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SUMMARY

The HIV-1 envelope (Env) spike contains limited epi-
topes for broadly neutralizing antibodies (bNAbs);
thus, most neutralizing antibodies are strain specific.
The 8ANC195 epitope, defined by crystal and elec-
tron microscopy (EM) structures of bNAb 8ANC195
complexed with monomeric gp120 and trimeric
Env, respectively, spans the gp120 and gp41 Env
subunits. To investigate 8ANC195’s gp41 epitope at
higher resolution, we solved a 3.58 Å crystal structure
of 8ANC195 complexed with fully glycosylated Env
trimer, revealing 8ANC195 insertion into a glycan
shield gap to contact gp120 and gp41 glycans and
protein residues. To determine whether 8ANC195
recognizes the CD4-bound open Env conformation
that leads to co-receptor binding and fusion, one of
several known conformations of virion-associated
Env, we solved EM structures of an Env/CD4/CD4-
induced antibody/8ANC195 complex. 8ANC195
binding partially closed the CD4-bound trimer, con-
firming structural plasticity of Env by revealing a
previously unseen conformation. 8ANC195’s ability
to bind different Env conformations suggests advan-
tages for potential therapeutic applications.
INTRODUCTION

The envelope (Env) spike of HIV-1, a trimer of gp120-gp41 heter-

odimers, is the only target of neutralizing antibodies (Abs) and

therefore the focus of vaccine design efforts. The discovery of

highly potent broadly neutralizing antibodies (bNAbs) isolated

froma subset of HIV-1-infected donors has brought new impetus

to the idea of delivering bNAbs passively to protect against or

treat HIV-1 infection. bNAbs have been shown to prevent and

treat infection in mouse and macaque models (reviewed in

West et al., 2014) and exhibited efficacy against HIV-1 in a hu-

man clinical trial (Caskey et al., 2015). Defining the epitopes

and neutralization mechanisms of anti-HIV-1 bNAbs provides

critical information for selecting combinations of bNAbs for

passive delivery efforts and for design of immunogens to elicit

similar Abs in a vaccine and can illuminate the complex process

of viral entry.
C

Until recently, the HIV-1 Env spikewas considered to have four

defined bNAb epitopes: three on the gp120 subunit (the V1V2-

glycan epitope at the apex of the Env trimer, the V3-loop region

centered on the Asn332gp120 oligomannose patch, and the bind-

ing site for the host receptor CD4) and the fourth involving the

gp41 membrane-proximal external region (MPER) (reviewed in

West et al., 2014). Within the last year, three Abs were discov-

ered to target distinct regions of the gp120-gp41 interface.

Two of the subunit-spanning bNAbs, PGT151 and 35O22, are

trimer specific and do not bind to gp120 monomers (Blattner

et al., 2014; Huang et al., 2014). The gp120-gp41-spanning

bNAb 8ANC195 binds both to gp120 monomers and gp140 tri-

mers (Scharf et al., 2014; Scheid et al., 2011).

8ANC195 was originally isolated in a screen that identified

many CD4-binding site (CD4bs) Abs, but its epitope did not

map as a conventional CD4bs bNAb (Scheid et al., 2011).

We used computational analyses of neutralization data to

predict that intact potential N-linked glycosylation sites at posi-

tions 234gp120 and 276gp120 are essential for the activity of

8ANC195, suggesting that the epitope was near, but not within,

the CD4bs on gp120 (West et al., 2013). A 3.0 Å resolution crystal

structure of 8ANC195 Fab and CD4 domains 1 and 2 (sCD4)

bound to a gp120 core revealed extensive contacts with

N-linked glycans attached to Asn234gp120 and Asn276gp120
and defined a site of Env vulnerability involving glycans and the

gp120 inner domain that is not targeted by other bNAbs (Scharf

et al., 2014). Finally, negative-stain single-particle electron mi-

croscopy (EM) reconstruction of a native-like soluble Env trimer

(BG505 SOSIP.664, hereafter referred to as BG505 SOSIP

[Sanders et al., 2013]) complexed with three 8ANC195 Fabs

confirmed the binding site on gp120 and further suggested

that 8ANC195 spanned the gp120-gp41 subunit interface to

contact gp120 with its heavy chain (HC) and gp41 with its light

chain (LC) (Scharf et al., 2014). These structural studies sug-

gested that 8ANC195 did not inhibit HIV-1 infection by blocking

the CD4bs on gp120 (indeed, the crystal structure demonstrated

simultaneous binding of sCD4 and 8ANC195 Fab) but, rather,

that recognition of both Env subunits by 8ANC195 could

facilitate neutralization by preventing conformational changes

required for gp41-mediated fusion of the host cell and viral

membranes.

However, the precise nature of the 8ANC195 epitope on gp41

could not be elucidated due to the low resolution of the

8ANC195-BG505 SOSIP EM structure; nor was it known

whether 8ANC195would block or accommodate conformational

changes in Env trimers upon CD4 binding. To address these
ell 162, 1379–1390, September 10, 2015 ª2015 Elsevier Inc. 1379
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Figure 1. Overview of 8ANC195G52K5-BG505

SOSIP Structure

8ANC195G52K5 Fabs are dark pink (HC) and light

pink (LC), gp120 subunits are different shades of

light gray, and gp41 subunits are different shades

of dark gray. N-linked glycans at the Fab-trimer

interface are yellow.

(A) 8ANC195G52K5-Env structure seen from the top

in space-filling (left) and ribbon diagram (right)

representations.

(B) 8ANC195G52K5-Env structure seen from the side

in space-filling (left) and ribbon diagram (right)

representations.

(C) Conformations of HIV-1 Env trimers shown

schematically (adapted from figures in Liu et al.,

2008) as seen from above (top) and the side

(bottom) (CD4-binding site, yellow; remainder of

gp120, light gray; gp41, dark gray; membrane,

blue-gray). The closed structure was observed for

unliganded virion-bound trimers (Liu et al., 2008)

and structures involving liganded BG505 SOSIP

trimers (Julien et al., 2013a; Lyumkis et al., 2013;

Pancera et al., 2014). The partially open structure

was observed for virion-bound trimers associated

with b12 or A12 (Liu et al., 2008). Open structures

were observed for trimers associated with CD4 or

the Fab from the CD4-induced Ab 17b (Merk and

Subramaniam, 2013).

See also Figure S1 and Table S1.
questions, we solved a crystal structure of an 8ANC195-BG505

SOSIP complex to define the 8ANC195 epitope at the gp120-

gp41 interface at atomic resolution, allowing structural compar-

ison of a subunit-spanning bNAb bound to a gp120 monomer

and to a gp140 Env trimer. Furthermore, we used binding studies

to show that 8ANC195 can recognize CD4-bound Env trimers;

thus, the conformational changes induced by CD4 binding do

not preclude 8ANC195 recognition of the gp120-gp41 interface.

To visualize the conformational state of Env trimer bound to

both CD4 and 8ANC195, we used three-dimensional (3D) EM

reconstruction to demonstrate that 8ANC195 binding prevents

the full opening of Env trimer that is associated with the con-

formational change induced by CD4 to allow subsequent co-

receptor binding and fusion of host and viral membranes.

These studies provide structural and biochemical evidence of

a bNAb recognizing both the closed and open conformational

states of HIV-1 Env and suggest that the ability to accommodate
1380 Cell 162, 1379–1390, September 10, 2015 ª2015 Elsevier Inc.
conformational change on its target anti-

gen benefits an anti-HIV-1 bNAb.

