ENGINEERING PHYSICS AND MATHEMATICS

Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction

P. Bala Anki Reddy *

Fluid Dynamics Division, School of Advanced Sciences, VIT University, Vellore, T.N. 632014, India

Received 2 November 2014; revised 19 November 2015; accepted 9 December 2015
Available online 16 February 2016

Keywords

Casson fluid; MHD; Porous medium; Inclined stretching sheet; Thermal radiation; Chemical reaction and suction/blowing

Abstract

This article investigates the theoretical study of the steady two-dimensional MHD convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The stretching velocity, wall temperature and wall concentration are assumed to vary according to specific exponential form. Velocity slip, thermal slip, solutal slip, thermal radiation, chemical reaction and suction/blowing are taken into account. The proposed model considers both assisting and opposing buoyant flows. The non-linear partial differential equations of the governing flow are converted into a system of coupled non-linear ordinary differential equations by using the similarity transformations, which are then solved numerically by shooting method with fourth order Runge-Kutta scheme. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient and the Sherwood number are illustrated in tabular form and are discussed graphically.

1. Introduction

The theory of non-Newtonian fluid flow over a stretching surface has become a field of active research for the last few decades due to its wide range of applications in technology and industry. Such applications include polymer extrusion from a dye, wire drawing, the boundary layer along a liquid film in condensation processes, glass blowing, paper production, artificial fibers, hot rolling, cooling of metallic sheets or electronic chips, food stuffs, slurries and many others. Many researchers and scientists [1–9] analyzed the boundary layer flow over a stretching surface on various non-Newtonian models. The various non-Newtonian fluids are power-law fluids, micropolar fluids, viscoelastic fluids, Jeffrey fluid, Rivlin-Ericksen fluids, Casson fluids, Walters’ liquid B fluids etc. Although various types of non-Newtonian fluid models are
proposed to explain the behavior, one of the most important types of non-Newtonian fluids is the Casson fluid. The Casson fluid is a plastic fluid, which yields shear stress in Constitutive equations. Some of the examples of Casson fluid model are jelly, soup, honey, tomato sauce, concentrated fruit juices, drilling operations, food processing, metallurgy, paints, coal in water, synthetic lubricants, manufacturing of pharmaceutical products, synovial fluids, sewage sludge and many others. Human blood is also considered as Casson fluid because of the presence of several substances like protein, fibrinogen and globin in aqueous base plasma in the blood. Human red cells from a chain like structure, known as aggregates or rouleaux. If the rouleaux behave like a plastic solid then there exists a field stress that can be identified with the constant stress in Casson fluid [10]. Majority of researchers [11–20] analyzed the Casson fluid flow over a stretching sheet. Recently, the steady stagnation point flow Casson nano fluid over a convective stretching surface is examined by Nadeem et al. [21]. Thermal radiation and chemical reaction effects on heat and mass transfer over a stretching surface play an important role in Physics and Engineering due to its wide range applications, such as Nuclear power plants, combustion of fossil fuels, liquid metal fluids, gas turbines, plasma wind tunnels, photo ionization, geophysics, and the various propulsion devices for missiles, aircraft, space vehicles, and satellites. The effects of thermal radiation over a stretching sheet under different flow conditions have been reported by several researchers [22–34]. Very recently, the numerical solutions for steady boundary layer flow and heat transfer for a Casson fluid over an exponentially permeable stretching surface in the presence of thermal radiation are analyzed by Pramanik [35].
To the best of author knowledge, no investigation has been made yet to analyze the magnetohydrodynamic convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The present work aims to fill the gap in the existing literature. Motivated by the above studies, a mathematical model is presented here to understand the effects of slips, thermal radiation and chemical reaction on MHD boundary layer flow of Casson fluid over an inclined exponentially stretching surface. The coupled partial differential equations of the governing flow are transformed into nonlinear coupled ordinary differential equations by a similarity transformation. The resulting nonlinear coupled differential equations are solved numerically by using fourth order Runge–Kutta scheme together with shooting method. This paper has been arranged as follows: Section 2 deals with the mathematical formulation of the problem. The method of solution is given in Section 3. Section 4 comprises of results and discussions. The concluding remarks are presented in Section 5.

