lower-order solutions. More precisely, the leading logarithms arise from

integrating the lowest order solution and never introducing any “homogeneous” terms, since

doing so would reduce the power of the logarithm. Therefore, we can simply perform our

analysis directly on the second sheet (where the differential equation must still be satisfied),

and the unknown integration constants that enter at each step will not contaminate the

leading logs.

Using the expression (3.9), it is straightforward to extend this argument to leading

logs in the heavy-light limit as well. At infinite c, the general solution to (3.9) is

Ṽ(t) = e
1−s

2
t
s−1∑
j=0

cj exp

[
t

(
2j − s− 1

2

)√
1− 24ηH

]
. (B.7)

These are all exponentials in t, i.e. powers in (1− z). Therefore, logarithms of z can arise

only from integrating source terms that are generated from the solution at lower orders.

Let us see how this works in practice, and along the way we will illustrate some points.

For simplicity, we will begin by solving for the leading logarithms in the conformal block

〈OHOHO1,2O1,2〉. Once we have gone through this case, it will be easy to see how to

generalize to arbitrary degenerate operators.

The exact equation of motion for Ṽ(z) is

0 = (z − 1)
(

(−4(z − 2)h1,2 + 4z − 2) Ṽ ′(z) + 3(z − 1)zṼ ′′(z)
)
− 2z (2h1,2 + 1) Ṽ(z)hH

(B.8)

This can be solved in closed form by a hypergeometric function, but to illustrate our points

we will solve it in a 1/c expansion. At leading order it is just (B.5) with s = 2. At next

order, it is

∂2
z (zṼ1(z)) = − 6hHz

(1− z)2
, (B.9)

which is easily solved:

Ṽ1(z) = c0 +
c1

z
− 6(z − 2)hH log(1− z)

z
(B.10)

We fix c0 and c1 on the first sheet by demanding that Ṽ1 have the correct behavior (i.e.,

have leading term ∝ z in a small z expansion), and then analytically continuing to the

second sheet and taking small z to find the small z behavior on the second sheet. Doing

this, we find c0 = 12hH , c1 = 0 on the first sheet. Analytically continuing, this means that

on the second sheet,

c1 = 24iπhH , c0 = −12iπhH . (B.11)
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Note that at this order, there are no logarithms log(z) in a small z expansion, even on the

second sheet:

Ṽ1(z) =
c1

z
+ (c0 − 12hH) +O(z). (B.12)

To see the emergence of logarithms, we have to work to the next order in 1/c. The equation

of motion for Ṽ2 is

∂2
z (zṼ2(z)) = − 6hHz

(1− z)2
−

6
(
zṼ1(z)hH + (z − 2)(z − 1)Ṽ ′1(z)

)
(z − 1)2

(B.13)

This can also be solved in closed form. It again has two free parameters corresponding to

the two homogeneous solutions, which we can fix the same way we fixed them for the free

parameters in Ṽ1. However, we can instead apply an argument that will easily generalize

to all higher orders, which is to expand the above equation of motion at small z directly

on the second sheet :

∂2
z (zṼ2(z)) = 6c1

(
(1− hH) +

1

z
+

2

z2
+O(z)

)
. (B.14)

The solution to the above equation of motion is again easily determined:

Ṽ2(z) = 6c1

(
−2

log(z)

z
+ log(z) +O(z)

)
+
d1

z
+ d0. (B.15)

We do not need to determine the integration constants d0, d1, because they do not con-

taminate the leading logs! Since the integration constants are always coefficients of the

homogeneous solutions, this feature manifestly continues to all higher orders as well.

