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We present here a package of Macsyrna programs, allowing the manipulation of 
words, and noncommutative power series over some finite alphabet. 

On the basis of the works of M.Fliess and C.Reutenauer, concerning local re- 
alization of nonhnear dynamical systems, we present an algorithm allowing the 
computation of the local and minimal realization of finite generating power series. 
We describe that algorithm in the computer algebra system Macsyma. 

1. I n t r o d u c t i o n  

We present here a package of Macsyma programs, allowing the manipulation of words, 
and noncommutative power series over some finite alphabet X.  

This package contains, in particular, an implementation of shuffle product of two 
noncommutative polynomials, left and righ~ remainder of a noncommutative polynomial 
by another noncommutative polynomial, production (up to some fixed degree) of the 
Lyndon basis of the free Lie algebra £ie (X) ,  and the canonical "Poincar4-Birkhoff-Witt" 
basis of noncommutative polynomials over X. 

As a development, we present a package of some programs which computes the lo- 
cal and minimal realization of  dynamical systems of which generating power series are 
finite. The first version of this package was implemented with computer algebra system 
Macsyma on the Bull computer  DPS 8 under the operating system Multics. The  ac- 
tual version is implemented with computer algebra system Macsyma on the workstation 
Sun 3/80 under the operating system Unix. 

Our program can deal with all polynomials but, since it uses the shuffle product ,  its 
capacity is limited by the core size of the computer. It is. able to treat polynomials up 
to  degree five. 

Now, we have a mean which allows us to implement and manipulate rational series. 
A continuation of this work is the realization of rational series. 

We use Lyndon basis as £ie(X)-basis. Lyndon words are used to compute the local 
coordinate system. 
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2. D e f i n i t i o n s  a n d  n o t a t i o n s  

Let  X be  a finite and totally ordered set called alphabeL The  elements of X are called 
letters and  the elements of the free monoid X* generated by X are called words. The 
empty  word is denoted  by ~. 

We define a noncommutat ive  power series S over X = ix0, ..., xm-z} with coefficients 
in ffi~ as a mapping f rom X* into ~ .  We denote by (S[w) the image of w by S. (S[w) is 
also called the coefficient of w in S. The formal power series is denoted by the following 
formal  s u m  : 

wEX* 

The  set of  all formal power series is denoted by ~r~((X)) and is an algebra for the Cauchy 
producL. 

T h e  subset of  X* defined as follows : 

supp(S) = {w e X*[(S[w) # O] 

is called t he  support of the power series S. 
A power series which has finite support  is called a polynomial. The  set of all polyno- 

mials is a sub-a lgebra  of ~i~((X)) denoted by h~(X). 

Let ffAe(X) be the free £ie algebra generated by X in which the Lie-brackets are 
defined by : 

[ x i '  ~g2'] - -  X i ~ j  - -  Z j  z i '  

Lie polynomials are the linear combinations of Lie words. Lie words are either elements 
of X or brackets of Lie words. 

2.1. R E M A I N D E R S  O F  A N O N C O M M U T A T I V E  P O W E R  S E R I E S  

Let S E ~({X}) be a noncommutat[ve power series and let u E X* be  a word. We define 
and denote  S ~, u (resp. u,a S)  the right (resp. left) remainder of *he power series S by 
the word u as follows (Jacob & Oussous, 1987) : 

~o l> u - "  

where 

wEX* wEX" 

P r o p e r t i e s  

0, otherwise, resp. u ,a w -- 0, otherwise. 

VS e ~((X>), W, v e X*, 

S~,(uv) = (St~u)~,v, (resp. (uv) ,aa=u,a(v ,~S)) ,  
(u S) v = 

) 
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R e m a r k  2 . 1  V S  E ~ ( ( X ) ) ,  e ~ S = S t, ~ = S. 

This  definition can be extended to polynomials as follows: Let  P = ~ v ~ x '  (P[v)v be a 
polynomial then: 

w,vEX* 

w,vEX* 

2.2. LIE-HANKEL MATRIX 

D e f i n i t i o n  2.1 The Lie-Rank of a formal power series S E 1R((X)) is defined by : 

/:7~(S) = d i m ( S  t~ Eie(X)) 

=dim[span{S:,  PIP E £1e(X)}], 

where "S > P" means the right remainder of S by the Lie polynomial P. Recall that 
S ~  [x,y] = S> z y -  S> yz. 