RESULTS

Characterization of Complete
8ANC195 Epitope in the Context of
HIV-1 Env Trimer
To elucidate the complete 8ANC195

epitope on Env trimer at atomic resolution,

we solved a 3.58 Å resolution crystal

structure of a more potent 8ANC195

variant, g52HCk5LC (Scharf et al., 2014)
(hereafter referred to as 8ANC195G52K5), complexed with

BG505 SOSIP (Figure 1 and Table S1). Trimers were expressed

in kifunensine-treated HEK cells to yield protein containing

Man8-9GlcNAc2 high-mannose N-glycans (Elbein et al., 1990)

at all potential N-linked glycosylation sites (pseudoviruses

containing only high-mannose glycans or mixtures of high-

mannose and complex glycans were neutralized equivalently

by 8ANC195G52K5; Table S3). Crystallization trials were conduct-

ed with complexes of BG505 SOSIP, sCD4, and 8ANC195G52K5

Fab produced by first purifying BG505 SOSIP complexed with

sCD4 by size exclusion chromatography (SEC) (Figures S1A

and S1B), adding 8ANC195G52K5 Fab, and then repeating the

SEC to purify the ternary complex (Figure S1C). Although the

crystallization drops contained all three proteins, resulting crys-

tals did not include sCD4 (Figure S1D), and electron density

maps showed density only for one BG505 SOSIP and three

8ANC195G52K5 Fabs per asymmetric unit. When we docked



three copies of sCD4 in the appropriate location on BG505

SOSIP by aligning the gp120-sCD4 portion of the 8ANC195-

gp120-sCD4 complex structure (PDB: 4P9H) with gp120 in the

trimer portion of 8ANC195G52K5-BG505 SOSIP structure and

refined their all-atom occupancies, the occupancies of sCD4

atoms refined toward zero, confirming the absence of sub-stoi-

chiometric amounts of sCD4 in the crystals.

The 8ANC195G52K5-BG505 SOSIP structure revealed the

variable heavy (VH), variable light (VL), and constant heavy and

light (CH1 and CL) domains of three Fabs bound at the gp120-

gp41 interface of an Env trimer (Figures 1A and 1B). The trimer

is in the closed, prefusion state, similar to the conformation of

BG505 SOSIP in previous crystal and EM structures (Julien

et al., 2013a; Do Kwon et al., 2015; Lyumkis et al., 2013; Pancera

et al., 2014) and as revealed for bNAb-bound BG505 SOSIP by

hydrogen-deuterium exchange (Guttman et al., 2015), rather

than the open conformation observed in EM structures of both

virion-associated and soluble Env trimers, including sCD4 or

the CD4-induced Ab 17b (Harris et al., 2011; Liu et al., 2008;

Sanders et al., 2013; Tran et al., 2012) (Figure 1C). Since no

Abs were bound to the apex of the trimer in our crystals, by

contrast with previous crystal structures of BG505 SOSIP bound

to PGT122 (Julien et al., 2013a) or PGT122 and 35O22 (Pancera

et al., 2014), the V1/V2 loops of the trimer in the 8ANC195G52K5-

BG505 SOSIP structure are less ordered (Figure S1E). However,

well-resolved regions of the trimer showed no major structural

rearrangements compared with a previous structure of similar

resolution (PDB: 4TVP) (Figure S1E). Trimers for previous crystal

structures contained only high-mannose N-linked glycans that

were treatedwith EndoH to truncate accessibleN-linked glycans

to a single N-acetyl glucosamine (NAG) (Julien et al., 2013a; Do

Kwon et al., 2015; Pancera et al., 2014), whereas our trimer

structure includes all potential N-linked glycans in an untrun-

cated form. Nevertheless, we observed nomajor conformational

changes compared with previous structures, with the exception

of some disordering of the trimer apex, likely due to the lack of

stabilization by crystal contacts or Fab binding to this region.

The placement of the 8ANC195G52K5 VH domain relative to the

gp120 subunit of gp140 was relatively close to that observed in

the 8ANC195-gp120-sCD4 complex structure (Ca rmsd of 2.1 Å;

all VH residues), with closest agreement at the 8ANC195G52K5-

gp120 interface (Figure S2A). The interactions with gp120 are

reproduced in the context of the trimer, including contacts with

protein residues in the gp120 inner domain andwithN-linked gly-

cans at Asn234gp120 and Asn276gp120 (Figures 2A, 2B, and 3 and

Table S2). The Asn276gp120 glycan, normally complex type in

native HIV-1 Envs (Binley et al., 2010; Go et al., 2011), is high

mannose in the crystallized Env trimer. This gp120 glycan forms

an interface with framework region residues in VH domain

strands A and B and the N-terminal portion of CDRH1 using

only the core pentasaccharide common to both high-mannose

and complex-typeN-glycans (Scharf et al., 2014), which we sug-

gested is an adaptation to recognize both complex-type and

high-mannose glycans at a particular N-linked glycosylation

site on Env (Mouquet et al., 2012; Scharf et al., 2014). The overall

conformation of VH is conserved (Ca rmsd of 0.67 Å after aligning

all VH residues). However, there are rearrangements in the resi-

dues of the third complementarity determining region of the
C

HC (CDRH3) to accommodate and interact with gp41 (Figures

2B, 3, S2C, and S2D). Furthermore, VL is shifted slightly from

the position observed in the 8ANC195-gp120-sCD4 structure,

also to accommodate and interact with gp41 (Figures 2B, 3,

S2C, and S2D). Compared with the low-resolution EM recon-

struction (Scharf et al., 2014), the 8ANC195G52K5-BG505 SOSIP

crystal structure shows a closer interaction of the Fab and trimer,

confirming the Fab placement observed in the complex structure

with gp120 (Figure S2E).

As described previously, 8ANC195 contacts a large epitope

on gp120 alone (3,750 Å2 of total buried surface area in gp120-

8ANC195-sCD4 structure [Scharf et al., 2014]). The interface

on gp120 is 3,835 Å2 in the context of the trimer (Figures 2A

and 2B and Table S2), and contacts with gp41 make the

8ANC195G52K5 epitope more extensive, adding 1,810 Å2 total

buried surface area between gp41 and the Fab (485 Å2 between

gp41 and HC; 1,325 Å2 between gp41 and LC). 771 Å2 of this

interface is between the LC and the Asn637gp41 glycan, which

is ordered to the branching mannose (MAN) residue in the core

pentasaccharide (NAG-NAG-MAN) (Figures 2C and 3). The first

CDR of the LC, CDRL1, stabilizes CDRH3 and interacts with res-

idues near the kink in a9gp41 (nomenclature for gp41 secondary

structures as in Pancera et al., 2014) and residues 613gp41–

615gp41 in a loop N terminal to a8gp41 that is positioned under-

neath the kink in a9gp41 at Asn637gp41 (Figures 2C and 3). This

interaction rationalizes our previous observation that a germline

(gl) reversion that altered two residues and removed one from

CDRL1 (T30SLC, G30aDLC, N31SLC) drastically decreased the

potency of 8ANC195 (Scharf et al., 2014), possibly because

Gly30aLC introduces a kink in CDRL1 that allows the mature

Ab to engage and accommodate this region of gp41. The second

LC CDR, CDRL2, mainly accommodates the Asn637gp41 glycan

(Figure 2C). A conservative two-residue gl reversion in this loop

(G51ALC, A52SLC) caused a large decrease in neutralization po-

tency (Scharf et al., 2014), likely because the loop in the mature

Ab containing Gly51LC-Ala52LC is more compact and flexible,

allowing the LC to avoid clashes with the Asn637gp41 glycan.

Thr30LC is within hydrogen-bonding distance of Glu634gp41
and Ser615gp41 side chains and the backbone carbonyl oxygen

of Tyr638LC. Other LC residues in CDRL1 and CDRL2 in the

vicinity of gp41 could participate in water-mediated H bonds

(Asn31LC, Trp32LC, Arg50LC, Gly51LC, and Leu54LC), but we

cannot place water molecules at the current resolution.

To determine the functional importance of gp41 contacts by

8ANC195, we assessed the effects of alanine mutants of

8ANC195 HC and LC residues located in the vicinity of gp41 in

the 8ANC195G52K5-BG505 SOSIP structure (Table S3 and Fig-

ure 3). 8ANC195 IgG mutants W32ALC, Y49ALC, and Y91ALC

showed decreased neutralization potencies against HIV-1

strains YU2 and BG505, and W100aAHC showed slightly

decreased potency against YU2 (Table S3). These results are

rationalized by the complex structure (Figure 3): Trp100aHC,

conserved in all 8ANC195-related HCs (Scharf et al., 2014),

inserts its side chain into a hydrophobic pocket at the gp120-

gp41 interface, suggesting that the loss of this interaction

reduces the binding energy. The W32ALC mutation resulted in

a complete loss of neutralization potency against YU2 and

BG505. Trp32LC makes no direct contacts with gp41 but could
ell 162, 1379–1390, September 10, 2015 ª2015 Elsevier Inc. 1381
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Figure 2. Interfaces in 8ANC195G52K5-BG505 SOSIP Structure

(A) 8ANC195G52K5 epitope. BG505 SOSIP is shown in space-filling representation with the gp120 and gp41 portions of one protomer in white and medium gray,

respectively (other two protomers are light gray). Glycan and protein portions of the 8ANC195G52K5 epitope are highlighted in the indicated colors on one

protomer.