2. Mathematical analysis

Consider two dimensional flow of an incompressible electrically conducting Casson fluid over an exponentially permeable stretching sheet which is inclined with an acute angle \(\alpha \) to the vertical. The \(x \)-axis is taken along the stretching surface in the direction of the motion while the \(y \)-axis is perpendicular to the surface which is shown in Fig. 1. The stretching surface has the velocity \(U = U_0 e^x \), the temperature distribution \(T_y = T_{\infty} + T_0 e^x \) and the concentration distribution \(C_y = C_{\infty} + C_0 e^x \) where \(U_0 \) is the reference velocity, \(T_0 \) is the reference temperature, \(C_0 \) is the reference concentration and \(L \) is the reference length. A variable magnetic field \(B = B_0 e^x \) is applied normal to the sheet, where \(B_0 \) is a constant.

We assume that the rheological equation of state for an isotropic and incompressible flow of a Casson fluid is as [18,35]:

\[
\tau_{ij} = \begin{cases}
2(\mu_N + P_l/\sqrt{2\pi})\epsilon_{ij}, & \pi > \pi_c \\
2(\mu_N + P_l/\sqrt{2\pi})\epsilon_{ij}, & \pi < \pi_c
\end{cases}
\]

where \(\mu_N \) is the plastic dynamic viscosity of the non-Newtonian fluid, \(P_l \) is the yield stress of the fluid, \(\pi = \epsilon_{ij}\beta_{ij} \) is the \((i,j)\)th component of the deformation rate and \(\pi_c \) is the critical value of this product based on the non-Newtonian model.

The continuity, momentum, energy and concentration equations governing such type of flow can be written as

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v(1 + \frac{\beta}{\rho})(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) - \frac{\beta e_{ij} e_{ij}}{\rho} u - \frac{v}{k} u + g \beta_r (T - T_{\infty}) \cos \alpha + g \beta_r (C - C_{\infty}) \cos \alpha,
\]

\[
\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v(1 + \frac{\beta}{\rho})(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}),
\]

\[
\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial y^2} - \frac{1}{\rho c_p} \frac{\partial q_r}{\partial y},
\]

\[
\frac{\partial C}{\partial x} + \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} - \Gamma(C - C_{\infty}).
\]

Subject to the boundary conditions:

\[
u = U + N \frac{\partial u}{\partial y}, \quad \nu = -V(x), \quad T = T_u + M \frac{\partial T}{\partial y}, \quad C = C_u
\]

\[
u \to 0, \quad T \to T_{\infty}, \quad C \to C_{\infty} \quad \text{as} \quad y \to \infty.
\]

Here \(N = N_1 e^x \) is the velocity slip factor, \(M = M_1 e^x \) is the thermal slip factor and \(P = P_1 e^x \) is the solutal slip factor. The no-slip conditions can be recovered, by considering \(N = M = P = 0 \). It is assumed that the permeability is in the form of \(k = k_1 e^x \) and the reaction rate is in the form of \(\Gamma = \Gamma_1 e^x \). Where \(u \) and \(v \) are the velocity components in the \(x \) and \(y \) directions respectively, \(\nu \) is the kinematic viscosity, \(\rho \) is the density of the fluid, \(\beta \) is the Casson parameter, \(\sigma \) is the electrical conductivity, \(g \) is the acceleration due to gravity, \(\beta_r \) is the coefficient of thermal expansion, \(\beta_C \) coefficient of solutal expansion, \(T \) is the temperature, \(T_{\infty} \) is the temperature of the ambient fluid, \(C \) is the concentration, \(C_{\infty} \) is the concentration of the ambient fluid, \(c_p \) is the specific heat at constant pressure, \(k \) is the thermal conductivity, \(q_r \) is the radiative heat flux and \(D \) is the mass diffusion coefficient. Also, + sign and − sign in Eq. (2) correspond to assisting buoyant flow and opposing buoyant flow respectively.

