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Since their discovery, bacteriophages have contributed

enormously to our understanding of molecular biology as

model systems. Furthermore, bacteriophages have provided

many tools that have advanced the fields of genetic

engineering and synthetic biology. Here, we discuss

bacteriophage-based technologies and their application to the

study of infectious diseases. New strategies for engineering

genomes have the potential to accelerate the design of novel

phages as therapies, diagnostics, and tools. Though almost a

century has elapsed since their discovery, bacteriophages

continue to have a major impact on modern biological

sciences, especially with the growth of multidrug-resistant

bacteria and interest in the microbiome.
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Background
With the discovery of bacteriophages generally being

credited to Frederick Twort [1] and Felix d’Hérelle [2]

in the early 20th century, these virus particles were so

named (Greek, ‘bacteria eaters’) based on their observed

ability to lyse bacterial cells. The use of naturally occur-

ring phages as therapeutics for the treatment of bacterial

infections was quickly realized by d’Hérelle and others,

with interest continuing to flourish until the discovery and

production of penicillin [2–4]. Antibiotics heralded a new

age of effective small molecule treatments for bacterial

infections, with phage therapy falling out of favor in the
www.sciencedirect.com 
Western World [5,6]. Though phages have remained an

important tool in the study of molecular biology, genetics,

and bacteria [7], concerns over the ever-dwindling arsenal

of antibiotics for the treatment of multidrug-resistant

bacterial pathogens have also resulted in a renaissance

in phage studies and in phage-based therapies as a means

to develop alternative therapeutics [8–11]. Correspond-

ingly, advances in synthetic biology have refined the

ability to design, modify, and synthesize these viruses,

which has enabled novel strategies for creating bacterio-

phage-based tools for the study and treatment of infec-

tious diseases. The goal of this review is to explore the

methods and demonstrations by which such tools can be

employed to engineer modified phage and phage parts.

For more information concerning the history, appli-

cations, and challenges of phage therapy using natural,

unmodified viruses, the reader is referred to other reviews

[12–15].

Synthetic biology aims to rationally engineer new func-

tionalities in living systems by co-opting and modifying

biomolecules crafted from millennia of evolution [16–18].

Cells operate as highly complex computational systems

able to dynamically interrogate and respond to their envi-

ronment. For the past decade, synthetic biologists have laid

the foundational rules of biological design [19], constructed

a catalog of standardized genetic parts, and assembled

simple circuits, such as oscillators [20], switches [21],

and Boolean logic gates [22��,23�]. Rational engineering

has yielded cellular devices able to produce potent anti-

malarial compounds [24], to detect and kill pathogenic

bacteria [25] and cancer cells [26], to reprogram cell fate

[27], and to treat metabolic syndrome [28]. Finally,

advancements in DNA synthesis and assembly have

enabled the rapid development of higher-order genetic

circuits [29–31] of medical [32] and industrial [33,34]

relevance. This field has been accelerated by phage-

derived technologies, while concomitantly enabling new

approaches to engineering phages themselves.

Phage-enabled technologies
Phage display

Described by Smith in 1985 [35], phage display is a

methodology employed extensively in both the study

of infectious diseases and the development of novel

therapeutics. Libraries comprising synthetic random pep-

tides or natural peptides derived from pathogen genomic

or cDNA are fused with a coat protein of a bacteriophage,

often M13, Fd, or l, such that the peptide is displayed on

the phage surface. Iterative selection steps are employed
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to enrich for phage particles that bind with high affinity to