(B) Close-up of contact areas. Relevant portions of 8ANC195G52K5 are shown in wire representation with atoms within buried surface areas on BG505 SOSIP

shown as colored surfaces.

(C) Details of interactions with glycans on gp120 and gp41. Buried surface areas on 8ANC195G52K5 are shown as colored surfaces.

See also Figure S2 and Table S2.
engage in water-mediated H bonds with Glu634gp41. In addition,

it makes stacking interactions with His100fHC side chain, likely

stabilizing the complicated CDRH3 conformation involved in

gp120 interactions (Scharf et al., 2014). The hydroxyl group of

Tyr49LC is within hydrogen-bonding distance of the branching

mannose of the Asn637gp41 glycan, potentially allowing the Ab

to accommodate this conserved glycan, and the ring portion of

the side chain makes hydrophobic interactions with Leu100dHC,

potentially stabilizing the CDRH3 conformation. The hydroxyl

group of Tyr91LC forms H bonds with Gly100cHC and Lys50LC,

again stabilizing the CDRH3 conformation.

Effects of N-Linked Glycans Attached to gp41
on Neutralization by 8ANC195
To further explore the roles of N-linked glycans within the

8ANC195 epitope on gp41, we evaluated the effects of
1382 Cell 162, 1379–1390, September 10, 2015 ª2015 Elsevier Inc.
removing glycans attached to Asn611gp41, Asn625gp41, and

Asn637gp41 (by one, two, or three Asn-Gln mutations) on YU2

pseudovirus neutralization by WT 8ANC195 and partially gl-re-

verted chimeric Abs.

Neutralization by 8ANC195 did not depend strongly upon the

presence of glycans attached to Asn611gp41, Asn625gp41, or

Asn637gp41 (Table S4). However, glycan recognition may play a

more prominent role during maturation of 8ANC195 from its gl

progenitor, as evidenced by neutralization behaviors of partial

gl chimeric LCs. 8ANC195 containing a gl reversion that altered

two residues and removed one from CRDL1 (T30SLC, G30aDLC,

N31SLC) (8ANC195 glCDRL1) exhibited >130-fold reduced

neutralization potency against YU2 compared to the fully mature

Ab, but its neutralization capacity was completely ablated if the

Env target lacked glycosylation at Asn611gp41 or Asn625gp41.

These glycans may have partially stabilized Ab binding in
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See also Tables S3 and S4.
progenitors of the mature 8ANC195, which would have had

shortened CDRL1 loops in addition to two amino acid substitu-

tions. Conversely, glycosylation at Asn637gp41 may destabilize
C

binding of progenitor Abs since neutralization potency of

8ANC195 glCDRL1 against YU2 was partially restored (16-fold)

when the Asn637gp41 site was knocked out. The destabilizing
ell 162, 1379–1390, September 10, 2015 ª2015 Elsevier Inc. 1383
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Figure 4. Effects of Env Trimer Conforma-

tional State on Binding Affinity of 8ANC195

(A) Schematic representation of coupled surfaces

and injectedanalytes.A control IgG (mG053), an IgG

recognizing closed trimers (PGT121 or PGT145),

CD4-Fc (recognizing open trimers), and a CD4-

induced Ab (17b or 21c) recognizing open CD4-

bound trimers were immobilized on separate flow

cells of abiosensorchip.BG505SOSIP trimerswere

injected, resulting in binding to surfaces except for

the control flow cell. 8ANC195, 8ANC195G52K5, or a

G52HC/8ANC195LC chimera Fab was then injected

over the IgG-BG505 SOSIP complex.

(B) Summary of affinities (KD values; reported as

mean ± SD for three independent experiments) for

combinations of capture proteins and analytes.

Since PGT145 indirectly inhibited binding of

8ANC195 to BG505 SOSIP trimers and PGT121

enhanced 8ANC195 binding (Derking et al., 2015),

our affinity measurements likely underestimated

(PGT145-captured trimers) or overestimated

(PGT121-captured trimers) the affinity of 8ANC195

for closed trimer. N.D., not determined.

See also Figure S3.
influence of Asn637gp41 glycosylation had a greater effect than

stabilizing influences of Asn611gp41 and Asn625gp41 glycans,

as the net effect in double or triple knockouts involving

Asn637gp41 was only partial restoration of neutralizing activity.

In the case of a target with an Asn611gp41/Asn637gp41 double

knockout, neutralization by 8ANC195 glCDRL1 was improved

by >30-fold and was brought to within the same order of magni-

tude as mature 8ANC195.

8ANC195 containing a conservative two-residue gl reversion

in CDRL2 (G51ALC, A52SLC) (8ANC195 glCDRL2) was �16-fold

reduced in neutralization potency compared to the mature Ab;

its remaining potency was further diminished by 8.6-fold if the

YU2 Env lacked glycosylation at Asn625gp41 but was partially

restored (1.8-fold) if it lacked glycosylation at Asn637gp41. The

restorative effect of the knockout of Asn637gp41-linked glyco-

sylation was again dominant over effects of also removing

Asn625gp41-linked glycan in a double knockout. The knockout

of Asn611gp41-linked glycosylation had only a minor effect

on neutralization by 8ANC195 glCDRL2 but amplified the restor-

ative effect of the Asn637gp41 knockout from 1.8-fold to >8-fold

in the double and triple knockouts. The CDRL2 loop lies in

apposition to the glycan attached to Asn637gp41 in the

8ANC195G52K5-BG505 SOSIP crystal structure and �15 Å from

the Asn611gp41 glycosylation site (Figure 3). Given the closer

proximity of CDRL2 to the Asn637gp41 glycan, interactions be-

tween the two might be influenced synergistically by a loss of

glycosylation at Asn611gp41. In the case of a chimeric Ab con-

taining the mature 8ANC195 HC and a gl LC (8ANC195 mHC/

glLC), which had a 19-fold reduced neutralization potency

against YU2, a stabilizing effect of Asn611gp41 glycosylation

and destabilizing effect of Asn637gp41 glycosylation were evident

in several of the pairings.

These results are consistent with Asn637gp41 glycosyla-

tion interfering with neutralization of a partially immature

8ANC195, Asn625gp41 glycosylation enhancing neutralization,
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and Asn611gp41 glycosylation having positive or detrimental

effects depending on complex factors. Mature 8ANC195 may

have evolved promiscuity toward recognition of viruses contain-

ing or lacking glycans at these positions. Such viruses may be

present in a viral swarm containing many mutated viruses. The

evolution of promiscuous recognition may have arisen through

layers of redundancy in stabilizing interactions that are only re-

vealed on partial reversion to the gl form. Thus, we speculate

that mature 8ANC195 accommodates, rather than productively

interacts with, at least some of the gp41 glycans.

8ANC195 Binds CD4-Bound Env Trimers
We previously showed that 8ANC195 and sCD4 can bind simul-

taneously to monomeric gp120 and that addition of sCD4 did not

detectably alter the in vitro neutralization potency of 8ANC195

(Scharf et al., 2014). sCD4 binding has little to no effect on the

structures of monomeric gp120 cores (Kwon et al., 2012) but re-

sults in rotation of gp120 protomers to create an open structure

in virion-bound Env trimers and SOSIP gp140s, including BG505

SOSIP (Harris et al., 2011; Liu et al., 2008; Sanders et al., 2013;

Tran et al., 2012) (Figure 1C). Although sCD4 does not preclude

binding of 8ANC195 to gp120, changes between the closed and

open states of trimeric Env at the gp120-gp41 interface could

disrupt the 8ANC195 epitope on open Env trimers.