The above explicit demonstration was specific to the O1,2 block, but it is straightfor-

ward to generalize to general degenerate operators. For all degenerate operators O1,s, the

1/c piece Ṽ1 is the same universal function (B.10) (in fact, it is just the global conformal

block for the stress tensor), with a coefficient that is linear in hs,1:

Ṽ1,s =
2hHh1,s

c
z2

2F1(2, 2, 4, z). (B.16)

We do not have to appeal to our knowledge that this is the stress tensor conformal

block; (B.10) is a derivation of Ṽs,1 since we know Ṽ1,s =
(

limc→∞
h1,s

h1,2

)
Ṽ1,2. This means

that generally, on the second sheet we have Ṽ1 is given by

c
(s)
1 =

(
lim
c→∞

h1,s

h1,2

)
24iπhH = 24iπhH(s− 1),

c
(s)
0 =

(
lim
c→∞

h1,s

h1,2

)
(−12iπhH) = 12iπhH(s− 1). (B.17)

Thus, Ṽ2 is generally given on the second sheet at small z by

∂sz

(
zs−1Ṽ2

)
= 12As

zṼ1(z)

z2
+O(1/z)

=
12c

(s)
1 As
z2

+O(1/z), (B.18)
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(where As depends on s but will be determined momentarily). We have taken advantage

of the fact that zṼ1(z) is regular at z → 0 since c1/z was the most singular term generated

at this order, and so by scaling zṼ1(z)/z2 is the most singular term generated in the null

equation of motion above. The solution to (B.18) is clearly

Ṽ2(z) = 12c
(s)
1

log(z)

z

As
(s− 2)!

+O(log(z)). (B.19)

We can easily fix As since Ṽ2 is completely determined for any h1,s by just the two function

Ṽ1,2 and Ṽ2,2; therefore once we calculate Ṽ2 for two values of s, we know it for all s.

A simple computation shows that A2 = A3 = 1. Demanding consistency of the above

equation with all r immediately fixes

As
(s− 2)!

= 1. (B.20)

Finally, to get the leading logs, we can just iterate at higher orders, since the only way

to get double logs is to integrate single logs (which first appear in Ṽ2), and the only way

to get triple logs is to integrate double logs (which first appear in Ṽ3), etc. So for instance,

in the equation of motion for Ṽ3, we can just look at Ṽ2 in the source terms, since this is

the only contribution that has a single log. But the relation between Ṽ3 and Ṽ2 at leading

order in 1/c is the same as the relation between Ṽ2 and Ṽ1 at leading order in 1/c:

∂sz

(
zs−1Ṽ3

)
= 12(s− 2)!

zṼ2(z)

z2
+O(1/z), (B.21)

and so on. Keeping track of just the most singular leading log terms, we see that at

each order

Ṽn(z) ⊃ 12c1
logn−1(z)

z(n− 1)!
+O(z0, log(z))→ Ṽn+1(z) ⊃ −12c1

logn(z)

zn!
+O(z0, log(z)), (B.22)

which proves that the leading singularity in the leading logs exactly exponentiates to

all orders.

C Leading contribution to the vacuum blocks in N = 1 SCFTs

In this section, we are going to prove that the heavy-light vacuum block VφLφLφHφH in

N = 1 SCFTs is the same as the vacuum block in non-supersymmetric CFTs at leading

order of the large c limit, meaning that it only gets contributions from the pure Virasoro

generators at this order.

The commutators of the symmetry generators with the component fields of a superfield

Φ (Z) = φh (z) + θψh+ 1
2

(z) are

[Ln, φ (z)] = zn [h (n+ 1) + z∂z]φ,

[Ln, ψ (z)] = zn
[(
h+

1

2

)
(n+ 1) + z∂z

]
ψ,

[Gr, φ (z)] = zr+
1
2ψ,

{Gr, ψ(z)} = zr−
1
2 [h (2r + 1) + z∂z]φ, n ∈ Z; r ∈ Z +

1

2
.

(C.1)
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The vacuum block VφLφLφHφH is the contribution to 〈φH(∞)φH(1)φL(z)φL(0)〉 from

an irreducible representation of the super-Virasoro algebra whose highest weight state is

the vacuum |0〉. The vacuum state is annihilated by Ln and Gr for n ≥ −1 and r ≥ −1
2 .