D e f i n i t i o n  2.2 Let S E E~((X)). We define the Lie-Hankel matrix associated with S as 
the infinite array, denoted by f ~ s ,  of which the lines are indexed by some totally ordered 
basis of f~ie(X) and the columns are indexed by X* (sorted for lezicographic by length 
order) such that : 

Z.~s(P~, ~)  = 

We show easily tha t  : 

LT~( S) = Rank( £7"l s ). 

2.3. SHUFFLE PRODUCT 

Let  u, v, u', v' E X* be words, x, y E X be letters. We define (Jacob & Oussous, 1987) 
the  shuffle product of u and v recursivcly as follows : 

u,,,v =x(u',,,v) + y(uwv'), if u -- xu' and v = yv I. 

This  product  is commutative and associative and can be extended to formal power series 
by  setting, for S, T e ~(<X/) : 

S, , ,T  = ~ (Slu)(TIv)u,,,v. 
u,~EX ~ 
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3. Lyndon words and Lie basis 

3.1. ORDER OVER WORDS AND CONJUGATION CLASSICS 

Let X be a finite and total ly ordered set. The " lexicographical order" on X* (Lothaire, 
1983) is the  total  order  defined as follows : 
V u ~ v E X * ,  u < v  if and only if 

e i ther  3 w ~ c  such tha t  u w = v ,  
or 3z, y, z E X*  and a, b E X such that u = zay,  v = xbz and a < b. 

With  this order,  we have the following properties: 

(i) ¥w 6 X*,  u < v ~ wu < wv. 
(ii) I f v C u X * ,  then u < v ==~ Vw, z 6 X* uw < vz.  

A word u is a factor of a word v if 

B x ,  y 6 X* such that  v = zuy.  

If  z = ¢ (resp. y = ~), we say that u is a left (resp. right) factor of v, proper if y ¢ ¢ 
(resp. ~ ¢ z).  

T w o  words u and v are said to be conjugate if 

3 ~ ,y  6 X* such that  u = z y  and v = y x .  

3.2. LYNDON W O R D S  

The definition and propert ies of Lyndon words can be found in (Lothaire, 1983; Melan~on 
& Keutenauer ,  1987; Dural,  1988). 

D e f i n i t i o n  3.1 A word w 6 X* is a Lyndon word if  i~ satisfies one of ihe equivalen~ 
following s~atemen~s: 

(i) it is strictly less ~han any of its conjugate, 
(ii) it is strictly less than any of its proper right faciors. 

Let us denote L, as the set of Lyndon words over X .  

P r o p e r t i e s  

1. Let w E L \ X  and m be its longest proper right fac~or in L. Let l E L such that  
w = l m  and l < l m <  m. Then  the couple ~(w) = ( l ,m)  is called the standard 
factoriza$ion of w. 
Examples:  

2. w 6 L  if and only if 

either 

o r  

= 

= 

# 

w E X ,  

w = I m  with l , m 6 L  and l < m .  
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The last property gives us an algorithm to construct the Lyndon words up to some given 
degree. Macsyma implementations of that algorithm have been given by Oussous(1988). 

3.3. LYNDON BASIS 

For further details, see Viennot(197S). We consider on £,ie(X) the Lyndon basis (called 
also Chen-Fox-Lyndon basis) which is recursively defined as follows: 

c ( z )  = ~: for z e X, 

c(w) = [c(l),c(m)], for w e L \X ,  such that ~(w) = (1, m), 

where the brackets are the Lie one. This definition gives us an algorithm to construct 
the Zyndon basis of the free Lie algebra £ie(X). 

4. Dynamic  sys tems and  genera t ing power series 

We consider a system in the following form: 

rrl--1 
= 

i=O 

y(t) = h ( q ( t ) ) ,  

with uo(t) =_ 1, 
(1) 

where q belongs to a connected ;R-analytic variety Q, the ]~'s are analytic vector fields, 
and h, a ll:l-analytic function called observation, defined in a neighbourhood of the given 
initial state q(O). The inputs, ul,... ,  urn-l, are real and piecewise continuous. 