To determine whether 8ANC195 can bind sCD4-bound open

Env trimers, we used SPR to evaluate binding to different trimer

conformational states. For these experiments, we immobilized

IgGs on a biosensor chip that captured BG505 SOSIP trimers

with different bNAbs: PGT145 and PGT121, which bind to closed

Env (Julien et al., 2013a; Pancera et al., 2014; Pugach et al.,

2015); CD4-Fc (Capon et al., 1989), which should capture open

trimers; and CD4-induced Abs 17b and 21c (Sullivan et al.,

1998; Xiang et al., 2002), which should capture sCD4-bound

open trimers (Figures 4A and S3). 17b Fab induces opening of

some Env trimers in the absence of CD4 binding (Tran et al.,
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Figure 5. EM Reconstructions of BG505

SOSIP-sCD4-17b-8ANC195G52K5 Complex

The X-ray structures of a gp120-scD4-17b com-

plex (PDB: 1RZK) and 8ANC195 Fab (PDB: 4P9M)

were fit to EM densities and are shown from the

top, side, and bottom.

(A) �23 Å resolution EM density derived from cryo-

ET and sub-tomogram averaging.

(B) �17 Å resolution EM density derived from

negative-stain single-particle reconstruction.

(C) Superposition of densities from cryo-ET/sub-

tomogram averaging (cyan) and negative-stain

single-particle (light gray) reconstructions.

See also Figures S4 and S5.
2012), but 17b does not bind to BG505 SOSIP unless sCD4 is

present (Sanders et al., 2013), and the 21c epitope includes por-

tions of CD4 as well as gp120 (Diskin et al., 2010). Thus, both

CD4-induced Abs will only bind to sCD4-BG505 SOSIP

complexes.

8ANC195 and 8ANC195G52K5 Fabs were injected over the

trimer-bound surface to determine their affinities for BG505

SOSIP in its closed and open states. 8ANC195, 8ANC195G52K5,

and a chimeric Fab differing from 8ANC195 only in the K100RHC

mutation (8ANC195G52K5 HC/8ANC195 LC) bound to closed

trimer with slightly higher affinities than to CD4-Fc-bound open

trimer (Figures 4B and S3). No decrease in affinity was observed

for 8ANC195G52K5 binding to CD4-bound BG505 SOSIP

captured by 17b or 21c, perhaps reflecting stabilization of

the 8ANC195G52K5-sCD4-BG505 SOSIP complex by the CD4-

induced Abs.

We also attempted to determine a binding affinity for the

interaction between 8ANC195 IgG-bound BG505 SOSIP

trimers and sCD4. In reciprocal experiments to those described

above, sCD4was injected over 8ANC195-captured trimers. Only

weak binding that could not be fit to a binding model was

observed (Figure S3). Since sCD4 binds to unliganded BG505

SOSIP (Julien et al., 2013b) (Figures S1A and S1B), this result

suggests that pre-binding of 8ANC195 to Env diminishes its

ability to interact with CD4.
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8ANC195 Recognizes a Partially
Open Env Trimer in the Presence
of sCD4 and 17b
Having shown that it is possible for

8ANC195/8ANC195G52K5 to recognize

CD4-bound BG505 SOSIP trimers, we

sought to determine how this class of Ab

accommodates conformational changes

involved in transitioning from the

closed to open trimeric state (Figure 1C).

We prepared complexes of BG505

SOSIP trimers, sCD4, 17b Fab, and

8ANC195G52K5 Fab for EM structure de-

terminations (Figures 5, 6, S4, and S5),

reasoning that binding of 17b Fab to a

CD4-bound open trimer would prevent a

potential full reversion to a closed trimeric

conformation since it is not possible to
accommodate three 17b Fabs at the apex of a closed gp140

trimer (Figure 6A). To ensure that the trimers were in an open

conformationwhen given the opportunity to bind 8ANC195G52K5,

we first purified BG505 SOSIP-sCD4-17b complexes by SEC,

added 8ANC195G52K5 Fab, and then subjected the four-compo-

nent mixture to SEC again, obtaining stable quaternary com-

plexes, as confirmed by SDS-PAGE (Figure S4A).

In order to obtain a reference-free reconstruction of the BG505

SOSIP-sCD4-17b-8ANC195G52K5 complex that included no

assumptions about trimer conformation or how many ligands

were bound, we initially determined a �23 Å structure by sub-

tomogram averaging of cryoelectron tomography (cryo-ET)

data obtained from 3D reconstruction of a tilt series of two-

dimensional (2D) projection images (Figures 5A and S4). With

no model or symmetry imposed, the sub-tomogram-averaged

structure showed a 3-fold symmetric particle with densities for

three 17b Fabs at the apex, three sCD4 molecules around the

middle, and three 8ANC195G52K5 Fabs at the bottom. Since a

co-crystal structure of gp120-sCD4-17b can be fit as a unit

into EM structures of open CD4-bound Env trimers (Harris

et al., 2011; Liu et al., 2008; Sanders et al., 2013), we first fit

the density with gp120-sCD4-17b coordinates (PDB: 1RZK), re-

sulting in a 3-fold symmetric distribution of gp120, sCD4, and

17b.We next fit 8ANC195 Fab (PDB: 4P9M) into three protruding

densities at the predicted gp120-gp41-spanning epitope.
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A

C

B Figure 6. Comparison of Different Conforma-

tions of Env Trimers in BG505 SOSIP-sCD4-

17b-8ANC195G52K5 and Other Env Trimer

Complexes Illustrated by 17b and gp120

Positions

(A) Overlay of 17b Fabs from BG505 SOSIP-sCD4-

17b-8ANC195G52K5 complex (gray space-filling

representations) with 17b Fabs complexed with Env

trimers in different conformational states (thick Ca

traces in shades of blue). 17b Fabs shown after su-

perimposition of gp120s from trimers (trimers and

other ligands not shown). (Left) 17b modeled onto

3DNN coordinates of a closed trimer. (Middle) 17b

modeled onto 3DNL coordinates of a partly open

trimer. (Right) 17b taken from 3DNO structure of a

CD4- and 17b-bound open trimer. Note that three

17b Fabs cannot be accommodated without clashes

when modeled onto the gp120s of closed and partly

open trimer structures.

(B) Ca trace of the three 17b Fabs from the BG505

SOSIP-sCD4-17b-8ANC195G52K5 complex.

(C) Positions of gp120s (gray space-filling repre-

sentation with locations of CD4-binding site in yel-

low, V3 loop in green, and base of V1V2 domain in

red) in Env trimers adopting the indicated confor-

mations. The locations of Asp368gp120 are shown as

a black dot for each trimer conformation, with the

distance between the Ca of this residue in adjacent

protomers indicated. Distances are presented as the

mean and SD for the analogous distance in repre-

sentative structures in each conformation.

See also Figure S6 and Table S5.
To verify and extend the structural details, we next determined

a negative-stain single-particle reconstruction of the BG505

SOSIP-sCD4-17b-8ANC195G52K5 complex at �17 Å resolution

(Figures 5B and S5). Potentially due to conditions during staining

or drying of the grid or the low-sample concentrations necessary

to obtain grids containing an optimal distribution of particles, not

all complexes contained stoichiometric numbers of ligands.

Therefore, we included a 3D classification procedure after

reference-free 2D classification to sort particles containing the

stoichiometric complex from sub-stoichiometric complexes,

resulting in selection of approximately half of the initially selected

particles from good 2D classes. The resulting reconstruction

showed density for three copies each of 8ANC195G52K5, 17b,

and sCD4 bound to BG505 SOSIP, and we again fit the density

using coordinates for gp120-sCD4-17b and 8ANC195 Fab

structures (Figure 5B). The two reconstructions showed similar

placements of three gp120s, three sCD4s, and six Fabs (Figures

5C).We used the higher-resolution single-particle reconstruction

for subsequent analyses.