Besides the vacuum state, other states in this representation are the descendants of the

vacuum, which can be obtained by acting on the vacuum with L−n and G−r for n ≥ 2

and r ≥ 3
2 . To get the vacuum block, we can insert a projection operator into the four-

point function:

VφLφLφHφH =
〈φH(∞)φH(1)P0φL(z)φL(0)〉

〈φH(∞)φH(1)〉
. (C.2)

At leading order of the large c limit, we can use the approximate projection operator

P0 ≈
∑
{ni,rj}

G−rj · · ·G−r1L−ni · · ·L−n1 |0
〉 〈

0|Ln1 · · ·LniGr1 · · ·Grj〈
Ln1 · · ·LniGr1 · · ·GrjG−rj · · ·G−r1L−ni · · ·L−n1

〉 . (C.3)

with ni ∈ Z and rj ∈ Z+ 1
2 , because the states G−rj · · ·G−r1L−ni · · ·L−n1 |0〉 are orthogonal

with each other at this order.20 We can arrange the order of the generators such that

ni ≥ · · · ≥ n1 ≥ 2 and rj ≥ · · · ≥ r1 ≥ 3
2 . Denote the level of each state as N + R, where

N =
∑i

l=1 nl and R =
∑j

l=1 rl. Notice that in the above equation (C.3), at each level

N +R, we should only sum over independent states. For example, at level 3, we only have

L−3, because G− 3
2
G− 3

2
= L−3 and shouldn’t be included.

Consider a state G−rj · · ·G−r1L−ni · · ·L−n1 |0〉, its contribution to VφLφLφHφH is〈
φH (∞)φH (1)G−rj · · ·G−r1L−ni · · ·L−n1 |0

〉 〈
0|Ln1 · · ·LniGr1 · · ·GrjφL (z)φL (0)

〉
〈φH(∞)φH(1)〉

〈
Ln1 · · ·LniGr1 · · ·GrjG−rj · · ·G−r1L−ni · · ·L−n1

〉
(C.4)

In the large c limit, the normalization factor in the denominator scales as〈
Ln1 · · ·LniGr1 · · ·GrjG−rj · · ·G−r1L−ni · · ·L−n1

〉
∼ cN+R

because the commutation of each pair of generators Gr with G−r or Ln with L−n will give

us one power of c (5.2). In the numerator,
〈
0|Ln1 · · ·LniGr1 · · ·GrjφL (z)φL (0)

〉
is order

O(1), because the commutation of these generators with φL will not give us c or hH . And

the remaining part in (C.4) scales as〈
φH (∞)φH (1)G−rj · · ·G−r1L−ni · · ·L−n1 |0

〉
〈φH(∞)φH(1)〉

∼ hN+R/2
H . (C.5)

The reason is that when we commute one L−n with φH we’ll get one power of hH , but

we need to commute two G−rs with φH to get one power of hH as can be seen from

the commutation relations (C.1). So in the heavy-light limit, with ηH = hH
c fixed, the

contribution of (C.4) will be order O(c−R/2). This means that at order c0 (that is, R = 0),

the heavy-light vacuum block VφLφLφHφH in N = 1 SCFTs will only get contributions from

the pure Virasoro generators, which make it the same as that in non-susy CFTs at leading

order. This is also true for the vacuum blocks VψLψLφHφH .

20The proof is similar to that for non-susy CFTs with only Virasoro generators, see appendix B of [6].
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D Details of the N = 2 SCFT calculations

D.1 Superconformal Ward identities

N -point functions FN ≡ 〈Φ1(Z1)Φ2(Z2) · · ·ΦN (ZN )〉 in N = 2 SCFTs satisfy the following

eight superconformal Ward identities

L−1 :

N∑
i=1

∂ziFN = 0,

L0 :

N∑
i=1

(2zi∂zi + 2hi + θi∂θi + θi∂θi)FN = 0,

L1 :
N∑
i=1

(z2
i ∂zi + zi(2hi + θi∂θi + θi∂θi) + qiθiθi)FN = 0,

J0 :

N∑
i=1

(θi∂θi − θi∂θi + qi)FN = 0 (D.1)

G− 1
2
, G− 1

2
:

N∑
i=1

(∂θi − θi∂zi)FN =

N∑
i=1

(∂θi − θi∂zi)FN = 0,

G 1
2

:

N∑
i=1

[zi(∂θi − θi∂zi)− θi(2hi + qi + θi∂θi)]FN = 0,

G 1
2

:

N∑
i=1

[zi(∂θi − θi∂zi)− θi(2hi − qi + θi∂θi)]FN = 0.