Thermal radiation is simulated using the Rosseland diffusion approximation and in accordance with this, the radiative heat flux \(q_r \) is given by

\[
q_r = -\frac{4\sigma^*}{3k} \frac{\partial T^4}{\partial y}.
\]

where \(\sigma^* \) is the Stefan–Boltzmann constant and \(k^* \) is the Rosseland mean absorption coefficient. If the temperature differences within the mass are sufficiently small, then Eq. (7) can be linearized by expanding \(T^4 \) into the Taylor’s series about \(T_{\infty} \) and neglecting higher order terms, we get
\[T^4 \approx 4 T_0^4 - 3 T_0^2. \]

Using Eqs. (7) and (8), Eq. (4) can be written as

\[\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} = \left(\frac{k}{\rho c_p} + \frac{16\sigma T^0}{3\rho c_p C_f} \right) \frac{\partial^2 T}{\partial y^2}. \]

We introduce the similarity variables as

\[\eta = \left(\frac{U_0}{2L} \right)^{\frac{1}{3}} \xi, \quad y = U_0 \xi f'(\eta), \]

\[v = -\frac{1}{2} \left(\frac{U_0}{2L} \right)^{\frac{1}{3}} \varepsilon_c (f(\eta) + \eta f'(\eta)), \quad T = T_\infty + T_0 \xi \theta(\eta), \]

\[C = C_{\infty} + C_{\varepsilon_c} \theta(\eta). \]

The surface shear stress \(\tau_w \), surface heat flux \(q_w \) and mass flux \(J_u \) are given by

\[\tau_w = \rho \left(\frac{\partial u}{\partial y} \right)_{y=0}, \quad q_w = -k \left(\frac{\partial T}{\partial y} \right)_{y=0} \]

\[J_u = -D \left(\frac{\partial C}{\partial y} \right)_{y=0}. \]

Substituting (10) and (17) into Eq. (16), we get

\[C_{r} \sqrt{Re_x/2} \sqrt{x/L} = f''(0), \quad \frac{Nu_x}{\sqrt{Re_x/2} \sqrt{x/L}} = -\theta'(0) \quad \text{and} \quad \frac{Sh_x}{\sqrt{Re_x/2} \sqrt{x/L}} = -\phi'(0). \]

where \(Re_x = \frac{\rho U_0^2 \xi}{\mu} \) is the local Reynolds number. The above Skin-friction coefficient, local Nusselt number and Sherwood number shows that its variation depends on the variation of the factors \(f''(0), -\theta'(0) \) and \(-\phi'(0) \) respectively.

3. Method of solution

Eqs. (11–13) along with the boundary conditions (14) form a two point boundary value problem. These equations are solved using shooting method, by converting them to an initial value problem. For this, we transform the non-linear ordinary differential Eqs. (11–13) to a system of first order differential equations as follows:

\[f' = z, \quad z' = p, \]

\[\rho' = \left(\frac{1}{1 + \rho} \right) \left(2z^2 - fp + (H + K)z \right) \equiv \lambda \theta \cos z - \delta \phi \cos z, \]

\[\theta' = q, \]

\[q' = -\frac{3Pr}{4R + 3} (fq - z\theta), \]

\[\phi' = r, \quad r' = -sc (r - hz \theta - \gamma \phi). \]

The boundary conditions (14) become

\[f(0) = s, \quad f'(0) = 1 + s_1 \theta_0, \quad \theta_0 = f''(0), \quad \theta(0) = 1 + s_1 \theta_0, \quad \phi(0) = 1 + s_1 \theta_0, \quad \phi_1 = \phi'(0). \]