From comparisons with other Fab- and Fab-sCD4-Env struc-

tures, it is evident that the trimer in our BG505 SOSIP-sCD4-

17b-8ANC195G52K5 structure is not in a closed conformation

(Figure 6). As expected, given that the trimer is not closed, the

placement of 8ANC195G52K5 in the EM structure is shifted

somewhat from its placement in the 8ANC195G52K5-BG505

SOSIP (closed trimer) crystal structure (Figure S6). To determine

whether the trimer in the EM structure is fully open, we

investigated the arrangement of 17b Fabs, noting that they

are positioned differently in the BG505 SOSIP-sCD4-17b-
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8ANC195G52K5 structure than in open trimer structures (Figures

6A and 6B) (Harris et al., 2011; Liu et al., 2008; Sanders et al.,

2013; Tran et al., 2012), suggesting that the trimer in the

BG505 SOSIP-sCD4-17b-8ANC195G52K5 complex is less open

than in other sCD4-bound or 17b-bound structures. To more

precisely describe the conformational state of the Env trimer in

the BG505 SOSIP-sCD4-17b-8ANC195G52K5 complex, we

measured distances between a CD4bs residue in each gp120

protomer of the trimer and compared them to the corresponding

distances in structures of trimers in different conformational

states (Figures 1C and 6C and Table S5). This comparison

showed that the trimer in the BG505 SOSIP-sCD4-17b-

8ANC195G52K5 structure adopts a previously unseen partially

open state that is midway between a partially open state

observed for Env bound to either b12 (a CD4bs Ab) or A12

VHH (a CD4bs llama Ab fragment) and the open state observed

for the sCD4/17b-bound open trimer (Merk and Subramaniam,

2013). Thus, addition of 8ANC195G52K5 Fab to the BG505

SOSIP-sCD4-17b complex resulted in partial closure of the

trimer, suggesting that stable 8ANC195G52K5 binding is incom-

patible with a fully open Env trimer conformation and would

therefore block conformational changes leading to fusion be-

tween the viral and host membranes.

DISCUSSION

Here, we present an atomic resolution structure of

8ANC195G52K5 bound to BG505 SOSIP, a native-like soluble

HIV-1 Env trimer in the closed, prefusion conformation. The



interface of 8ANC195G52K5 with Env trimer (5,645 Å2 total buried

surface area) is much larger than typical Ab-antigen complexes

(Jones and Thornton, 1996), and 8ANC195 uses a large propor-

tion of its accessible surface to engage its antigen, primarily

using CDRs to contact protein portions and framework regions

to contact glycan portions of the epitope. The structure solidifies

previous evidence that the 8ANC195 epitope spans gp120 and

gp41 (Scharf et al., 2014) and reveals details of extensive interac-

tions withN-linked glycans on both gp120 and gp41. Rather than

penetrating the glycan shield of HIV-1 Envwith only a single loop,

a strategy employed by Abs such as PG9 and PGT128 (McLellan

et al., 2011; Pejchal et al., 2011), 8ANC195 inserts its entire

variable region into a gap in the Env trimer glycan shield at the

interface of gp120 and gp41. 8ANC195 makes productive inter-

actions with gp120 glycans at Asn234gp120 and Asn276gp120,

since neutralization potency decreases when these glycosyla-

tion sites are knocked out (West et al., 2013). However, the

mature Ab appears to accommodate, rather than productively

contact, gp41 glycans, e.g., the Asn637gp41 glycan, since the

neutralization potency of 8ANC195 is not affected when this

glycan is removed despite the large contact area between the

Asn637gp41 glycan and 8ANC195G52K5.

In addition to recognizing both gp120 monomer and closed

Env trimer, we also provide SPR and EM evidence that

8ANC195 can bind to Env trimers complexed with sCD4 and

the CD4-induced Ab 17b. CD4 binding normally induces an

open state of both virion-bound and soluble HIV-1 Env trimers

involving rotation of gp120 subunits away from the center axis

of the trimer (Harris et al., 2011; Liu et al., 2008; Sanders et al.,

2013; Tran et al., 2012). However, despite recognizing an epitope

that spans the gp120-gp41 interface, a region thought to un-

dergo conformational changes upon CD4 binding to allow rota-

tion of the gp120 subunits, 8ANC195 binds CD4-bound Env

trimers with little to no decrease in affinity compared with closed,

non-CD4-bound trimers. 17b, which binds at the apex of Env

trimer, prevents reclosing of Env trimer that has opened upon

CD4 binding because three 17b Fabs cannot be accommodated

on a closed Env trimer (Figure 6A). Thus, our EM structure of a

partially open BG505 SOSIP-sCD4-17b-8ANC195 complex

suggests that 8ANC195 binding to fully open CD4-bound Env

trimers results in a conformational change toward the closed

state but that complete closure of the trimer is prevented by

steric clashing of 17b Fabs. Alternatively, when Env trimer is

bound to CD4, 8ANC195 could stabilize a partially open

conformation in equilibrium with fully open CD4-bound Env.

Taken together with our crystal structure showing a closed

8ANC195G52K5-bound trimer despite pre-incubation of trimer

with sCD4, the observation that the trimer in the BG505

SOSIP-sCD4-17b-8ANC195G52K5 complex is partially, rather

than fully, open implies that 8ANC195 prefers binding to the

closed trimer. This suggests that its mechanism of neutralization

likely involves preventing the complete conformational change

necessary for the trimer to bind co-receptor and/or expose the

fusion peptide and fuse with the target cell membrane.

Although our results suggest that 8ANC195 preferentially rec-

ognizes closed Env trimers, its ability to also recognize other

Env conformations suggests that 8ANC195 can neutralize virions

regardless of Env conformational state, including virions with
C

constitutively open spikes such as those found on CD4-indepen-

dent strains (White et al., 2010, 2011). It also suggests that,

in addition to neutralizing free virions, 8ANC195 could neutralize

virions already engaged by CD4 at a target cell membrane. This

is a useful property of an HIV-1 bNAb since Abs with these prop-

erties could inhibit cell-to-cell spread of HIV-1, which is most

effectively prevented by Abs that bind triggered Env conforma-

tions (Abela et al., 2012). Finally, recent evidence from single-

molecule FRET studies (Munro et al., 2014) and molecular ruler

measurements of virion-associated Env trimers (Galimidi et al.,

2015) suggests that Env on free virions can exhibit transitions

from the closed state to more open conformations; thus, recog-

nition of Env states other than the closed state should be useful

for neutralization of cell-bound as well as free virions.

The finding that the trimer in our BG505 SOSIP-sCD4-17b-

8ANC195G52K5 complex structure was partially, rather than fully,

open, as observed in previous CD4-, 17b-, and CD4/17b-bound

trimer structures (Harris et al., 2011; Liu et al., 2008; Sanders

et al., 2013; Tran et al., 2012), suggests that the trimer re-closed

somewhat upon 8ANC195 binding. This result implies more

structural plasticity of HIV-1 Env than previously assumed and

prompts reevaluation of current models for target cell fusion by

Env after CD4 engagement to address, for example, whether

the partially closed CD4-bound structure revealed in this

work can engage co-receptors. We hypothesize that, when

8ANC195 engages a CD4-bound (open) trimer, it partially reclo-

ses the trimer or captures and stabilizes a pre-existing confor-

mation because the complex with a partially open trimer is

more favorable for Ab binding. This reclosing of the trimer may

result in dissociation of CD4, either due to steric constraints on

partially open trimers or the relatively low affinity of sCD4 for

trimer (�600 nM) (Julien et al., 2013b). In stabilized soluble Env

trimers, 8ANC195 binding may result in complete re-closure of

the trimer, as observed in our BG505 SOSIP-8ANC195G52K5

crystal structure. This model suggests that CD4 engagement

of HIV-1 spike trimers does not lead to an immediate irreversible

conformational change but, rather, that the conformational

change is reversible as long as no major rearrangement of

gp41 has occurred. Alternatively, the highly stabilized design of

SOSIP trimers may be responsible for the apparent reversibility

of CD4-induced conformational changes. However, single-

molecule FRET experiments on HIV-1 virions showed that mem-

brane-bound Env trimers sample three distinct conformational

states in the absence of ligands and that ligands such as Abs

and CD4 only changed the sizes of the populations occupying

each state (Munro et al., 2014). The FRET study reported a

sequence of conformational changes in unbound trimer involving

transitions from closed to fully open, open to partially open, and

then partially open to closed, supporting our hypothesis that

membrane-bound Env trimers can re-close from a fully open

state spontaneously, a process that may be assisted by an Ab

that prefers to engage the closed state.