an immobilized target molecule of interest, which are

then eluted and propagated in Escherichia coli. Since the

identity of the displayed peptide is genetically encoded

in the phage genome, protein–ligand interactions can be

screened in high-throughput to identify molecules with

novel biological functions. Phage display has enabled the

discovery and characterization of bacterial adhesins

[36,37], which bind to receptors on host cells or extra-

cellular matrix and are implicated in establishing infec-

tion, as well as antigens used for vaccine development

[38]. Moreover, bioactive peptides that block anthrax

toxin binding [39] or inhibit cell wall biosynthesis

enzymes in Pseudomonas aeruginosa [40] were isolated

from phage display libraries. Development of antibody-

based therapeutics has also greatly benefited from the

technology, which can be implemented to rapidly screen

random libraries of antigen-binding domains [41]. In a

demonstration of direct therapeutic application, phage

particles selected for high affinity interaction to Staphy-
lococcus aureus were conjugated to chloramphenicol pro-

drugs to deliver localized, lethal payloads [42]. The

applications of phage display are vast and the reader is

referred to other literature [43–48] for a more thorough

discussion of additional examples.

Bacteriophage-derived parts for synthetic biology

Bacteriophages have formed the backbone of molecular

biology, having championed the demonstration of DNA

as genetic material [49], the proof of Darwinian natural

selection [50], and the ubiquitous use of phage-derived

enzymes for common laboratory protocols [51]. Similarly,

bacteriophage components constitute a core set of parts in
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the toolbox of a synthetic biologist. The DNA-dependent

RNA polymerase of T7 can specifically drive high-level

transcription from the T7 promoter (PT7) both in vitro and

in vivo. The polymerase has been used to reconstitute in
vitro genetic circuits [52], such as switches [53] and

oscillators [54], which permit precise mathematical mod-

eling of biological reactions to inform future predictive

design. Moreover, libraries of orthogonal T7 and PT7

variants, which exhibit lower toxicity [55] or are split into

parts to function as AND gates [56�] (Figure 1a and b),

have been constructed to permit higher-order construc-

tion of artificial genetic circuits. For example, an AND

gate that only outputs a Boolean TRUE value when both

inputs are TRUE can be implemented by having an

output gene that is only expressed when both parts of

a split T7 RNA polymerase are expressed. When coupled

with orthogonal ribosomes that do not translate host

mRNAs, a fully insulated transcription-translation net-

work was constructed in E. coli for protein expression [57].

Furthermore, bacteriophage recombinases have been

used in the construction of genetic circuits that record

memory of past reactions [58] (Figure 1c). Recombinases

manipulate DNA by recognizing specific sequences and

catalyzing the excision, integration, or inversion of DNA

segments depending on the location and orientation of

the recognition sites. Thus, recombinase expression is

coupled with a physical change in genetic material of the

cell that can be sequenced to assay exposure to past

events. The Cre, Bxb1, and PhiC31 recombinases have

been used in the construction of a variety of synthetic circuits

including counters [59], a rewritable memory module

[60], Boolean logic gates [22��,23�], and digital-to-analog
Output

Output
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al cells. (a) Truth table for AND gate function. An AND gate has a TRUE

t as a transcriptional AND gate. Inputs A and B, which can be exogenous

ression of the N-terminal and C-terminal halves of T7 RNA polymerase,

lymerase that can drive production of the output gene [56�]. (c)

ate functionality with integrated memory. Recombinase activity leads to

. Activation of Bxb1 and PhiC31 leads to inversion of two unidirectional

gene [22��].
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converters [22��]. Since these recombinases do not require

additional host factors, genetic circuits founded on their

activity could theoretically function in a wide range of

infectious hosts to permit recording of gene expression in

various environments.

Genome engineering

In addition to tools for classical molecular biology, phage-

derived enzymes and technologies have led to genome-

scale engineering techniques critical to the tailoring of

strains for specific applications. Recombineering is a

powerful technique that uses homologous recombination

to introduce highly targeted modifications, insertions, or

deletions to loci within cells. This technique has been

enabled through the transformation of DNA products

bearing flanking homology to target sequences in con-

junction with the highly active Red recombination system

from phage l. It has been applied toward modifications in

a variety of Gram-negative bacteria [61], including E. coli
[62], Salmonella enterica [63], Shigella flexneri [64], Vibrio
cholerae [65], Yersinia pestis [66], and P. aeruginosa [67].