In order to integrate (19)–(21) as an initial value problem, we require values of \(p(0) \) i.e., \(f''(0), q(0) \) i.e., \(\theta'(0) \) and \(r(0) \) i.e., \(\phi'(0) \). But no such values are given at the boundary. So the suitable guess values for \(f''(0), \theta'(0) \) and \(\phi'(0) \) are chosen and then integration is carried out. The most important factor of the shooting method is to choose an appropriate finite value of \(\eta_\infty \). In order to determine \(\eta_\infty \) for the boundary value problem, start with some initial guess values for some particular set of physical parameters to obtain \(f''(0), \theta'(0) \) and \(\phi'(0) \). The solving procedure is repeated with another large value of \(\eta_\infty \) until both successive values of \(f''(0), \theta'(0) \) and \(\phi'(0) \) differ only by the specified significant digit. The last value of \(\eta_\infty \) is finally chosen to be the most appropriate value of the limit \(\eta_\infty \) for that particular set of parameters. The value of \(\eta_\infty \) may change for another set of physical parameters. Once the finite value of
\(c\) is determined, then the integration is carried out. Compare the calculated values for \(f', \theta, \phi\) at \(\eta = 10\) (say) with the given boundary conditions \(f'(0) = 0, \theta(0) = 0, \phi(0) = 0\) and adjust the estimated values, \(f''(0), \theta'(0)\) and \(\phi'(0)\) to give better approximation to the solution. We take the series values for \(f''(0), \theta'(0), \phi'(0)\) and apply the fourth order Runge-Kutta method with step size \(h = 0.01\) [35]. The above procedure is repeated until to get the results up to the desired degree of accuracy \(10^{-6}\).

4. Results and discussion

To assess the validity and accuracy of the applied numerical scheme, numerical values for the heat transfer coefficient for various values of thermal radiation and the Prandtl number in the absence of Casson fluid parameter, magnetic parameter, permeability parameter, buoyancy parameter, solutal buoyancy parameter, Schmidt number, suction parameter, velocity slip, thermal slip and solutal slip are compared with the available results and the outcome is shown in Table 1. The results are found in excellent agreement. In this study, the default values of the various parameters which we considered are:

\[
\beta = 2.0, M = 1.0, K = 1.0, \lambda = 6.0, \delta = 6.0, \alpha = \frac{\pi}{4}, R = 0.5, Pr = 0.72, Sc = 0.60, \gamma = 0.5, S_s = S_t = S_c = 0.1 \text{ and } S = 0.5.
\]

The effects of the pertinent parameters, namely, magnetic parameter, permeability parameter, Casson parameter, buoyancy parameter, solutal buoyancy parameter, Schmidt number, radiation parameter, Prandtl number, Chemical reaction parameter, velocity slip, thermal slip, solutal slip and suction parameter on the dimensionless velocity, temperature and concentration for three cases (i) assisting, (ii) opposing and (iii) blowing are shown in Figs. 2–16. The influences of the skin friction coefficient, Nusselt number and the Sherwood number are presented in Tables 2 and 3. The influences of magnetic parameter on the velocity profiles are depicted in Fig. 2. It is observed that the velocity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.9547</td>
<td>0.954782</td>
<td>0.9547</td>
<td>0.9547</td>
<td>0.9547</td>
<td>0.9547</td>
<td>0.9547</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1.4714</td>
<td>1.4714</td>
<td>1.4714</td>
<td>1.4714</td>
<td>1.4714</td>
<td>1.4714</td>
<td>1.4714</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1.8691</td>
<td>1.869075</td>
<td>1.8691</td>
<td>1.8691</td>
<td>1.8691</td>
<td>1.8691</td>
<td>1.8691</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1.1599</td>
<td>2.500135</td>
<td>2.5001</td>
<td>2.5001</td>
<td>2.5001</td>
<td>2.5001</td>
<td>2.5001</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3.660379</td>
<td>3.6603</td>
<td>3.6603</td>
<td>3.6603</td>
<td>3.6603</td>
<td>3.6603</td>
<td>3.6603</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.680</td>
<td>0.6765</td>
<td>0.6765</td>
<td>0.6765</td>
<td>0.6765</td>
<td>0.6765</td>
<td>0.6765</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.534</td>
<td>0.5315</td>
<td>0.5315</td>
<td>0.5315</td>
<td>0.5315</td>
<td>0.5315</td>
<td>0.5315</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1.073</td>
<td>1.0735</td>
<td>1.0734</td>
<td>1.0734</td>
<td>1.0734</td>
<td>1.0734</td>
<td>1.0734</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.863</td>
<td>0.8627</td>
<td>0.8626</td>
<td>0.8626</td>
<td>0.8626</td>
<td>0.8626</td>
<td>0.8626</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>1.381</td>
<td>1.3807</td>
<td>1.3807</td>
<td>1.3807</td>
<td>1.3807</td>
<td>1.3807</td>
<td>1.3807</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.121</td>
<td>1.1214</td>
<td>1.1213</td>
<td>1.1213</td>
<td>1.1213</td>
<td>1.1213</td>
<td>1.12140</td>
</tr>
</tbody>
</table>

Table 2 The values of skin friction coefficient, Nusselt number and the Sherwood number for various values of \(\beta, H, K, \lambda, \delta, \alpha, S, S_s, S_t\) and \(S_c\).