Combinations of bNAbs are being considered for treatment

and prevention of HIV-1 infection by passive delivery methods

because mixtures of active molecules (bNAbs or small molecule

drugs) are required to prevent the appearance of escape

mutants in a rapidly mutating virus such as HIV-1 (Horwitz

et al., 2013; Klein et al., 2012). Two or more bNAbs targeting
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different epitopes are favored because the virus is presumed

unable to mutate several potentially conserved sites simulta-

neously. In addition to targeting an epitope distinct from other

known bNAbs, 8ANC195 can accommodate different conforma-

tional states (including a CD4-bound state), making it an attrac-

tive candidate for use in combination therapies with bNAbs that

(1) cannot tolerate such changes, (2) are unable to engage a

CD4-bound open trimer, and/or (3) allow HIV-1 to spread

through cell-to-cell transmission, as is the case for potent

CD4-binding site Abs in the VRC01 family (Abela et al., 2012).

8ANC195 may also be a target for vaccine development since

it targets conserved regions on Env such as gp41 and the

Asn276gp120 glycan.

EXPERIMENTAL PROCEDURES

Detailed methods are provided in the Supplemental Experimental Procedures.

Protein Production and Purification

8ANC195, 8ANC195G52K5, 17b, PGT145, mG053, 2G12, CD4-Fc (domains 1

and 2 of human CD4 fused to human IgG1 Fc), human IgG1 Fc, and partially

gl-reverted IgGs and/or Fabs were produced by transient transfection and

purified using affinity chromatography and SEC, as described in previous

studies (Diskin et al., 2011; Scharf et al., 2014). sCD4 (domains 1 and 2; resi-

dues 1–186 of mature CD4) was produced in baculovirus-infected Hi5 insect

cells and was purified using affinity chromatography and SEC, as described

previously (Diskin et al., 2010; Scharf et al., 2014). Untagged BG505

SOSIP.664 was constructed, expressed, and purified as described (Sanders

et al., 2013). In brief, HEK293-6E cells treated with 5 mM kifunensine (Sigma)

were co-transfected with plasmids encoding BG505 SOSIP.664 and soluble

furin, and trimers were purified from cell supernatants using a 2G12 immunoaf-

finity chromatography and SEC.

Crystallization

Samples for crystallography were produced by incubating BG505 SOSIP with

a 3-fold molar excess of sCD4 and were purified by SEC. The resulting com-

plex was incubated with a 3-fold molar excess of 8ANC195G52K5 Fab and

purified by SEC. Crystals of 8ANC195G52K5 Fab-BG505 SOSIP (space group

P21; a = 117.74 Å, b = 195.22 Å, c = 119.09 Å; b = 101.6�) were obtained in

100mMTris (pH 8.0), 15%PEG 3,350, and 2%1,4-dioxane at 20�C and frozen

in liquid N2 after cryoprotection.

Crystallographic Data Collection, Structure Determination, and

Refinement

X-ray diffraction data were collected at the Argonne National Laboratory

Advanced Photon Source (APS) beamline 23-ID-D using a Pilatus3 6M detec-

tor and were processed using XDS (Kabsch, 2010). The structure was solved

by molecular replacement using a trimeric model of BG505 SOSIP (PDB:

4TVP) and three copies of 8ANC195 Fab (PDB: 4P9M). The model was refined

to 3.58 Å using Phenix (Adams et al., 2010) and manual model building in Coot

(Emsley and Cowtan, 2004). In the final model (Rwork = 24.1%; Rfree = 28.6%),

96%, 4%, and 0%of the residues were in the favored, allowed, and disallowed

regions, respectively, of the Ramachandran plot.

SPR

Experiments were performed using a Biacore T200 (Biacore). Protein A

coupled on a CM5 chip (Biacore) was used to immobilize capture proteins

(PGT145 IgG, PGT121 IgG, CD4-Fc, 17b IgG, 21C IgG, or mG053 IgG control),

followed by injection of human Fc to block remaining protein A binding sites.

BG505 SOSIP was subsequently injected and washed with running buffer

(HBS-EP+, GE Healthcare). 8ANC195, 8ANC195G52K5, and mutant/chimeric

Fabs were injected over flow cells at increasing concentrations (1.95 to

1,000 nM) at flow rates of 50 ml/min for 180 s and were allowed to dissociate

for 600 s. Flow cells were regenerated with one pulse each of 10 mM glycine
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(pH 2.5) and 1 M guanidine HCl at a flow rate of 90 ml/min. On/off rates

(ka/kd) and binding constants (KDs) were calculated by kinetic analyses after

subtraction of backgrounds using a 1:1 binding model with or without a bulk

reflective index (RI) correction as appropriate (Biacore T200 Evaluation

software).

Cryoelectron Tomography

Purified BG505 SOSIP-sCD4-17b-8ANC195G52K5 complexes were diluted

to 60 mg/ml in TBS immediately before plunge freezing to avoid complex disso-

ciation at low concentration. Quantifoil R2/2 NH2 copper finder grids were vitri-

fied in liquid ethane using a Mark IV Vitrobot (FEI Company) and Tilt series

(±60�, 1� angular increments) were collected on a FEI Tecnai G2 Polara trans-

mission electron microscope equipped with 300 keV FEG, a Gatan energy

filter, and aGatan K2 Summit direct detector using theUCSF tomography soft-

ware package (Zheng et al., 2007) under low-dose conditions (120 e–/Å2 total

for the tilt series at �8 mm underfocus) at a nominal magnification of 41,0003

so that each pixel represented 2.6 Å. Tomographic reconstructions and CTF

corrections were calculated using IMOD (Kremer et al., 1996). Subtomogram

averaging of 1,745 subvolumes was performed using PEET (Nicastro et al.,

2006) without an external reference or applying C3 symmetry, resulting in a

�23 Å structure estimated by a 0.143 gold-standard Fourier shell correlation

(FSC) calculated using IMOD (Kremer et al., 1996).

Negative-Stain Single-Particle EM

Purified BG505 SOSIP-sCD4-17b-8ANC195G52K5 complexes were diluted to

10 mg/ml in TBS immediately before adding 3 ml to a glow discharged ultrathin

C film on holey carbon support film, 400mesh, Cu grids (Ted Pella) followed by

cross-linking using glutaraldehyde vapor and staining with uranyl acetate.

Data were collected using a FEI Tecnai T12 transmission electron microscope

operating at 120 keV equipped with a Gatan Ultrascan 2k 3 2k CCD using a

0.5 s exposure time at a nominal magnification of 42,0003 at 1 mm defocus,

resulting in 2.5 Å per pixel. A total of 23,951 particles were picked using

EMAN2.1 (Tang et al., 2007) and RELION (Scheres, 2012), and the CTF correc-

tion was done using EMAN2.1. Initial reference-free 2D class averaging was

performed using RELION, and the particles were further sorted using 3D clas-

sification in RELION. Refinement was conducted using 80 Å low-pass-filtered

structures calculated from models of 8ANC195-sCD4-17b docked onto

gp120 cores of partially open (PDB: 3DNL) trimer and 7,174 particles with

C3 symmetry applied. The resolution of the final reconstruction was �17 Å

calculated with RELION (Scheres, 2012) using a gold-standard FSC and a

0.143 cutoff, as recommended for resolution estimations for single-particle

EM reconstructions (Scheres and Chen, 2012). Coordinates from crystal struc-

tureswere fit into the sub-tomogram averaged or negative-stain single-particle

EM structures using UCSF Chimera (Pettersen et al., 2004).
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Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N.,

Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010).

PHENIX: a comprehensive Python-based system for macromolecular struc-

ture solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.

Binley, J.M., Ban, Y.E., Crooks, E.T., Eggink, D., Osawa, K., Schief, W.R., and

Sanders, R.W. (2010). Role of complex carbohydrates in human immunodefi-

ciency virus type 1 infection and resistance to antibody neutralization. J. Virol.

84, 5637–5655.

Blattner, C., Lee, J.H., Sliepen, K., Derking, R., Falkowska, E., de la Peña, A.T.,

Cupo, A., Julien, J.P., van Gils, M., Lee, P.S., et al. (2014). Structural delinea-

tion of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface

on intact HIV-1 Env trimers. Immunity 40, 669–680.

Capon, D.J., Chamow, S.M., Mordenti, J., Marsters, S.A., Gregory, T., Mit-

suya, H., Byrn, R.A., Lucas, C., Wurm, F.M., Groopman, J.E., et al. (1989).