Specifically, the three identities corresponding to L−1, G− 1
2

and G− 1
2

were used in the

simplification of the super null-state equation (5.34).

D.2 Leading contributions to the vacuum blocks

Similar to the reasoning of N = 1 (appendix C), the vacuum block V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

in N = 2 SCFTs will not get contribution from the generators Gr and Gr at leading

order of large c limit, which makes it the same as the vacuum block of a theory with

only Virasoro and U(1) symmetry at this order. This can be seen from the commutation

relations of these symmetry generators with the lowest component field φ(z) of a superfield

Φq
h (Z) = φqh (z) + θψ

q−1

h+ 1
2

(z) + θψq+1

h+ 1
2

(z) + θθλqh+1 (z) . For simplicity, in the following

subsections, we only keep the superscripts and subscripts when necessary.

Commutation relations of the generators with the component field φ(z) are

[Ln, φ (z)] =zn [(n+ 1)h+ z∂z]φ, [Jn, φ (z)] =qznφ,

[Gr, φ (z)] =zr+
1
2ψ,

[
Gr, φ (z)

]
=zr+

1
2ψ.

(D.2)

The last two commutators are exactly the same as that of the fermionic generator Gr with

φ in N = 1 SCFTs (C.1), which upon the same reasoning means that when summing

over descendant states of the vacuum to get V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

, those states having Gr
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or Gr in them will not contribute at leading order of the large c limit. We can also

easily see that some other vacuum blocks, such as V
λ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

, V
φ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

and

V
λ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

, also only get contributions from Virasoro and U(1) generators. This point

will be used in the calculation of subsection D.4. Note that to construct the projection

operator for N = 2, the Hermiticity conditions among these generators are L†n = L−n,

J†n = J−n, G†r = G−r, G
†
r = G−r. And the vacuum |0〉 in N = 2 is annihilated by

Ln, Jm, Gr, Gr for n ≥ −1,m ≥ 0, r ≥ −1
2 .

For completeness, the commutation relations of other component fields are

[Ln, ψ (z)] = zn
[(
h+

1

2

)
(n+ 1) + z∂z

]
ψ,

[
Ln, ψ (z)

]
= zn

[(
h+

1

2

)
(n+ 1) + z∂z

]
ψ,

[Ln, λ (z)] = zn [(h+ 1) (n+ 1) z + z∂z]λ+
1

2
n(n+ 1)qzn−1φ,

{Gr, ψ (z)} =
{
Gr, ψ(z)

}
= 0{

Gr, ψ (z)
}

= zr−
1
2

[(
r +

1

2

)
(2h+ q) + z∂z

]
φ+ zr+

1
2λ,

{
Gr, ψ (z)

}
= zr−

1
2

[(
r +

1

2

)
(2h− q) + z∂z

]
φ− zr+

1
2λ,

[Gr, λ (z)] = −zr−
1
2

[(
r +

1

2

)
(2h+ q + 1) + z∂z

]
ψ, (D.3)

[
Gr, λ (z)

]
= zr−

1
2

[(
r +

1

2

)
(2h− q + 1) + z∂z

]
ψ,

[Jn, ψ (z)] = (q + 1) znψ,[
Jn, ψ (z)

]
= (q − 1) znψ

[Jn, λ (z)] = qznλ+ 2hnzn−1φ.

D.3 Correlation functions with descendant component fields

In this subsection, we are going to derive the relationships between correlation functions

with descendant fields and correlation functions with only primary fields. These relation-

ships are also true for the corresponding vacuum blocks. Specifically, we only consider the

lowest component primary field φqh and its descendants that are relevant to our calculation.

