
Discrete Applied Mathematics 156 (2008) 705–718
www.elsevier.com/locate/dam

Minimal comparability completions of arbitrary graphs�

Pinar Heggernes, Federico Mancini, Charis Papadopoulos
Department of Informatics, University of Bergen, N-5020 Bergen, Norway

Received 19 June 2006; received in revised form 3 August 2007; accepted 12 August 2007
Available online 1 October 2007

Abstract

A transitive orientation of an undirected graph is an assignment of directions to its edges so that these directed edges represent
a transitive relation between the vertices of the graph. Not every graph has a transitive orientation, but every graph can be turned
into a graph that has a transitive orientation, by adding edges. We study the problem of adding an inclusion minimal set of edges
to an arbitrary graph so that the resulting graph is transitively orientable. We show that this problem can be solved in polynomial
time, and we give a surprisingly simple algorithm for it. We use a vertex incremental approach in this algorithm, and we also give
a more general result that describes graph classes � for which � completion of arbitrary graphs can be achieved through such a
vertex incremental approach.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Transitively orientable graphs; Comparability graphs; Minimal completions

1. Introduction

A transitive orientation of an undirected graph is an assignment of a direction to each of the edges, such that the
edges represent a binary transitive relation on the vertices. An undirected graph is a comparability graph if there is
a transitive orientation of its edges, and hence comparability graphs are also called transitively orientable graphs.
This is a wide and well-known graph class studied by many authors, and it has applications in areas like archeology,
psychology, and political sciences [2,11]. Comparability graphs are perfect, and they can be recognized in polynomial
time. Many interesting optimization problems that are NP-hard on arbitrary graphs, are polynomially solvable on
comparability graphs [2]. Hence, computing a comparability supergraph of an arbitrary graph, and solving a generally
NP-hard problem in polynomial time on this supergraph, is a way of obtaining approximation algorithms for several hard
problems. For graphs coming from the application areas mentioned above, there may be missing edges due to lacking
data so that the graph fails to be comparability, in which case one is again interested in computing a comparability
supergraph. A comparability graph obtained by adding edges to an arbitrary graph is called a comparability completion
of the input graph. Unfortunately, computing a comparability completion with the minimum number of added edges
(called a minimum completion) is an NP-hard problem [3].

� This work is supported by the Research Council of Norway through Grant 166429/V30. A preliminary version of this work appeared in ISAAC
2006.

E-mail addresses: pinar@ii.uib.no (P. Heggernes), federico@ii.uib.no (F. Mancini), charis@ii.uib.no (C. Papadopoulos).

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.08.039

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81164422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:pinar@ii.uib.no
mailto:federico@ii.uib.no
mailto:charis@ii.uib.no

706 P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718

A minimal comparability completion H of G is a comparability completion of G such that no proper subgraph of H
is a comparability completion of G. Although the number of added edges in a minimal comparability completion may
be far from minimum, computing a few different minimal comparability completions, and choosing the one with the
smallest number of edges is a possible approach to finding a comparability completion close to minimum. Furthermore,
the set of minimal comparability completions of a graph contains the set of minimum comparability completions.
Therefore, the study of minimal comparability completions is a first step in the search for minimum comparability
completions, possibly through methods like exact exponential time algorithms or parameterized algorithms. In this
paper, we give the first polynomial time algorithm for computing minimal comparability completions of arbitrary graphs,
and hence we show that this problem is solvable in polynomial time, as opposed to computing minimum comparability
completions.

The study of minimal completions of arbitrary graphs into a given graph class started with a polynomial-time
algorithm for minimal chordal completions in 1976 [12], before it was known that minimum chordal completions
are NP-hard to compute [15]. Since then the NP-hardness of minimum completions has been established for several
graph classes (summarized in [9]). Recently, several new results, some of which have been presented at recent years’
SODA and ESA conferences, have been published on completion problems, leading to faster algorithms for mini-
mal chordal completions [5,7,8], and polynomial-time algorithms for minimal completions into split, interval, and
proper-interval graphs [4,14,10]. The complexity of computing minimal comparability completions has been open
until now.