Each input ul, is associated with a letter zi, (0_<i<rn--1). The set of all the letters, 
X = {x0,xl, . . . ,zm_l} will be called the control alphabet. Let X* be the free-monoid 
generated by X. 

For each word w E X*, we denote by Yw the differential operator associated with it, 
and defined as follows: 

Y~ = Identity, 

yw --- yqoyt~.. .oy~k i fw=zqz / , . . . x{  k, 

where the Y/j's are vector fields and "o" means the composition operation. 

The action of the differential operator Yt0 over an analytic function f defined on Q 
is denoted by Yto o f .  

For short enough time and inputs, the output y of the system (1) is given by the 
Peano-Baker Formula, called also Fliess Fundamental Formula (Fliess, 1983; Reutenauer, 
1986): 

y(t)  = o h)j, o  (5) 
wEX* 
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where Iq(0) means the evaluation in q(0), and f / t  

recursively as follows: 

if 

if 

if 

6uw is the iterated integral defined 

w = s, then 6uC = i, 

/o' /o' to = z i E X ,  then 6~xi = ui(r)dr,  

/o' Z'(/0 ) w = vxl ,  then 6uw = 6uV u~(r)dr. 

The Input /Output  behaviour of system (1) is completely defined by its generating power 
series in the  noncommutative variables x0,xl, ...,xm-1, given by the formula (Fliess, 
1983): 

e= ( lw)w= Z: (a) 
wEX* wEX* 

Thus, the output y(t) ,  given by (2), can be written: 

/o' y(t) = ~ (glw) e~w. (4) 
w£X* 

5. Real iza t ion  o f  d y n a m i c  sys tems  

According to Fliess(1983), the problem of local realization can be expressed as follows: 

Let an Inpu t /Outpu t  behaviour, given by its generating power series. Is there 
a differential system like (1) which has the same generating power series? In 
the positive case, describe it. 

5 .1 .  DIFFERENTIALLY PRODUCED POWER SERIES 

Def in i t ion  5.1 The formal power series g 6 EgI(XII is produced differentially if  and only 
i f  lhere e~ist : 

1. an integer r E ~i, 

2. an homomorphism J; from X* into differential operators algebra over the commu. 
tative algebra J~[ql ..... qr] such that Vx~ E X, ]~ = Y(xi) is a vector field, 

3. a commutative power series h E 1R[ql, ...,qr], 

such that: 
W e X * ,  (9[w)=(X(w)oh)l  o, (5) 

where l0 means the evaluation in ql = ... = qr = O. 

The couple (3), h) is called a differential representation of g, of dimension r. 

From (3) it is obvious that: 
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Thus: 

g is the generating power series of a system like (1) if and only i fg is produced 
differentially. 

The study of local realizations 
is equivalent to 

the study of differential representations 

5.~. FLIESS THEOREM 

T h e o r e m  5.1 The power series g 6 ~((X)) is produced differentially if and only i f  
its Lie-Rank, r, is finite. In this case, r is equal to the smallest dimension of all its 
differential representations. 

I f  (32, h) and (32', h') are two differential representations of  dimension r of g, then it 
exists a continuous automorphism ~o of ~[ql.. . ,  qr] such that: 

Vw 6 X*, Vk 6 ~[q~,..., qr], h' = ~(h) and ~(Yw o k) = Y~ o ~(k). 

g?~ (rev. Y%) ,~eans ~he image of ~ by y (~sp. Y')). 

The realization (3), h), unique up to isomorphism, is said minimal or reduced. 

The observation algebra is the complete sub-algebra Oq(o) of C w (Q) in a neighborhood 
of q(0), stable for the analytic vector fields actions. We can associate (Fliess, 1983; Jacob 
& Oussous, 1989) with each system (1) a map: 

a :Oq(o) , , R((X)), 

defined by: 

Vh e O,(o), ~(h) = ~ (Y~ o h),,(°)w. (6) 
wEX o 

Therefore, or(h) is the generating power series of the system (1) related to the observation 
h. 

The map a is a morphism which translates the observation algebra structure in the 
formal power series algebra (with Shuffle product) structure. 

L e m m a  5.1 ~r is a linear map, that is: Vh,k 6 Oq(0), Vot, fl 6 ~ ,  

~(~h + ~ )  = ~(h)  + ~(k). 