For correlation functions involving (L−1φ) (z), since (L−1φ) (z) = ∂zφ (z), we have

〈(L−1φ) (z)X〉 = ∂z 〈φ(z)X〉 (D.4)

where X is an assembly of primary or descendant component fields. If there are more

than one (L−1φ), we just need to take the derivatives in succession with respect to the

coordinate of each (L−1φ).
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For correlation functions involving only one descendant (J−nφ), we have

〈(J−nφ) (z1)Y 〉 =
1

2πi

∮
z1

dz (z − z1)−n 〈J (z)φ (z1)Y 〉

= − 1

2πi

N∑
i=2

∮
zi

dz (z − z1)−n
qi 〈φ (z1)Y 〉
z − zi

= −
N∑
i=2

qi 〈φ (z1)Y 〉
(zi − z1)n

(D.5)

where Y = φ2 (z2) · · ·φN (zN ) is an assembly of primary fields with conformal dimensions

hi and U (1) charge qi, and we have used the OPE J(z)φi(zi) ∼ qiφi(zi)
z−zi in the second line.

For correlation functions involving two (J−nφ)s, we need to know the OPE

J (z) (J−nφ) (w), which can be written as

J(z)(J−nφ)(w) =
∑
k>0

(Jk,−nφ)(w)

(z − w)k+1
+
∑
k≥0

(J−k,−nφ)(w)

(z − w)1−k (D.6)

In the first sum, since [Jk, J−n] = c
3kδk−n,0 and (Jkφ)(w) = 0 for k > 0, only the term with

k = n is non-zero. In the second sum, only the term with k = 0 is singular. So we have

J(z)(J−nφ)(w) ∼(Jn,−nφ)(w)

(z − w)n+1
+

(J0,−nφ)(w)

z − w

∼nc
3

φ(w)

(z − w)n+1
+
q(J−nφ)(w)

z − w

(D.7)

where q is the U(1) charge of φ (and J−n will not change the U(1) charge) and ∼ means that

in the r.h.s. we omit terms that are regular. For n = 1, the OPE of J (z) with (J−1φ) (w) is

J (z) (J−1φ) (w) ∼ c

3

φ (w)

(z − w)2 +
q (J−1φ) (w)

(z − w)
(D.8)

In the calculation of this paper, we only need 〈(J−1φ1) (z1) (J−1φ2) (z2)Y 〉 with Y =

φ3 (z3) · · ·φN (zN ) an assembly of primary fields. Using the above OPE, we have

〈(J−1φ1) (z1) (J−1φ2) (z2)Y 〉 =
1

2πi

∮
z1

dz
〈J (z)φ1 (z1) (J−1φ2) (z2)Y 〉

z − z1

= − 1

2πi

∮
z2

dz

z − z1

〈
φ1

[
c

3

φ2

(z − z2)2 +
q2 (J−1φ2)

(z − z2)

]
Y

〉

− 1

2πi

N∑
i=3

∮
zi

dz

z − z1

qi 〈φ1 (J−1φ2)Y 〉
z − zi

=
c

3

〈φ1φ2Y 〉
(z2 − z1)2 −

N∑
i=2

qi 〈φ1 (J−1φ2)Y 〉
zi − z1

=
c

3

〈φ1φ2Y 〉
(z2 − z1)2 +

N∑
i=2

N∑
j=1,j 6=2

qiqj 〈φ1φ2Y 〉
(zi − z1) (zj − z2)

(D.9)

where in the second line, we used the OPE of J(z)(J−1φ2)(z2) and J(z)Y (or equa-

tion (D.5)), and in the last line, we used equation equation (D.5).
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D.4 Decomposition of λq
h+1

In this subsection, we’ll show that λqh+1with conformal dimension h+ 1 and U(1) charge q

can be written as

λqh+1(z) =
12h2 − 3q2

2ch− 3q2
(J−1φ

q
h)(z) +

q(c− 6h)

2ch− 3q2
(L−1φ

q
h)(z) + λ̃qh+1(z), (D.10)

where λ̃qh+1 is a Virasoro and U(1) primary with conformal dimension h+1 and U(1) charge

q, in the sense that L0λ̃
q
h+1 = (h + 1)λ̃qh+1, J0λ̃

q
h+1 = qλ̃qh+1 and Lnλ̃

q = Jnλ̃
q = 0, n ≥ 1.