There are simple examples to show that a minimal comparability completion cannot be obtained by starting from an
arbitrary comparability completion, and removing unnecessary edges one by one (as opposed to minimal completions
into chordal and split graphs). To overcome this difficulty, we use a vertex incremental approach in our algorithm. A
vertex incremental algorithm has also proved useful for minimal completions into chordal graphs [1], and therefore
we find it worthwhile to give a more general result here, describing classes of graphs into which minimal completions
of arbitrary graphs can be computed with such a vertex incremental approach. Notice, however, that the algorithm for
each step is completely different for, and dependent on, each graph class, and polynomial time computability is not
guaranteed by the vertex incremental approach.

This paper is organized as follows. In the next section we give some notation and background on comparability
graphs and a new result on vertex incremental minimal completions. In Section 3 we present an algorithm for the vertex
incremental step: Given a comparability graph G (which is the minimal comparability completion of the previous
incremental step) and a new vertex x which is added to G along with a given set of edges between x and G, compute a
minimal comparability completion of this augmented graph. Gx = (V (G) ∪ {x}, E(G) ∪ {xv | v ∈ Nx}}). We prove
the correctness of the given algorithm in Section 4, and discuss the time complexity issues in Section 5. We conclude
in Section 6.

2. Notation and background

We consider undirected finite graphs with no loops or multiple edges. For a graph G, we denote its vertex and edge
set by V (G) and E(G), respectively, with n = |V (G)| and m = |E(G)|. For a vertex subset S ⊆ V (G), the subgraph
of G induced by S is denoted by G[S]. Moreover, we denote by G− S the graph G[V (G)− S] and by G− v the graph
G[V (G) − {v}].

The neighborhood NG(x) of a vertex x of the graph G is the set of all the vertices of G which are adjacent to x.
The closed neighborhood of x is defined as NG[x] = NG(x) ∪ {x}. If S ⊆ V (G), then the neighbors of S, denoted by
NG(S), are given by (

⋃
x∈SNG(x))− S. For a vertex x of G, the set NG(NG(x))−{x} is denoted by N2

G(x). For a pair
of vertices x, y of a graph G we call xy a non-edge of G if xy /∈ E(G). A vertex x of G is universal if NG[x] = V (G).

A clique is a set of pairwise adjacent vertices while an independent set is a set of pairwise non-adjacent vertices. A
graph is bipartite if its vertex set can be partitioned into two independent sets. Bipartite graphs are exactly the class of
graphs that do not contain cycles of odd length.

Given a new vertex x /∈ V (G) and a set of vertices Nx of G, we denote by Gx the graph obtained by adding x to G
and making x adjacent to each vertex in Nx , i.e., V (Gx) = V (G) ∪ {x} and E(Gx) = E(G) ∪ {xv | v ∈ Nx}; thus
NGx (x) = Nx . For a vertex x /∈ V (G), we denote by G + x the graph obtained by adding an edge between x and every
vertex of V (G), thus x is universal in G + x.

P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718 707

Fig. 1. A graph G and its incompatibility graph BG.

2.1. Comparability graphs

A digraph is a directed graph, and an arc is a directed edge. While we denote an undirected edge between vertices
a and b equivalent by ab or ba, we denote an arc from a to b by (a, b), and an arc in the opposite direction by (b, a).
A directed acyclic graph (dag) is transitive if, whenever (a, b) and (b, c) are arcs of the dag, (a, c) is also an arc. An
undirected graph is a comparability graph if directions can be assigned to its edges so that the resulting digraph is a
transitive dag, in which case this assignment is called a transitive orientation.