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(H)</th>
<th>(K)</th>
<th>(\lambda)</th>
<th>(\delta)</th>
<th>(\alpha)</th>
<th>(S)</th>
<th>(S_s)</th>
<th>(S_t)</th>
<th>(f''(0))</th>
<th>(-\theta'(0))</th>
<th>(-\phi'(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.15736</td>
<td>0.79962</td>
<td>1.10057</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.19991</td>
<td>0.80047</td>
<td>1.10200</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.04237</td>
<td>0.78575</td>
<td>1.08881</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>1.5</td>
<td>6.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>1.0</td>
<td>0.1</td>
<td>0.04237</td>
<td>0.78575</td>
<td>1.08881</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>7.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.27756</td>
<td>0.81889</td>
<td>1.11312</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>\pi/4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.25941</td>
<td>0.80836</td>
<td>1.10862</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>0.5</td>
<td>0.1</td>
<td>-1.43935</td>
<td>0.56834</td>
<td>0.91460</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>1.0</td>
<td>0.1</td>
<td>0.00244</td>
<td>0.89797</td>
<td>1.23430</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>\pi/4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.11324</td>
<td>0.80222</td>
<td>1.10351</td>
<td></td>
</tr>
</tbody>
</table>
decreases as magnetic parameter increases for the cases of assisting, opposing and blowing. This is due to the fact that an increase in M signifies an enhancement of Lorentz force, thereby reducing the magnitude of the velocity \[26\]. The variation of dimensionless velocity distribution for different values of permeability parameter is shown in Fig. 3. It is observed that the velocity of the fluid decreases with increase in the permeability parameter. Fig. 4 displays the effect of inclination parameter on the velocity profiles. From Fig. 4 we infer that, the velocity profiles decrease with an increase in the inclination parameter. This can be attributed to the fact that the angle of inclination decreases the effect of the buoyancy force due to thermal diffusion by a factor of $\cos \alpha$. Consequently, the driving force to the fluid decreases as a result of velocity of the fluid decreases \[32\]. The effects of the Casson fluid parameter on the velocity for the cases of assisting, opposing and blowing are presented in Fig. 5. It is observed that in the case of assisting and opposing flows, the velocity increases at the beginning but it decreases after a certain distance η normal to the sheet. It is further noticed that the velocity decreases for the case of blowing. Some characteristic velocity profiles for different values of solutal buoyancy parameter are presented in Fig. 6. It can be seen that the velocity increases with an increase in solutal buoyancy parameter for the three cases. Effects of velocity slip on the velocity profiles are shown in Fig. 7. It is observed that the velocity increases for the cases of assisting and blowing, whereas the reverse trend is found in the case of opposing flow.

The effect of magnetic parameter on the temperature profiles is depicted in Fig. 8, which describes an increase in the magnetic parameter enhances the temperature profiles. This enhancement can be attributed to the fact that the introduction of the transverse magnetic field to an electrically conducting fluid gives rise to a resistive type of force known as Lorentz force. This force bears the potential to enhance the temperature of the fluid \[26\]. The temperature field is shown

![Figure 2](image1.png)
Figure 2 Velocity profiles for various values of M.

![Figure 3](image2.png)
Figure 3 Velocity profiles for various values of k.

![Figure 4](image3.png)
Figure 4 Velocity profiles for various values of α.

![Figure 5](image4.png)
Figure 5 Velocity profiles for various values of β.

![Figure 6](image5.png)
Figure 6 Velocity profiles for various values of δ.