A system with the potential for high-efficiency modifi-

cations in a large range of bacteria, including both Gram-

positive and Gram-negative examples, has recently been

described by combining broad-host mobile group II

introns, or ‘targetrons,’ with the widely used Cre/lox
recombination system from phage P1 [68��]. This tech-

nique, known as Genome Editing via Targetrons and

Recombinases (GETR), involves first targeting introns

containing loxP-derived sites to a specific location in a

bacterial genome and subsequently using Cre recombi-

nase to catalyze recombination between loxP sites on the

chromosome and on a targeted construct. This technique

can be used to achieve insertions, deletions, inversions, or

even relocation of a chromosomal locus, depending on the

design of the sites and constructs. Mutations in the wild-

type loxP sequence allow for control of directionality of

recombination as well as the generation of orthogonal

sites permitting GETR to be used at multiple loci with-

out crosstalk [68��,69].

Accelerating evolution

An important extension of genome-editing techniques

has been the development of multiplex automated gen-

ome engineering (MAGE), a technique for generating

genetic diversity through the iterative process of l-Red

protein b-mediated recombineering with a pool of short,

ssDNA oligonucleotides targeting a single or multiple

genomic loci. In the initial study published by Wang et al.
[70], MAGE was used to generate a mutant strain of E. coli
with increased production of lycopene using oligonucleo-

tides designed to simultaneously target 24 genetic com-

ponents. Automating the growth, transformation, and

recovery phases of the procedure has the potential to

enable hands-free rapid evolution of a population. Along

with specialized genome assembly techniques, MAGE
www.sciencedirect.com 
was used to recode all UAG stop codons from a strain of E.
coli in order to generate a free, customizable codon

(UAG), thus demonstrating the potential capacity to edit

the genetic code in engineered organisms [71,72��]. MA-

GE presents additional opportunities as a tool for infec-

tious disease research by enabling the rapid optimization

of antimicrobial gene circuits or as a means for introducing

diversity into organisms and mapping out their evolution-

ary trajectories. Similarly, MAGE could be applied

toward evolving improved or even novel functions in

bacteriophages by diversifying key phage proteins, such

as host recognition elements.

Phage-assisted continuous evolution (PACE) as intro-

duced by Esvelt et al. [73] is another stride in accelerated

evolution enabled by phage-based technology. In PACE,

the life cycle of the filamentous phage M13 is linked with

an activity of interest to be evolved, which is used to drive

production of pIII, the minor coat protein required for

adsorption of infectious phage particles to the cognate

receptor on recipient cells (Figure 2). This technique was

first used to evolve T7 RNA polymerase variants with

new properties, such as the ability to recognize novel

promoter sequences, by replacing the gene encoding pIII

on the phage genome with the gene for T7 RNA poly-

merase and moving pIII expression under the control of a

target promoter on a heterologous plasmid. In this way, a

mutant T7 RNA polymerase with an improved ability to

initiate transcription from the target promoter results in

increased pIII production and a higher titer of infectious

phages. As with MAGE, the PACE platform enables

automated evolution, this time by maintaining productive

phage in continuous culture within a lagoon with a con-

stant inflow of fresh bacterial cells and an outflow ensur-

ing removal of non-propagative phage variants. PACE has

been used to explore how different parameters affect the

pathways of genotypic and phenotypic divergence and

convergence, contributing toward understanding how

evolution acts on single genes and potentially improving

the optimization of future engineering efforts [74�,75].

Phage-enabled therapies and diagnostics
Antimicrobial phages

Rather than entirely redesigning or repurposing isolated

phages, some engineering efforts in synthetic biology

have been made toward adding functions or improving

existing phages. For example, Lu and Collins [76] incorp-

orated the gene encoding DspB, an enzyme that degrades

a polysaccharide adhesin implicated in biofilm formation,

into an engineered T7 phage. This modified phage

effectively cleared E. coli biofilms through cycles of in-

fection, phage-mediated lysis, and release of the recom-

binant dispersin enzyme to enzymatically degrade the

biofilm material itself and expose protected cells.