We consider an undirected graph G to be a symmetric digraph, that is, if xy ∈ E(G) then (x, y) and (y, x) are arcs
of G. Two arcs (a, b) and (b, c) of an undirected graph G are called incompatible if ac is not an edge of G. We say, then,
that (a, b) is incompatible with (b, c) and vice versa, or that ((a, b), (b, c)) is an incompatible pair. The incompatibility
graph BG of an undirected graph G is defined as follows: In BG there is one vertex for each arc of G, and therefore
we will (somewhat abusively) denote a vertex of BG that corresponds to arc (a, b) of G by (a, b). For each edge ab
of G, there are two adjacent vertices (a, b) and (b, a) in BG. In addition, there is an edge between two vertices (a, b)

and (b, c) of BG if and only if arcs (a, b) and (b, c) are incompatible in G. We will refer to the edges of BG of this
latter type as incompatibilities. Thus except for the edges of the type (a, b)(b, a) all edges of BG are incompatibilities.
Since we consider an undirected graph to be a symmetric digraph, if (a, b)(b, c) is an edge (incompatibility) of BG

then (c, b)(b, a) is also an edge (incompatibility) of BG. An example of a graph G and its incompatibility graph BG is
given in Fig. 1.

The incompatibility graph will be our main tool to compute minimal comparability completions, and the following
result from Kratsch et al. [6] is central to our algorithm.

Theorem 1 (Kratsch et al. [6]). An undirected graph G is a comparability graph if and only if its incompatibility
graph BG is bipartite.

It is mentioned in [6] that a transitive orientation of a comparability graph G must be an independent set of the
bipartite graph BG. Note that for every edge ab of G, exactly one of the vertices (a, b) and (b, a) of BG is in a given
independent set. So by choosing one of the independent set of BG, we choose an orientation of the edges of G. For the
example in Fig. 1, we see that a good (transitive) orientation is (a, b), (c, b), (c, d), (a, d).

2.2. A vertex incremental approach for minimal completions

A comparability graph can be obtained from any graph G by adding edges, and the resulting graph is called a
comparability completion of G. An edge that is added to G to obtain a comparability completion H is called a fill
edge. A comparability completion H = (V , E ∪ F) of G = (V , E), with E ∩ F = ∅, is minimal if (V , E ∪ F ′) fails
to be a comparability graph for every F ′ ⊂ F . We will now show that minimal comparability completions can be
obtained vertex incrementally. It was shown previously that minimal triangulations [1] can be computed incrementally.
Therefore, we give a more general result here, describing graph classes into which minimal completions of arbitrary
graphs can be computed by a vertex incremental approach. Let � be a graph class. Speaking about � completions
(defined analogously to comparability completions) of arbitrary graphs is only meaningful if every graph can be
embedded in a graph of � by adding edges. For example, if complete graphs belong to � then any graph has a �
completion. A graph class � is called hereditary if all induced subgraphs of graphs in � also belong to �.

708 P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718

Property 2. We will say that a graph class � has the universal vertex property if, for every graph G ∈ � and a vertex
x /∈ V (G), G + x ∈ �.

Lemma 3. Let H be a minimal � completion of an arbitrary graph G, and let Gx be a graph obtained from G by
adding a new vertex x adjacent to some vertices of G. If � is hereditary and has the universal vertex property, then
there is a minimal � completion H ′ of Gx such that H ′ − x = H .

Proof. LetHx be the graph obtained by adding x to H together with the edges between x and NGx (x). Observe first
that a � completion of Hx can be obtained by adding edges only incident to x, since H + x ∈ �. Thus, a minimal
� completion of Hx can be obtained by adding a subset of the edges between x and V (Hx) − NGx (x). Let H ′ be a
minimal � completion of Hx obtained by adding edges incident to x. Obviously, H ′ − x = H . Assume for the sake of
contradiction that H ′ is not a minimal � completion of Gx . This means that a subset of the newly added edges to Hx

to obtain H ′ and a nonempty subset of the edges added to G to obtain H can be removed from H ′ without destroying
the � property. But since � is hereditary, this contradicts that H is a minimal � completion of G. Thus H ′ must be a
minimal � completion of Gx . �

An important consequence of Lemma 3 is that for a hereditary graph class � with the universal vertex property, a
minimal � completion of any input graph G can be computed by introducing the vertices of G in an arbitrary order
x1, x2, . . . , xn. Given a minimal � completion Hi of Gi=G[x1, . . . , xi], we compute a minimal � completion of Gi+1=
G[x1, . . . , xi, xi+1] by actually computing a minimal � completion of the graph Hxi+1 = ({x1, . . . , xi+1}, E(Hi) ∪
{xi+1v | v ∈ NGi+1(xi+1)}). In this completion, we add only fill edges incident to xi+1. Meanwhile, notice that this
minimal completion is not necessarily easy to obtain, and some major challenges might need to be overcome, depending
on the graph class �. Note also that all minimal completions of G cannot be created in this way, since by allowing only
addition of fill edges incident to the incremental vertex x, we rule out several possible minimal completions.