Designing CD4 immunoadhesins for AIDS therapy. Nature 337, 525–531.

Caskey, M., Klein, F., Lorenzi, J.C., Seaman, M.S., West, A.P., Jr., Buckley, N.,

Kremer, G., Nogueira, L., Braunschweig, M., Scheid, J.F., et al. (2015). Virae-

mia suppressed in HIV-1-infected humans by broadly neutralizing antibody

3BNC117. Nature 522, 487–491.

Derking, R., Ozorowski, G., Sliepen, K., Yasmeen, A., Cupo, A., Torres, J.L.,

Julien, J.P., Lee, J.H., van Montfort, T., de Taeye, S.W., et al. (2015). Compre-

hensive antigenic map of a cleaved soluble HIV-1 envelope trimer. PLoS

Pathog. 11, e1004767.

Diskin, R., Marcovecchio, P.M., and Bjorkman, P.J. (2010). Structure of a clade

C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4

polyreactivity. Nat. Struct. Mol. Biol. 17, 608–613.

Diskin, R., Scheid, J.F., Marcovecchio, P.M., West, A.P., Jr., Klein, F., Gao, H.,

Gnanapragasam, P.N., Abadir, A., Seaman, M.S., Nussenzweig, M.C., and

Bjorkman, P.J. (2011). Increasing the potency and breadth of an HIV antibody

by using structure-based rational design. Science 334, 1289–1293.

Elbein, A.D., Tropea, J.E., Mitchell, M., and Kaushal, G.P. (1990). Kifunensine,

a potent inhibitor of the glycoprotein processing mannosidase I. J. Biol. Chem.

265, 15599–15605.
C

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular

graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

Galimidi, R.P., Klein, J.S., Politzer, M.S., Bai, S., Seaman, M.S., Nussenzweig,

M.C., West, A.P., Jr., and Bjorkman, P.J. (2015). Intra-spike crosslinking over-

comes antibody evasion by HIV-1. Cell 160, 433–446.

Go, E.P., Hewawasam, G., Liao, H.X., Chen, H., Ping, L.H., Anderson, J.A.,

Hua, D.C., Haynes, B.F., and Desaire, H. (2011). Characterization of glycosyl-

ation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry.

J. Virol. 85, 8270–8284.

Guttman, M., Cupo, A., Julien, J.P., Sanders, R.W., Wilson, I.A., Moore, J.P.,

and Lee, K.K. (2015). Antibody potency relates to the ability to recognize the

closed, pre-fusion form of HIV Env. Nat. Commun. 6, 6144.

Harris, A., Borgnia, M.J., Shi, D., Bartesaghi, A., He, H., Pejchal, R., Kang, Y.K.,

Depetris, R., Marozsan, A.J., Sanders, R.W., et al. (2011). Trimeric HIV-1

glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins

display the same closed and open quaternary molecular architectures. Proc.

Natl. Acad. Sci. USA 108, 11440–11445.

Horwitz, J.A., Halper-Stromberg, A., Mouquet, H., Gitlin, A.D., Tretiakova, A.,

Eisenreich, T.R., Malbec, M., Gravemann, S., Billerbeck, E., Dorner, M., et al.

(2013). HIV-1 suppression and durable control by combining single broadly

neutralizing antibodies and antiretroviral drugs in humanized mice. Proc.

Natl. Acad. Sci. USA 110, 16538–16543.

Huang, J., Kang, B.H., Pancera, M., Lee, J.H., Tong, T., Feng, Y., Imamichi, H.,

Georgiev, I.S., Chuang, G.Y., Druz, A., et al. (2014). Broad and potent HIV-1

neutralization by a human antibody that binds the gp41-gp120 interface.

Nature 515, 138–142.

Jones, S., and Thornton, J.M. (1996). Principles of protein-protein interactions.

Proc. Natl. Acad. Sci. USA 93, 13–20.

Julien, J.P., Cupo, A., Sok, D., Stanfield, R.L., Lyumkis, D., Deller, M.C.,

Klasse, P.J., Burton, D.R., Sanders, R.W., Moore, J.P., et al. (2013a). Crystal

structure of a soluble cleaved HIV-1 envelope trimer. Science 342, 1477–1483.

Julien, J.P., Sok, D., Khayat, R., Lee, J.H., Doores, K.J., Walker, L.M., Ramos,

A., Diwanji, D.C., Pejchal, R., Cupo, A., et al. (2013b). Broadly neutralizing anti-

body PGT121 allosterically modulatesCD4 binding via recognition of the HIV-1

gp120 V3 base and multiple surrounding glycans. PLoS Pathog. 9, e1003342.

Kabsch, W. (2010). Integration, scaling, space-group assignment and post-

refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144.

Klein, F., Halper-Stromberg, A., Horwitz, J.A., Gruell, H., Scheid, J.F., Bourna-

zos, S., Mouquet, H., Spatz, L.A., Diskin, R., Abadir, A., et al. (2012). HIV ther-

apy by a combination of broadly neutralizing antibodies in humanized mice.

Nature 492, 118–122.

Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R. (1996). Computer visual-

ization of three-dimensional image data using IMOD. J. Struct. Biol. 116,

71–76.

Kwon, Y.D., Finzi, A., Wu, X., Dogo-Isonagie, C., Lee, L.K., Moore, L.R.,

Schmidt, S.D., Stuckey, J., Yang, Y., Zhou, T., et al. (2012). Unliganded

HIV-1 gp120 core structures assume the CD4-bound conformation with regu-

lation by quaternary interactions and variable loops. Proc. Natl. Acad. Sci. USA

109, 5663–5668.

Do Kwon, Y., Pancera, M., Acharya, P., Georgiev, I.S., Crooks, E.T., Gorman,

J., Joyce, M.G., Guttman, M., Ma, X., Narpala, S., et al. (2015). Crystal struc-

ture, conformational fixation and entry-related interactions of mature ligand-

free HIV-1 Env. Nat. Struct. Mol. Biol. 22, 522–531.

Liu, J., Bartesaghi, A., Borgnia, M.J., Sapiro, G., and Subramaniam, S. (2008).

Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113.

Lyumkis, D., Julien, J.P., de Val, N., Cupo, A., Potter, C.S., Klasse, P.J., Bur-

ton, D.R., Sanders, R.W., Moore, J.P., Carragher, B., et al. (2013). Cryo-EM

structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Sci-

ence 342, 1484–1490.

McLellan, J.S., Pancera, M., Carrico, C., Gorman, J., Julien, J.P., Khayat, R.,

Louder, R., Pejchal, R., Sastry, M., Dai, K., et al. (2011). Structure of HIV-1

gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480,

336–343.
ell 162, 1379–1390, September 10, 2015 ª2015 Elsevier Inc. 1389

http://refhub.elsevier.com/S0092-8674(15)01087-9/sref1
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref1
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref1
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref2
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref2
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref2
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref2
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref3
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref3
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref3
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref3
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref4
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref4
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref4
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref4
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref5
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref5
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref5
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref6
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref6
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref6
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref6
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref7
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref7
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref7
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref7
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref8
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref8
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref8
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref9
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref9
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref9
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref9
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref10
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref10
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref10
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref11
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref11
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref12
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref12
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref12
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref13
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref13
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref13
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref13
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref14
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref14
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref14
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref15
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref15
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref15
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref15
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref15
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref16
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref16
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref16
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref16
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref16
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref17
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref17
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref17
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref17
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref18
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref18
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref19
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref19
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref19
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref20
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref20
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref20
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref20
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref21
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref21
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref22
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref22
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref22
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref22
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref23
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref23
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref23
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref24
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref24
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref24
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref24
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref24
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref25
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref25
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref25
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref25
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref26
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref26
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref27
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref27
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref27
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref27
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref28
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref28
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref28
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref28


Merk, A., and Subramaniam, S. (2013). HIV-1 envelope glycoprotein structure.