Additionally, the phage was modified to carry a gene

from phage T3 in order to expand its host range and

permit infection of the biofilm-forming strain used in the
Current Opinion in Microbiology 2014, 19:59–69
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Phage-assisted continuous evolution. In phage-assisted continuous evolution (PACE), the protein activity of interest is linked to expression of the M13

coat protein pIII, which is required for binding and initiation of the phage infection cycle [73]. Within infected cells (top), the protein of interest is

expressed from the injected M13 genome and successful target activity drives expression of gene III on the accessory plasmid, permitting the

assembly of infectious phage progeny that can be further amplified and selected through subsequent rounds of infection (left). In the example shown

here, the protein of interest is T7 RNA polymerase (T7 RNAP), which can successfully drive production of gene III only if it recognizes the promoter that

controls gene III expression, thus enabling the evolution of T7 RNAP variants that can target new promoter sequences. If activity is insufficient to drive

expression of the coat protein, progeny will be non-infectious and fail to amplify. The target protein is evolved in a continuous fashion in the ‘lagoon’

(bottom), where the encoding infectious phages continually amplify via the input of fresh cells, while non-infectious particles fail to infect new cells and

are removed in the outflow.
study. However, despite the promise of phage thera-

peutics, bacteria can display resistance toward phages

through innate means, such as restriction-modification

systems [77,78], as well as adaptive means, typified by

clustered regularly interspaced short palindromic repeats

(CRISPR)-CRISPR-associated (Cas) systems [79]. More-

over, mechanisms may emerge in a bacterial population

during the course of selective pressure by phages, in-

cluding phenotypic [80] and genotypic [81] causes of

decreased phage adsorption, among others [82]. These

hurdles may be tackled through the use of phage cocktails

[83], high-throughput phage evolution, or perhaps, given
Current Opinion in Microbiology 2014, 19:59–69 
predictable evolutionary pathways, through the rational

engineering of phages [10].

In contrast to taking advantage of a phage’s natural ability

to lyse a target cell, some studies have focused on using

virus particles for their capacity to deliver nucleic acids to

target cells. Such an approach was taken by Westwater

et al. [84], in which the group utilized the non-lytic,

filamentous phage M13 to deliver specialized phagemid

DNA in place of the phage genome to target cells. The

engineered phagemids (plasmids carrying signals to

enable packaging into phage particles) were designed
www.sciencedirect.com
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to encode the addiction toxins Gef and ChpBK to elicit

destruction of target cells. Hagens and Bläsi [85] also

applied this toxic payload concept using M13 to deliver

genes encoding the restriction enzyme BglII or the l S
holin to kill target E. coli by the introduction of double-

stranded breaks in the chromosome or the creation of

cytoplasmic membrane lesions, respectively. Sub-

sequently, delivery of BglII was used to rescue mice

infected with P. aeruginosa by adapting the system with

an engineered derivative of the P. aeruginosa filamentous

phage Pf3 [86]. These methods also resulted in a marked

decrease in release of endotoxin, one of the major con-

cerns with lytic phage therapy [15], as compared to killing

via lysis by a lytic phage [85,86]. More recently, M13-

derived particles were used to express a lethal mutant of

catabolite activator protein in E. coli O157:H7, a food-

borne pathogen that causes outbreaks of hemorrhagic

colitis [87]. Biotechnology companies have also begun

to make use of recombinant phage methods, such as virus-

like particles that deliver genes encoding small, acid-

soluble proteins to cause toxicity to target cells through

non-specific binding to DNA [88].
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Phage-based delivery of antibiotic-sensitizing cassettes