Observation 4. The class of comparability graphs is hereditary and satisfies the universal vertex property.

Proof. The transitive orientation property is clearly hereditary (see for example [2]). Let G be a comparability graph
and x /∈ V (G). We will show that G + x is a comparability graph. We know that G has a transitive orientation D of
its edges. Let us give the following orientation to the edges of G + x: For edges of G, we orient them as in D. For
edges incident to x, we orient all of them towards x. Now the pairs of arcs of this digraph that can cause a problem are
all of type ((a, b), (b, x)). But since x is universal, ax is also an edge of G + x, and it is oriented towards x. Thus the
described orientation is transitive on G + x, and therefore G + x is comparability. �

The real challenge is how to do the computations of each vertex incremental step. This is exactly the problem that we
solve in the rest of this paper. Thus for the rest of the paper, due to Lemma 3 and Observation 4, we consider as input
a comparability graph G and a new vertex x /∈ V (G) together with a list of vertices Nx in G. Our aim is to compute a
minimal comparability completion of Gx = (V (G)∪{x}, E(G)∪{xv | v ∈ Nx}). We do this by finding an appropriate
set of fill edges Fx incident to x such that we obtain a comparability graph by adding Fx to Gx , and no proper subset
Fx yields a comparability graph when added to Gx .

3. An algorithm for minimal comparability completion of Gx

In this section, we give an algorithm that computes a minimal comparability completion H of Gx , for a given
comparability graph G and a new vertex x /∈ V (G) adjacent to vertices of a set Nx ⊆ V (G). Our main tool will be the
incompatibility graph BG of G, which we know is bipartite by Theorem 1. We will proceed to update BG with the aim
of obtaining the incompatibility graph BGx of Gx . We will keep this partial incompatibility graph a bipartite graph at
each step. If Gx is not a comparability graph, we will have to add fill edges to Gx to be able to achieve this goal.

Let Ex = {xv | v ∈ Nx} (thus Gx = (V ∪ {x}, E ∪ Ex)). Our first step in obtaining BGx from BG is to add vertices
corresponding to edges of Ex and the edges and incompatibilities between these. We will make a separate graph Bx to
represent the incompatibilities among the edges of Ex . Let Bx be the graph that has two adjacent vertices (x, v) and
(v, x) for each xv ∈ Ex , and that has all incompatibilities that are implied by non-edges of Gx between vertices of

P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718 709

Fig. 2. An example that shows Gx , Bx , and BGx , for the graph G given in Fig. 1.

Nx . To be more precise, if E = {(x, v) | xv ∈ Ex} ∪ {(v, x) | xv ∈ Ex}, and BGx [Nx∪{x}] is the incompatibility graph
of Gx[Nx ∪ {x}], then Bx is the subgraph of BGx [Nx∪{x}] induced by E. An example is given in Fig. 2. Observe that
the graph Gx[Nx ∪ {x}] is a comparability graph, since G[Nx] is comparability by the hereditary property, and x is a
universal vertex in Gx[Nx ∪ {x}].Following the above arguments, Bx is a bipartite graph by Theorem 1.

For our purposes, we also need to define the set of incompatibilities of BG implied by a given non-edge uv of G. We
call this set CG(uv), and define it as follows for each non-edge uv of G.

CG(uv) = {(u, w)(w, v) | w ∈ NG(u) ∩ NG(v)} ∪ {(v, w)(w, u) | w ∈ NG(u) ∩ NG(v)}.
Observe that CG(e1) ∩ CG(e2) = ∅ for any pair of non-edges e1 and e2 of G, and

⋃
e/∈E(G)CG(e) is exactly the set of

all incompatibilities in BG.

Lemma 5. By adding the set of edges CGx (xv) for each v ∈ N2
Gx

(x) into the graph BG ∪ Bx , we obtain the incom-
patibility graph BGx of Gx .