L e m m a  5.2 Let h, k 60q(o),  be two observations. We have: 

a(h . k) = ~(h) ,,, ~(k). 

The vector fields, Y0 .... , Ym-1, are given by the following formula (Fliess, 1983; Jacob 
& Oussous, 1988; Reutenauer, 1986) : 

r 

Y, = ~e i (q~ ,  r' 0 ,  e~(ql,...,qr) ~ ~[ql,...,q~]. (7) 
j=l ""q  ) 0"-~j 
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R e m a r k  5.1 Let k be an observation over ql .... , qr. We denote by or(k) the correspond- 
ing generating power series. Then 

w ,  e x * ,  w e x * ,  (o-(Y,. o ,e)l,~) = [Yo o ( r ~  o k)]j0 
= (Y~w o k)l 0 
= ( ~ ( k ) l ~ )  
= (w ,~ ,~ ( k ) l v ) .  

Then o'(Y~, o k) = w ,~ a(k).  (S) 

We saw tha t  the action of the differential operator Y~, over the observation k is equivalent 
to the left remainder of the generating power series or(k) by the word w. 

5.3.  LOCAL COORDINATES 

We consider the sub-Lie-algebra of £ie(X), of codimension r, defined by (Jacob & Ous- 
sous, 1988; l~eutenauer, 1986) : 

,4(g) = { p e ~ i e ( z )  I g ~ P = o ) 

,A(g) is generated by the Lie polynomials which annihilate the power series g. 
We set: 

V(.a(g)) = { Q ~ ~( (X) )  I Q ~" .a(g) = 0 }. 

Let (P~)i>l be Lie polynomials such that  P1, ..., Pr is a basis of £ie(X) modulo A(g), and 
Pr+l, ..., Pn, ... is a basis of A(g). We define the polynomials Q1, ..., Qr without  constant 
term such that :  

{ (Q~' ~" -Ptl~) 

Qj ~ v( ,a(g) ) .  

= 6ij for i _< r, 

(9) 

where (Qj t~Pi[e) is the coefficient of e in the right remainder of Qj by the Lie polynomial 
P .  

We know that, according to Melanqon & Reutenauer(1987) and Radford(1979), the 
Lyndon words are a transcendance basis of the shuffle algebra ~ ( X ) .  Otherwise, we 
have the following important relation: 

where lj is a Lyndon word which corresponds to the element Pj of a Lyndon basis. 

For us, the problem of the local minimal realization can be expressed as follows: 
Let  g be a finite generating power series. Then 

• To compute the observation h, we proceed as follows : 

- We compute the Lie-Rank of g which is denoted by r. 
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- We construct  some noncommutative polynomials, Ol, ..., Qr, without constant 
term, as a linear combination of  the shuffles of the Lyndon words and which 
verify the  relation (9). 

- We express g as a linear combination of the shuffles of the polynomials, 
Q1,...,Q~. 

With  this expression of g, we associate the observation h (analytic function over 
local coordinates,  ql, ..., qr). 

• In order  to define the homomorphism 3), we compute the vector fields, ]to, ..., Ym-1, 
given by (7), which are the respective images of the letters, z0,.. . ,Xm-1, by the 
homomorphism 3;. 
I f  we consider qj as an observation then, under (S), (r(Yi o qj) = z~ ,~ cr(qj). Let 
Qj  = ¢(qj) denote the generating power series corresponding to qj, then 

Hence, we have a way to  compute 0~(ql, ..., qr). 

The  couple (3~, h) is the differential representation of the polynomial g of dimension 

6. T h e  p r o g r a m  

Our program is composed of two parts : the first part  computes the local minimal 
realization and the second par t  allows us to verify that this realization is correct. 

T h e  f i r s t  p a r t  cons i s t s  of  one  m a i n  p r o c e d u r e  w h i c h  has  t w o  a r g u -  
m e n t s  a n d  c a l l s  f i v e  p r o c e d u r e s .  

(1) LYN COMP(S ,  m) : the principal procedure. It has two arguments: 

• S : a noncommutat ive polynomial (as a generating power series of a dynamical 
analytic system). 