Rather than encoding killing functions directly within

phage particles, Edgar et al. [89�] used phage l as a chassis

to generate antibiotic-resensitizing particles through the

delivery of dominant wild-type copies of rpsL and gyrA
(Figure 3a). The transduction of these genes into target

cells resistant to streptomycin and fluoroquinolones, con-

ferred by mutations in rpsL and gyrA, respectively,

resulted in the production of wild-type enzymes suscept-

ible to the formerly ineffective drugs. In another demon-

stration, Lu and Collins [90] engineered M13 to carry

genes encoding transcription factors that modify the

native regulation of bacterial gene networks

(Figure 3b). Constructs encoding the LexA3 repressor

or SoxR regulator were used to disable the SOS response

and DNA repair or to modulate the response to oxidative

stress in target cells, respectively, thus potentiating the

toxic effects of antibiotic treatment and even resensitiz-

ing a resistant bacterial strain. A dual-function phage was

also created and validated by using M13 harboring the

global regulator csrA, to inhibit biofilm formation and the

associated increase in antibiotic resistance, and the porin
M13
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teriophage such as the temperate phage l (a) and the filamentous phage

y of dominant sensitive genes encoding wild-type enzymes such as gyrA

nce had previously been conferred by mutations in these genes [89�]. (b)

ia, such as the SOS response normally induced in order to respond to

 inhibit the SOS response and resensitize cells to some antibiotics as well

Current Opinion in Microbiology 2014, 19:59–69
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ompF , to improve drug penetration. Examples such as

these demonstrate the capacity for bacteriophages to be

engineered as gene delivery devices in order to perturb

genetic networks in bacteria for both research and thera-

peutic applications. With this approach, one can alter a

gene network at a particular node and observe the qual-

itative and quantitative effects in order to better charac-

terize native regulatory systems. As models of the

interactions in complex regulatory webs of pathogens

grow increasingly robust, the ability to know which

strands to tug to elicit desired effects may enable ration-

ally designed novel therapeutics based on predictable

behaviors.

Genome mining for therapeutics

The development and improvement of next-generation

sequencing technology has enabled genomic and meta-

genomic analyses of phage populations [91,92]. For

example, sequencing of gut viral metagenomes has impli-

cated phages as reservoirs of antibiotic-resistance genes

[93��] and their role in influencing the intestinal micro-

biota has been of recent interest [94]. Since bacterio-

phages must encode mechanisms to control their host

cells in order to infect, divert cellular resources to pro-

pagate, build progeny phages, and, in many cases, lyse

their hosts to release new particles, phage genomes con-

stitute a vast library of parts that can be used to manip-

ulate bacteria for study or treatment. On the basis of this

concept, Liu and colleagues [95] developed a method for

mining such tools to generate novel therapeutics against

S. aureus. Predicted phage open reading frames were

cloned with inducible expression into the target strain

and screened for growth-inhibitory properties. Identified

phage proteins were used to pull bacterial targets out of

cell lysates and a library of small molecules was screened

to identify inhibitors of the protein–protein interaction,

with the hypothesis that these molecules might demon-

strate similar modulatory action on the host target. In this

way, the authors identified novel compounds capable of

inhibiting the initiation of bacterial DNA replication in

analogy with the phage proteins. Since currently available

drugs that target replication only act on topoisomerases,

this work demonstrates that mining phage proteins long

evolved to inhibit bacterial processes has the potential to

expand the antibiotic repertoire by leading us to discover

drugs against previously unused targets [95,96].