Proof. Adding a new vertex x to G and some edges incident to x, can only create incompatibilities between pairs of
arcs that both have an endpoint in x and between pairs of arcs where one has an endpoint in x and the other has an
endpoint in N2

Gx
(x). The incompatibilities of the first type are already present as edges in Bx . The incompatibilities of

the second type are exactly the ones given by CGx (xv) for all v ∈ N2
Gx

(x). Notice that the graph BG ∪ Bx does not
contain any edges between vertices of BG and Bx . By definition, all vertices of BGx (arcs of edges in Gx) are contained
in BG ∪ Bx , and BG ∪ Bx has no further vertices. Hence the result follows. �

Assume that we want to compute the incompatibility graph BGx of Gx . We start with the partial incompatibility
graph BG ∪Bx , which is bipartite by the above arguments. By Lemma 5, to get BGx it is sufficient to scan all non-edges
of Gx between x and N2

Gx
(x) one by one, and add the incompatibilities that are implied by each non-edge into the

partial incompatibility graph. If Gx is a comparability graph, then by Theorem 1, the partial incompatibility graph will
stay bipartite at each step, since we never delete edges from it. By the same argument, if Gx is not a comparability
graph, then at some step, when we add the incompatibilities implied by a non-edge, we will get an odd cycle in the
partial incompatibility graph. For computing a minimal comparability completion H of Gx , we augment this approach
as follows: if adding the incompatibilities implied by non-edge xv results in a non-bipartite partial incompatibility
graph, then we do not add these incompatibilities, and instead, we decide that xv should become a fill edge of H. Note
that, by starting with the partial bipartite graph BG ∪ Bx , we force all possible fill edges to be incident to x; all the
incompatibilities of some non-edge xv can be removed by the addition of fill edge xv to H.

At start, we let L = {xv | v ∈ N2
Gx

(x)}, B = BG ∪ Bx , and H = Gx . For each non-edge xv ∈ L, we check whether
or not non-edge xv should become a fill edge of the intermediate graph H, using the information given by CH (xv) and
B. If B ∪ CH (xv) is a bipartite graph, then we update B = B ∪ CH (xv) and decide that xv will never become a fill
edge. In the opposite case, we add fill edge xv to H, and update B as follows:

1. Add the two adjacent vertices (x, v) and (v, x) in B.
2. For each new incompatible pair ((z, x), (x, v)) or ((v, x), (x, z)) in H, add the corresponding edge (incompatibility)

to B connecting the vertices of the pair. (We will show that this can never introduce odd cycles in the incompatibility
graph.)

710 P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718

3. For each new incompatible pair ((x, v), (v, u)) or ((u, v), (v, x)) in H, add the corresponding edge (incompatibility)
to B connecting the vertices of the pair only if xu is a non-edge that has already been processed and decided to stay
a non-edge (marked). If not, either xu ∈ L or we add it to L.
The second case takes care of new incompatibilities among the edges incident to x, and the last case takes care of all

other new incompatibilities. In the last case, when we encounter new incompatibilities that are implied by a non-edge e
which we have not yet processed, we do not add these incompatibilities to B at this step, and we wait until we come to
the step which processes e. The reason for this is the following: If we add these incompatibilities now, and later decide
that e should become a fill edge, then we have to delete these incompatibilities from B. This causes problems regarding
minimality, because deleting “old” incompatibilities can make some previously added fill edges become redundant, and
thus we might have to examine each initial non-edge several times. When we do not add the incompatibilities before
they are needed, we never have to delete anything from B, and B can only grow at each step. This way, the intermediate
graph B will at all steps be a supergraph of BG ∪ Bx and a subgraph of BH . This is the clue to the simplicity of our
algorithm, which makes it sufficient to examine each non-edge incident to x once.

The non-edges that are removed from L are marked, which means that they will stay non-edges. This marking is
necessary since new non-edges enter L during the algorithm, and we need to test for every incompatibility we discover,
whether it is already implied by a marked non-edge so that we can add it at this step, or we should wait. The details of
the algorithm called Minimal_Comparability_Completion (MCC) are given below.