Curr. Opin. Struct. Biol. 23, 268–276.

Mouquet, H., Scharf, L., Euler, Z., Liu, Y., Eden, C., Scheid, J.F., Halper-Strom-

berg, A., Gnanapragasam, P.N., Spencer, D.I., Seaman, M.S., et al. (2012).

Complex-type N-glycan recognition by potent broadly neutralizing HIV anti-

bodies. Proc. Natl. Acad. Sci. USA 109, E3268–E3277.

Munro, J.B., Gorman, J., Ma, X., Zhou, Z., Arthos, J., Burton, D.R., Koff, W.C.,

Courter, J.R., Smith, A.B., 3rd, Kwong, P.D., et al. (2014). Conformational

dynamics of single HIV-1 envelope trimers on the surface of native virions. Sci-

ence 346, 759–763.

Nicastro, D., Schwartz, C., Pierson, J., Gaudette, R., Porter, M.E., and McIn-

tosh, J.R. (2006). The molecular architecture of axonemes revealed by cryoe-

lectron tomography. Science 313, 944–948.

Pancera, M., Zhou, T., Druz, A., Georgiev, I.S., Soto, C., Gorman, J., Huang, J.,

Acharya, P., Chuang, G.Y., Ofek, G., et al. (2014). Structure and immune

recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461.

Pejchal, R., Doores, K.J., Walker, L.M., Khayat, R., Huang, P.S., Wang, S.K.,

Stanfield, R.L., Julien, J.P., Ramos, A., Crispin, M., et al. (2011). A potent

and broad neutralizing antibody recognizes and penetrates the HIV glycan

shield. Science 334, 1097–1103.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M.,

Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera–a visualization system

for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

Pugach, P., Ozorowski, G., Cupo, A., Ringe, R., Yasmeen, A., de Val, N., Derk-

ing, R., Kim, H.J., Korzun, J., Golabek, M., et al. (2015). A native-like SO-

SIP.664 trimer based on an HIV-1 subtype B env gene. J. Virol. 89, 3380–3395.

Sanders, R.W., Derking, R., Cupo, A., Julien, J.P., Yasmeen, A., de Val, N.,

Kim, H.J., Blattner, C., de la Peña, A.T., Korzun, J., et al. (2013). A next-gener-

ation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses

multiple epitopes for broadly neutralizing but not non-neutralizing antibodies.

PLoS Pathog. 9, e1003618.

Scharf, L., Scheid, J.F., Lee, J.H., West, A.P., Jr., Chen, C., Gao, H., Gnanap-

ragasam, P.N., Mares, R., Seaman, M.S., Ward, A.B., et al. (2014). Antibody

8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike.

Cell Rep. 7, 785–795.

Scheid, J.F., Mouquet, H., Ueberheide, B., Diskin, R., Klein, F., Oliveira, T.Y.,

Pietzsch, J., Fenyo, D., Abadir, A., Velinzon, K., et al. (2011). Sequence and

structural convergence of broad and potent HIV antibodies that mimic CD4

binding. Science 333, 1633–1637.
1390 Cell 162, 1379–1390, September 10, 2015 ª2015 Elsevier Inc.
Scheres, S.H. (2012). RELION: implementation of a Bayesian approach to

cryo-EM structure determination. J. Struct. Biol. 180, 519–530.

Scheres, S.H., and Chen, S. (2012). Prevention of overfitting in cryo-EM struc-

ture determination. Nat. Methods 9, 853–854.

Sullivan, N., Sun, Y., Sattentau, Q., Thali, M., Wu, D., Denisova, G., Gershoni,

J., Robinson, J., Moore, J., and Sodroski, J. (1998). CD4-Induced conforma-

tional changes in the human immunodeficiency virus type 1 gp120 glycopro-

tein: consequences for virus entry and neutralization. J. Virol. 72, 4694–4703.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke,

S.J. (2007). EMAN2: an extensible image processing suite for electron micro-

scopy. J. Struct. Biol. 157, 38–46.

Tran, E.E., Borgnia, M.J., Kuybeda, O., Schauder, D.M., Bartesaghi, A., Frank,

G.A., Sapiro, G., Milne, J.L., and Subramaniam, S. (2012). Structural mecha-

nism of trimeric HIV-1 envelope glycoprotein activation. PLoS Pathog. 8,

e1002797.

West, A.P., Jr., Scharf, L., Horwitz, J., Klein, F., Nussenzweig, M.C., and Bjork-

man, P.J. (2013). Computational analysis of anti-HIV-1 antibody neutralization

panel data to identify potential functional epitope residues. Proc. Natl. Acad.

Sci. USA 110, 10598–10603.

West, A.P., Jr., Scharf, L., Scheid, J.F., Klein, F., Bjorkman, P.J., and Nussenz-

weig, M.C. (2014). Structural insights on the role of antibodies in HIV-1 vaccine

and therapy. Cell 156, 633–648.

White, T.A., Bartesaghi, A., Borgnia, M.J., Meyerson, J.R., de la Cruz, M.J.,

Bess, J.W., Nandwani, R., Hoxie, J.A., Lifson, J.D., Milne, J.L., and Subrama-

niam, S. (2010). Molecular architectures of trimeric SIV and HIV-1 envelope

glycoproteins on intact viruses: strain-dependent variation in quaternary struc-

ture. PLoS Pathog. 6, e1001249.

White, T.A., Bartesaghi, A., Borgnia, M.J., de la Cruz, M.J., Nandwani, R.,

Hoxie, J.A., Bess, J.W., Lifson, J.D., Milne, J.L., and Subramaniam, S.

(2011). Three-dimensional structures of soluble CD4-bound states of trimeric

simian immunodeficiency virus envelope glycoproteins determined by using

cryo-electron tomography. J. Virol. 85, 12114–12123.

Xiang, S.H., Doka, N., Choudhary, R.K., Sodroski, J., and Robinson, J.E.

(2002). Characterization of CD4-induced epitopes on the HIV type 1 gp120

envelope glycoprotein recognized by neutralizing human monoclonal anti-

bodies. AIDS Res. Hum. Retroviruses 18, 1207–1217.

Zheng, S.Q., Keszthelyi, B., Branlund, E., Lyle, J.M., Braunfeld, M.B., Sedat,

J.W., and Agard, D.A. (2007). UCSF tomography: an integrated software suite

for real-time electron microscopic tomographic data collection, alignment,

and reconstruction. J. Struct. Biol. 157, 138–147.

http://refhub.elsevier.com/S0092-8674(15)01087-9/sref29
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref29
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref30
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref30
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref30
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref30
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref31
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref31
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref31
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref31
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref32
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref32
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref32
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref33
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref33
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref33
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref34
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref34
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref34
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref34
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref35
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref35
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref35
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref36
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref36
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref36
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref37
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref37
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref37
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref37
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref37
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref38
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref38
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref38
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref38
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref39
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref39
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref39
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref39
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref40
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref40
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref41
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref41
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref42
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref42
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref42
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref42
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref43
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref43
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref43
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref44
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref44
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref44
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref44
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref45
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref45
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref45
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref45
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref46
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref46
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref46
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref47
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref47
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref47
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref47
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref47
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref48
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref48
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref48
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref48
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref48
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref49
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref49
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref49
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref49
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref50
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref50
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref50
http://refhub.elsevier.com/S0092-8674(15)01087-9/sref50

	Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env
	Introduction
	Results
	Characterization of Complete 8ANC195 Epitope in the Context of HIV-1 Env Trimer
	Effects of N-Linked Glycans Attached to gp41 on Neutralization by 8ANC195
	8ANC195 Binds CD4-Bound Env Trimers
	8ANC195 Recognizes a Partially Open Env Trimer in the Presence of sCD4 and 17b

	Discussion
	Experimental Procedures
	Protein Production and Purification
	Crystallization
	Crystallographic Data Collection, Structure Determination, and Refinement
	SPR
	Cryoelectron Tomography
	Negative-Stain Single-Particle EM

	Accession Numbers
	Supplemental Information
	Author Contributons
	Acknowledgments
	References