In the following calculation, for simplicity, we only keep the superscripts and subscripts

when necessary.

λq can be obtained by acting on the lowest component field φq with G− 1
2

and G− 1
2
:

λq =
1

2

(
G− 1

2
G− 1

2
−G− 1

2
G− 1

2

)
φq =

(
L−1 −G− 1

2
G− 1

2

)
φq. (D.11)

Suppose λq can be written as

λq = AJ−1φ
q +BL−1φ

q + λ̃q, (D.12)

where A and B are two constants depending on h and q, and λ̃q is a Virasoro and U(1)

primary. Acting on (D.11) and (D.12) with L1 and J1, we get two equations

L1

(
L−1 −G− 1

2
G− 1

2

)
φq = L1

(
AJ−1φ

q +BL−1φ
q + λ̃q

)
,

J1

(
L−1 −G− 1

2
G− 1

2

)
φq = J1

(
AJ−1φ

q +BL−1φ
q + λ̃q

)
.

Using the commutation relation of these generators (5.21), we have

qφq = (Aq + 2hB)φq,

2hφq =

(
Ac

3
+Bq

)
φq.

Solving these equations, we get

A =
12h2 − 3q2

2ch− 3q2
, B =

q(c− 6h)

2ch− 3q2
. (D.13)

which give us the decomposition as equation (D.10). Note the A is invariant but B changes

sign when q is changed to −q, so the decomposition of λ−q is

λ−q = AJ−1φ
−q −BL−1φ

−q + λ̃−q. (D.14)

The commutation of λ̃q with the Virasoro and U(1) generators can be derive from

those of λq (D.3):

[Ln, λ̃
q(z)] = [Ln, λ

q(z)]−A[Ln, (J−1φ
q)(z)]−B[Ln, (L−1φ

q)(z)],

[Jn, λ̃
q(z)] = [Jn, λ

q(z)]−A[Jn, (J−1φ
q)(z)]−B[Jn, (L−1φ

q)(z)].
(D.15)
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The commutation relations of J−1φ
q(z) on the r.h.s. can be derive from the OPE of T (w)

and J(w) with J−1φ
q(z):

T (w)(J−1φ
q)(z) ∼ qφ(z)

(w − z)3
+

(h+ 1)(J−1φ)(z)

(w − z)2
+
∂z(J−1φ)(z)

w − z
,

J (w) (J−1φ
q) (z) ∼ c

3

φ (z)

(w − z)2 +
q (J−1φ) (z)

(w − z)
.

(D.16)

and the results are

[Ln, (J−1φ
q)(z)] = zn−1

[
1

2
(n+ 1)nqφq + (h+ 1)(n+ 1)z(J−1φ

q) + z2∂z(J−1φ
q)

]
[Jn, (J−1φ

q)(z)] = zn−1

[
c

3
nφq + zq(J−1φ

q)

]
.

(D.17)

The commutation relations of Ln and Jn with L−1φ
q(z) = ∂zφ

q(z) are just the derivative

of the commutation relations of Ln and Jn with φq(z) given in (D.2):

[Ln, (L−1φ
q) (z)] = zn−1[n (n+ 1)h+ (n+ 1) z∂z + z2∂2

z ]φq,

[Jn, (L−1φ
q) (z)] = qzn−1(n+ z∂z)φ

q.
(D.18)

Putting everything together, we finally get

[Ln, λ̃
q(z)] = zn[(h+ 1) (n+ 1) + z∂z]λ̃

q, [Jn, λ̃
q(z)] = qznλ̃q. (D.19)

Comparing these two commutations with those for φqh (D.2), we can see that under the ac-

tion of Virasoro and U(1) generators, λqh+1 acts like φqh but with conformal dimension h+ 1.