4. Correctness of Algorithm MCC

Although our algorithm is surprisingly simple due to the fact that each non-edge is examined once, its proof of
correctness is quite involved, and requires a series of observations and lemmas, some of which with long proofs. Let
us define a step of the algorithm to be one iteration of the while-loop given between lines 3–17. For the proof of

P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718 711

correctness, we will sometimes need to distinguish between the graph H at the start of a step and the updated graph H
at the end of a step, to consider the changes made at one step. Throughout the rest of the paper, let HI be the graph H
at the start of step I, and let HI+1 be the graph obtained at the end of this step, and define BI and BI+1 analogously.1

Observation 6. Let I be the step of the algorithm that processes the non-edge xv ∈ L. Then BI contains no edge
belonging to CHI

(xv).

Proof. Assume for the sake of contradiction that BI contains an edge (x, w)(w, v) belonging to CHI
(xv). This can

happen only if there is a vertex w ∈ NHI
(x)∩NHI

(v) such that xw is a fill edge of HI . But by line 13 of the algorithm
the incompatibility (x, w)(w, v) cannot have been added previously, since, being processed for the first time, xv is
unmarked at all previous steps. Thus no edge of CHI

(xv) is contained in BI . �

Lemma 7. At the end of each step of the algorithm, BI is a subgraph of the incompatibility graph BHI
of HI .

Proof. We prove this by induction on the number of steps. At start, B = BG ∪ Bx is definitely a subgraph B1 = BGx .
Consider any step I of the algorithm. By the induction hypothesis, we can assume that BI is a subgraph of BHI

, and
we must show that BI+1 is a subgraph of BHI+1 .

Let xv be the non-edge of L that we process at step I. If BI ∪ CHI
(xv) is bipartite then no fill edge is added at this

step and we have HI+1 = HI and thus BHI+1 = BHI
. Note also that CHI

(xv) is a subset of the edges of BHI+1 by
definition. Hence, in this case the graph BI+1 = BI ∪ CHI

(xv) is a subgraph of BHI+1 .
In case the graph BI ∪ CHI

(xv) is not bipartite, BI+1 is obtained from BI by adding two adjacent vertices (x, v)

and (v, x) and the corresponding incompatibilities induced by the addition of the edge xv into HI . These new edges
correspond to incompatible pairs of HI+1 of the form ((x, v), (v, u)) or ((u, v), (v, x)), and of the form ((z, x), (x, v))

or ((v, x), (x, z)). By definition, the graph BHI+1 contains this kind of edges of BI+1. We see that all edges added to
BI to obtain BI+1 are also edges of BHI+1 . Hence the only way BI+1 can fail to be a subgraph of BHI+1 is if BI has
edges that do not belong to BHI+1 . Assume that there is an incompatibility p in BI which should not be present in
BHI+1 . This can happen only if the addition of fill edge xv removes this incompatibility p at step I. This means that p
is an incompatibility implied by the non-edge xv and thus p belongs to CHI

(xv). But by Observation 6, BI contains
no edge of CHI

(xv), thus this situation cannot happen, and BI+1 is a subgraph of BHI+1 . �

We have thus proved that BI is at all times a partial incompatibility graph of the intermediate graph HI . At the end
of the algorithm, since all non-edges that can cause incompatibilities are scanned, and all such incompatibilities are
added, we will argue that BI is indeed the correct incompatibility graph of HI . What remains to prove is that BI is a
bipartite graph at all steps. This is obvious if xv is not added as a fill edge at the step that processes xv, but it has to be
shown in the case xv is added as a fill edge. First we introduce the notion of conflicts.

Definition 8. At each step of the algorithm, a non-edgexv of the intermediate graphHI is called a conflict ifB∪CHI
(xv)

is not a bipartite graph.

Lemma 9. Let I be the step of the algorithm that processes non-edge xv ∈ L. If xv is a conflict then HI is not a
comparability graph.