In addition to random-discovery screens, phage lysins

have been specifically investigated in recent years as

potential antimicrobials. These enzymes are employed

by bacteriophages to degrade the bacterial cell wall and

permit the release of progeny phages [97]. In another

functional metagenomic study, phage DNA was isolated

from a mixture of feces from nine animal species, cloned

into a shotgun library for inducible expression in E. coli,
and used in primary and secondary screens to detect

lysins from the phage DNA pool [98]. As a discovery
Current Opinion in Microbiology 2014, 19:59–69 
tool, a specific lysin from a phage of Bacillus anthracis
was used to develop a novel antimicrobial by identifying

an enzyme involved in the production of the lysin target

and designing a cognate chemical inhibitor [99]. Though

lysins are considered useful antimicrobials for Gram-

positive pathogens, Gram-negative bacteria possess an

outer membrane that prevents access of these extra-

cellular enzymes to the cell wall [100]. To overcome this

barrier, a chimeric protein composed of the translocation

domain of the Yersinia pestis bacteriocin, pesticin, and

the enzymatic domain of lysozyme from the E. coli
phage T4 was engineered. The hybrid bacteriocin

was shown to be active against E. coli and Y. pestis
strains, including those expressing the cognate immu-

nity protein conferring resistance to unmodified pesticin

[101�,102].

Detection of pathogens

Bacteriophages have also been used to implement real-

world applications of biosensing [103–107]. In areas from

healthcare and hospital surfaces to food preparation and

other industrial processes, methods for the rapid detec-

tion of pathogenic organisms are paramount in preventing

disease and avoiding the public relations and financial

burdens of recalling contaminated products. The amount

of time necessary for many conventional detection

methods is long due to the requirement for bacterial

enrichment before detection of the few bacteria present

in complex samples in order to achieve sufficient assay

sensitivity and specificity [108]. Engineered bacterio-

phage-based detectors have the advantage of rapid read-

outs, high sensitivity and specificity, and detection of live

cells [109]. A common design strategy is the creation of

reporter-based constructs packaged within phage or

phage-like particles that infect target cells and ultimately

result in the production of fluorescent, colorimetric, or

luminescent signals. Furthermore, sensor designs can

include genetically engineered phage that express a pro-

duct causing ice nucleation [110] or that incorporate tags

for linking to detectable elements such as quantum dots

[111]. Though most of these examples of specifically

modified phages have been enabled by advancements

in engineering and synthetic biology to achieve real-world

applicability, the concept of using natural phage as sen-

sing tools is not a new one. Phage typing and other

techniques have made use of the narrow host range of

phage to identify species or strains of bacteria based on a

target bacteria’s ability to bind, propagate, or be lysed by

non-engineered viruses [109].

New phage engineering strategies
Historically, modifications to bacteriophage relied on

random mutagenesis or homologous recombination, both

of which are inefficient and necessitate intensive screen-

ing to identify mutants of interest. The relatively large

size of most bacteriophage genomes and their inherent

toxicity to bacterial hosts has confounded the use of
www.sciencedirect.com
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Synergy between synthetic biology and bacteriophage. New tools and

techniques from synthetic biology have enabled phage research and the

development of novel therapies. Likewise, bacteriophage components

have fueled innovation in synthetic biology.
conventional molecular biology techniques for engineer-

ing. However, recent synthetic biology tools have revi-

talized the ability to make rational additions or

modifications to phage genomes. Among such improve-

ments, the phage defense function encoded by CRISPR-

Cas systems, previously adapted for genome editing [112–
117] and reviewed in [118], has been described for

improving recombineering in bacteriophages by coun-

ter-selecting unmodified phages with wild-type target

sequences [119]. In vitro assembly of large constructs

has also been made possible with techniques such as

Gibson assembly [120], which enzymatically stitches

together DNA fragments with overlapping homology,

thus allowing for insertions of heterologous DNA and

site-directed mutagenesis using PCR. Moreover, trans-

formation of overlapping fragments into yeast in conjunc-

tion with a compatible yeast artificial chromosome leads

to in vivo recombination-based assembly of large con-

structs [121,122]. Genomes can be assembled with modi-

fications or be modified post-assembly in yeast, where

they are non-toxic to the host, and then purified and

rebooted in bacteria to produce engineered phage pro-

geny. Current DNA synthesis technology, in concert with

in vivo and in vitro recombination, also permits de novo
chemical synthesis of bacteriophage genomes. Smith et al.
[123] utilized this approach to synthesize, clone, and

produce infectious particles of the 5386 bp phage

FX174, and a similar scaled-up approach has created

the first bacterial cell with a synthetic genome of

1.1 Mb [124]. By rendering bacteriophages genetically

accessible, synthetic biology can permit more precise

studies of their underlying biology and inspire creation

of novel therapeutic agents.