598 P. Bala Anki Reddy
graphically in Fig. 9 for different values of permeability parameter. It is found that an increase in the permeability enhances the temperature of the fluid. The influence of the radiation parameter on the temperature profiles for the cases of assisting, opposing and blowing are shown in Fig. 10, displaying the temperature enhancement with increase in radiation parameter. The variations in the temperature profiles for various Prandtl numbers are presented in Fig. 11. It is noticed that the temperature of the boundary layer diminishes with an increase in the Prandtl number. Fig. 12 gives some characteristic temperature profiles for different values of thermal slip parameter. It is seen that the temperature of the boundary layer reduces with an increase in the thermal slip parameter. Effects of inclination parameter on the temperature profiles are shown in Fig. 13. It is noticed that the thermal boundary layer thickness increases by increasing the angle of inclination [32].

The influences of Schmidt number on the concentration profiles is illustrated in Fig. 14. It is observed that the velocity
decreases as Schmidt number increases for the cases of assisting, opposing and blowing. The variation in the dimensionless
concentration distribution for different values of inclination parameter is shown in Fig. 15 for the cases of assisting, opposing and blowing. It is observed that the concentration increases with the increase in the value of inclination parameter. Fig. 16 displays the effect of solutal slip on the concentration profiles. It reveals that the concentration profiles decrease with an increase in the solutal slip parameter. The effects of the
chemical reaction parameter on the concentration for the cases of assisting, opposing and blowing are presented in Fig. 17. It is observed that the concentration decreases with increase in the value of chemical reaction parameter. Fig. 18 depicts some characteristic concentration profiles for different values of solutal buoyancy parameter. It is observed that concentration decreases with the increase in solutal buoyancy parameter.

The values of skin friction coefficient, Nusselt number and the Sherwood number for various values of the involved
pertinent parameters are presented in Tables 2 and 3. It can be noted that the skin friction coefficient decreases with the increase in values of Casson fluid parameter, magnetic parameter, permeability parameter, inclination parameter, suction parameter, slip velocity, Prandtl number, thermal slip, Schmidt number, chemical reaction parameter and solutal slip, whereas the reverse trend is observed in the case of buoyancy parameter, solutal buoyancy parameter and thermal radiation parameter. It is found that the Nusselt number decreases with an increase in the magnetic parameter, permeability parameter, inclination parameter, radiation parameter, thermal slip, Schmidt number, chemical reaction parameter and solutal slip, whereas it increases with an increase in the Casson fluid parameter, buoyancy parameter, solutal buoyancy parameter, suction parameter, slip velocity and Prandtl number. It is viewed that the Sherwood number decreases as the magnetic parameter, permeability parameter, inclination parameter, Prandtl number, thermal slip and solutal slip are increased.

It can be seen that the Sherwood number increases with the increase in Casson fluid parameter, buoyancy parameter, solutal buoyancy parameter, suction parameter, velocity slip, radiation parameter, Schmidt number and chemical reaction parameter are raised.

5. Conclusions

The present investigation is a worthy attempt to study the magnetohydrodynamic convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. Numerical method is used to solve the resulting system of coupled nonlinear ordinary differential equations with boundary conditions. In light of the investigation, it is found that the momentum boundary layer thickness decreases with an increasing the Casson fluid parameter. It is observed that the opposite behavior of the temperature profile is observed for both thermal radiation parameter and the Prandtl number. It is seen that the same behavior of the concentration is found for the Schmidt number and chemical reaction parameter.

Acknowledgment

The author is grateful to the editor and reviewers for valuable suggestions and comments, which helped a lot to improve the quality of the paper.

References

P. Bala Anki Reddy was born and brought up in Andhra Pradesh, India. He obtained the M. Sc. and Ph.D. degrees in Mathematics from the Sri Venkateswara University, Tirupati, Andhra Pradesh. Presently, he is working as Assistant Professor, department of Mathematics, VIT University, Vellore, Tamilnadu. His research interest covers the areas of the application of flow separation, particularly, in bio-fluid dynamics and analysis of boundary layer flows of Newtonian/non-Newtonian fluids including the heat and mass transfer in porous/non-porous media. His research interest also covers the Nano fluid flow problems. He published several papers in national and international journals. He attended several workshops/seminars/faculty development programs.