To derive the normalization of two-point function 〈λ̃−q(z1)λ̃q(z2)〉, we need to use the

two-point function of λq and λ−q, which can be read off from the two-point function of two

superfields (5.28): 〈
λ−qh+1 (z1)λqh+1 (z2)

〉
=

2h (2h+ 1)

z2h+2
21

. (D.20)

Substituting the decompositions of λqh+1 and λ−qh+1 in the above two-point function, we can

express 〈λ̃−q(z1)λ̃q(z2)〉 as

〈λ̃−q(z1)λ̃q(z2)〉 =
〈
λ−qλq

〉
−A2

〈
(J−1φ

−q)(J−1φ
q)
〉

+B2
〈
(L−1φ

−q)(L−1φ
q)
〉

−AB
〈
(J−1φ

−q)(L−1φ
q)
〉

+AB
〈
(L−1φ

−q)(J−1φ
q)
〉
. (D.21)

The terms on the r.h.s. are easy to calculate using the equations derived in last subsec-

tion D.3 and the two-point function 〈φ−q(z1)φq(z2))〉 = 1
z2h
21

. The results are as follow

〈
(J−1φ

−q)(J−1φ
q)
〉

=
q2 + c

3

z2h+2
21

,

〈
(L−1φ

−q)(L−1φ
q)
〉

=∂z1∂z2
1

z2h
21

=
−2h (2h+ 1)

z2h+2
21

,

〈
(J−1φ

−q)(L−1φ
q)
〉

=∂z2
−q 〈φ−qφq〉

z21
=

(2h+ 1) q

z2h+2
21

,

〈
(L−1φ

−q)(J−1φ
q)
〉

=∂z1
q 〈φ−qφq〉

z12
=
− (2h+ 1) q

z2h+2
21

.

(D.22)
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Plugging these equations and equation (D.20) back in equation (D.21), we get

〈λ̃−qh+1 (z1) λ̃qh+1 (z2)〉 =

(
4h2 − q2

) (
2ch+ c− 3

(
2h+ q2

))
2ch− 3q2

1

z2h+2
21

. (D.23)

Using the decomposition (D.10), we can calculate V
λ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

, V
φ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

and V
λ
−qL
L λ

qL
L φ
−qH
H φ

qH
H

from V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

, and then equate these blocks to equa-

tions (5.40), (5.41) and (5.42), to solve for g2,hL(z), g4,hL(z) and g5,hL(z), respectively.

As we said in subsection D.2, at leading order of the large c limit, these blocks only get

contributions from Virasoro and U(1) generators. Some details for calculating these blocks

are as follow:

1. In these calculations, we need to use the relationship between vacuum blocks with

descendant fields and vacuum blocks with only primaries. These relationships are

the same as those for the corresponding correlation functions, which are derived in

subsection D.3.

2. The heavy-light vacuum blocks with one light operator being λ̃ and the other light

operator being φ vanish, V
λ̃
−qL
L φ

qL
L φ
−qH
H φ

qH
H

= V
φ
−qL
L λ̃

qL
L φ
−qH
H φ

qH
H

= 0. The reason is

just because λ̃L and φL have different conformal dimensions (hλ̃L = hφL + 1), and

the two-point functions of them vanishes, 〈λ̃−qL φqL〉 = 〈φ−qL λ̃qL〉 = 0.

3. At leading order of the large c limit, the only difference (up to normalization) between

the vacuum blocks V
λ̃
−qL
L λ̃

qL
L φ
−qH
H φ

qH
H

and V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

is that the conformal di-

mension of the light operators in the former is hL + 1 while that of the latter is hL.

So we can just change hL to hL + 1 in the expression of V
φ
−qL
L φ

qL
L φ
−qH
H φ

qH
H

to get

V
λ̃
−qL
L λ̃

qL
L φ
−qH
H φ

qH
H

=
(2hL + 1)

(
4h2

L − q2
L

)
2hL

e(hL+1)f̃(z)(1− z)−3ηqqL , (D.24)

where the prefactor here is just the prefactor in (D.23) in the large c limit.
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