Refactoring and genome stability

Despite advances in rational engineering of bacterio-

phages, tampering with systems finely tuned by evolu-

tion can lead to fitness defects [125]. For example,

roughly 30% of the genome of the bacteriophage T7

was ‘refactored,’ a process whereby genes and their

respective regulatory elements were separated into dis-

tinct modules to permit systematic analysis and control

[126]. The refactored genome produced viable bacterio-

phage, albeit with significantly reduced fitness. Multiple

rounds of in vitro evolution restored wild-type viability

at the expense of some of the design elements, implying

that rational design can be coupled with evolution to

ensure the creation of robust biological systems [127].

Similarly, the evolutionary stability of a T7 phage

engineered to infect encapsulated E. coli by producing

a capsule-degrading endosialidase as an exoenzyme was

investigated in vitro [128]. While the engineered phage

permitted replication in the encapsulated strain, the

benefit conferred by endosialidase production was

shared by wild-type, non-producing ‘cheater’ phages,

which could quickly outcompete  the engineered viruses

due to their higher fitness. Although these studies point
www.sciencedirect.com 
to the fragility of current synthetic biology efforts,

bacteriophage-based systems can serve as an excellent

platform to understand the constraints placed on syn-

thetic genetic circuits by evolution and inform future

designs.

Conclusions
Bacteriophages and functional components derived

from their genomes have long been powerful tools that

have allowed us to understand basic biological processes

and that sparked the field of molecular biology. Mount-

ing concerns over the spread of multidrug-resistant

bacterial pathogens, as well as the development of

enabling technologies from synthetic biology, have

resulted in the resurgence of studies involving these

highly evolved and specialized viruses. Recent efforts

have made strides in engineering phages with modified

properties, endowing entirely new functions, and deriv-

ing repurposed parts for the study, detection, and treat-

ment of infectious diseases (Figure 4). As our ability to

engineer phages through genome synthesis and modi-

fication continues to improve, we will be able to further

leverage these finely tuned products of evolution that

constitute the most numerous biological entities known

to man.

Acknowledgements
TKL acknowledges support from the NIH New Innovator Award (DP2
OD008435), an NIH National Centers for Systems Biology grant (P50
GM098792), the Defense Threat Reduction Agency (022744-001) and the
U.S. Army Research Laboratory and the U.S. Army Research Office through
the Institute for Soldier Nanotechnologies (W911NF13D0001). RJC is
supported by funding from the NIH/NIGMS Interdepartmental
Biotechnology Training Program (5T32 GM008334). MM is a Howard
Hughes Medical Institute International Student Research fellow and a
recipient of a Fonds de recherche santé Québec Master’s Training Award.
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38. Bazan J, Całkosiński I, Gamian A: Phage display — a powerful
technique for immunotherapy: 2. Vaccine delivery. Hum Vaccin
Immunother 2012, 8:1829-1835.

39. Basha S, Rai P, Poon V, Saraph A, Gujraty K, Go MY,
Sadacharan S, Frost M, Mogridge J, Kane RS: Polyvalent
inhibitors of anthrax toxin that target host receptors. Proc Natl
Acad Sci U S A 2006, 103:13509-13513.

40. Paradis-Bleau C, Lloyd A, Sanschagrin F, Clarke T, Blewett A,
Bugg TDH, Levesque RC: Phage display-derived inhibitor of the
essential cell wall biosynthesis enzyme MurF. BMC Biochem
2008, 9:33.
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