Proof. Follows from Lemma 7 and Theorem 1 since an odd cycle in BI cannot disappear by the addition of edges or
vertices in BI . �

Now we start the series of results necessary to prove that at each step BI is a bipartite graph. We will prove this by
induction on the number of steps. For each step I, we will assume that BI is bipartite, and show that this implies that
BI+1 is bipartite. Since B1 = Bx ∪ BG is bipartite, the result will follow.

Let z1, z2 and u1, u2 be vertices of HI which fulfill the conditions of the first for-loop and the second for-loop of
Algorithm MCC, respectively. With the following result we establish the situations that occur in BI whenever an odd

1 Unconventionally, we need to use a capital letter as index, since all small letters as i, j, k, l are used in the proofs of the results of this section.

712 P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718

Fig. 3. Adding the fill edge xv in B.

cycle appears in BI+1 (see also Fig. 3). We denote a cycle on k vertices by Ck and a path on k vertices by Pk . A path
or a cycle is even or odd according to the parity of its number of vertices.

Observation 10. Assume that BI is bipartite. If xv is conflict at step I, then BI+1 is not bipartite only if there is an even
path in BI between the following pair of vertices: (i) ((x, z1), (x, z2)) or (ii) ((v, u1), (v, u2)) or (iii) ((x, z1), (u1, v)).

Proof. Given that BI is bipartite, if BI+1 contains an odd cycle, it must contain at least one vertex (x, v) or (v, x), since
we do not add edges between the other vertices. Considering the edge between (x, v) and (v, x) and the symmetry of
their neighborhood, there are only two ways an odd cycle can be created: (x, v) (or (v, x)) plus an even path between
two of its neighbors (notice that the three cases of the observation cover all possibilities); or (x, v) and (v, x) plus an
odd path between a neighbor of (x, v) and a neighbor of (v, x). These two cases are equivalent, in fact if there is an
odd path between a neighbor (a, b) of (x, v) and a neighbor (c, d) of (v, x), then there is an even path between the
neighbors (a, b) and (d, c) of (x, v) by the symmetry of their neighborhood. Hence, the pointed cases describe the
existence of an odd cycle in BI+1. �

Our goal is to show that these cases cannot happen in BI , and therefore BI+1 remains a bipartite graph. We prove
each case by showing that if such a path exists then there is an odd cycle in BI which is a contradiction to our assumption
that BI is a bipartite graph.

Let G be a graph and BG be its incompatibility graph. We denote a path on k−1 vertices in BG in the following form:
P = (x1, x2)(x2, x3) . . . (xk−1, xk); recall that a pair of adjacent vertices of G represents a vertex of BG. By definition,
if a path P in BG connects the vertices (x1, x2) and (xk−1, xk) then there exists also the transposed path of P denoted
by P T which connects the vertices (xk, xk−1) and (x2, x1), i.e., P T = (xk, xk−1) . . . (x3, x2)(x2, x1). Recall also that
there is always an edge (x, y)(y, x) in BG for each edge xy in G.

Lemma 11. If there is an even (respectively, odd) path connecting vertices (a, b) and (c, d) of BG then it has the
following form:

Pk+3 = (a, b)(b, q1)(q1, q2)(q2, q3) . . . (qk−1, qk)(qk, c)(c, d),

where k is an odd (respectively, even) number, aq1, bq2, qkd, cqk−1 /∈ E(G), and qiqi+2 /∈ E(G) for 1� i�k − 2.

Proof. By the definition of the edges of the incompatibility graph BG we have two types of edges among two vertices
of BG: either (u, v)(v, w) or (v, u)(w, v) such that uw /∈ E(G). The form of the path shown in the lemma uses only
the first kind of edges. But any edge (path on two vertices) of the kind (v, u)(w, v) can be turned into a path on four
vertices using only the first form of edges: (v, u)(u, v)(v, w)(w, v). Thus an even or odd path between two vertices of
BG has the form of the equation as shown and the constraints for the non-edges are justified by definition; otherwise
there is no path connecting the vertices. �

Suppose that BI is bipartite. If xv is a conflict at step I, then there is an inclusion maximal subset C′
HI

(xv) of CHI
(xv)

such that BI ∪ {C′
HI

(xv)} is a bipartite graph. For the rest of this section we define B ′
I = BI ∪ {C′

HI
(xv)}. Thus if BI

is bipartite, so is B ′
I , and any of the incompatibilities of CHI

(xv)\C′
HI

(xv) results in an odd cycle if added to B ′
I . This

is formalized in the following observation.