• m : a cardinal of the alphabet in which S is written. 

• Ou tpu t  : 

- the system of vector fields, {Yo,Y1, ...,Ym-1}, 
- the observation H. 

This procedure calls five procedures which are described below. 

(1.1) LIE HAN_MAT(S, m) : has the same arguments as LYN COMP. 

• Output  : 
LieHanMat : the Lie--Hankel matrix associated with S. 

- r : the Lie-Rank of S. 

(1.2) LOC COOKD(Ma~) : has one argument : 
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• Ma~ : is the matr ix  constructed by the above procedure.  

• Output  : 

- a sys tem of r local coordinates, ~Q1, ..., Qr}, which are the p o l y n o m i -  
als constructed over the Lyndon words. 

(1.3) E X P R E S S ( P o l ,  Tab, z~ab) : has three arguments .  

• Pol : is a noncommutative polynomial.  

• Tab : is an array of Lie polynomials. 

• ztab : is an array of noncommutat ive polynomials (Q1, ..., Qr).  

• Output  : 

- Po l  : is a commutative polynomial  over Q1, ..., Qr, with shuffle p r o d -  
uct. 

This procedure is used to compute the observation and the coefficients o f  
vector fields. 

(1.4) A C T I O N  X(Z)  : has one argument.  

• Z : is an array of local coordinates. 

• Output  : 

- A two-dimensional array of coefficients (noncommuta t ive  po lynomia l s )  
o f  vector fields. 

This procedure computes, for each local coordinate, the left remainder  b y  
each letter. 

(1.5) VECT.  FIELD(Mafx)  : has one argument.  

• M a f x  : is a two-dimensional array of coefficients of  vector fields p roduced  
by the above procedure. 

• Output  : 

- The  system of vector fields {Y0, ..., Y,n- 1 }- 

T h e  s e c o n d  p a r t  cons is t s  o f  o n e  m a i n  p r o c e d u r e  w h i c h  h a s  t h r e e  
a r g u m e n t s .  

(2) VEI:tIFY(Tab,  H,  n) : has three arguments : 

• Tab : a two-dimensional  array produced by  V E C T  FIELD and enclosing the  
coefficients of vector fields, 

• H : a commutat ive polynomial (the observation),  

• n : the Lie-Rank of S. 

• O u t p u t  : 

- The generating power series associated with this differential system. 
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Polynomials 

ZOZl ~ ZlZO 

ZOXl + z o x l z o  

z o z l  + z l  zo + zoz~ + 
T,2T, O 

xo + z~ + z o x l z ~  - 
• o~  - ~o~ + ~o~ 

Realizations 
Q1 = Xo Q2 ---- Zl 
h = qlq2 

O 
Y o -  0~1 

Y ~ -  Oq2 

Q1 = =o IQ2 = =o=~ 
I 

h ---2q3 + qlq2 -I- q2 
8 

Y o -  0~1 

qi 69 0 
YI =- "~ Oq-"~ + ql Oq I 
Q1 = zo Q2 = zl 
Q~ = ~o~1 Q4 = ~o~ 

_ _ 2  

h = 2q4 - q2q3 + ~ +qlq~ 
z 

b 
Yo= 

Q1 = zo  Q2 = z o z l  

Os  = ~o~ + 2z3o~i 

= qs - q4 -- 2ql qa + "q_~q2_ 4 q~ -k ql h 
- 24 z 

CPU(msec) 

6967 

21100 

0 
Yo = Oql 

q~) o o q~ o + o 
Yl = (q4 + "~ "~qs + q2-~q4 + y -~qs  ql~q 2 

29017 

98550 

Table 1. Table of examples 

7. Examples 

We give in the table 1 some examples of polynomials with their realizations and the 
approximative CPU time used. The q~'s are the local coordinates (w(q~) = Qi), h is the 
observation function and the Y£ 's are the vector fields. The CPU time can be reduced if 
the Lyndon words shuffles are stored in the memory. 

8. Conclusion 

Our software consists of a package of Macsyma programs. Those programs are stored in 
independent files and cau be used separatly by any Macsyma users. The source codes of 
both the first and the actual version are published in (Oussous 1989). 
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This program deals with finite generating power series. We hope that we can extend 
it to deal with rational generating power series. 
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