P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718 713

Observation 12. Assume that BI is bipartite. If xv is a conflict at step I, then there is a path on odd number of vertices
in B ′

I connecting (x, w) and (w, v), for some w ∈ NHI
(x) ∩ NHI

(v).

Observation 13. Assume that BI is bipartite. If xv is a conflict at step I, then there is a path in B ′
I of the form:

Pxv = (x, w)(w, p1)(p1, p2) . . . (p�−1, p�)(p�, w)(w, v),

where � is an even number, x 	= p� and v 	= p1.

Proof. By Lemma 11, Pxv contains � + 3 vertices. Notice that by the definition of the odd path, xp1, p�−1w, p�v /∈
E(HI), and � is an even number by the odd number of vertices in Pxv . Since xv is a conflict the incompatibility
(x, w)(w, v) is not present in B ′

I and thus x 	= p� and v 	= p1. �

Now let us show that the incompatibilities added during the first for-all-loop starting at line 10 do not create any odd
cycles.

Lemma 14. Assume that BI is bipartite. If xv is a conflict at step I then there is no path on even number of vertices
connecting (x, z1) and (x, z2) in B ′

I , for every pair of vertices z1, z2 such that z1, z2 ∈ NHI
(x) and z1, z2 /∈ NHI

[v].

Proof. Assume for the sake of contradiction that there is such an even path connecting them. Then by Lemma 11 it
has the following form:

Pz = (x, z1)(z1, q1)(q1, q2) . . . (qk−1, qk)(qk, x)(x, z2),

where k�3 is an odd number. If k = 1 then there is no path on even number of vertices connecting (x, z1) and
(x, z2). Observe that the path Pz contains k + 3 vertices. Notice that xq1, z1q2 /∈ E(HI) and z2qk, xqk−1 /∈ E(HI) and
qiqi+2 /∈ E(HI), for 1� i�k − 2; otherwise there is no even path (see also Lemma 11). Considering the path Pz in B ′

I ,
we have to distinguish between when z1 and z2 are adjacent in HI and when they are not. We will prove that in each
case there is an odd cycle in B ′

I which is a contradiction since B ′
I is a bipartite graph.

Case 1: z1z2 /∈ E(HI).
In this case it is easy to see that appending the pairs (z2, x) and (x, z1) in Pz we obtain an odd cycle in B ′

I :

Ck+4 = Pz (z2, x)(x, z1)︸ ︷︷ ︸
z1z2 /∈E(HI)

.

Case 2: z1z2 ∈ E(HI).
In this case we have to consider also the fact that xv is a conflict. By Observation 12 there is a vertex w which induces

an odd path Pxv in B ′
I . We distinguish between the cases where w is (i) non-adjacent to both z1, z2, (ii) adjacent only

to one of them and (iii) adjacent to both of them.
Case 2.1: wz1 /∈ E(HI) and wz2 /∈ E(HI).
In this case it is easy to see that the following odd cycle occurs in B ′

I :

Ck+6 = (w, x)Pz (z2, x)(x, w)︸ ︷︷ ︸
wz2 /∈E(HI)

(w, x).

Case 2.2: wz1 /∈ E(HI) and wz2 ∈ E(HI).
By Observation 13 there is an odd path Pxv connecting (x, w) and (w, v) in B ′

I ; recall that the path Pxv contains
�+ 3 vertices, where � is an even number and xp1 /∈ E(HI). Here we prove that if there is an even path which connects
(x, z1) and (x, z2) then there is a path Pz2z1 on r vertices where r is an even number which connects (z2, z1) and (z1, x).
Hence the result follows based on the path Pz2z1 , since the following odd cycle appears in B ′

I :

C�+r+5 = (w, z2)Pz2z1Pxv(v, w)(w, z2).

In order to prove the existence of the path Pz2z1 , notice that by the definition of the path Pz we have the following
non-edges: xq1, xqk−1, z1q2, z2qk and qiqi+2, for 1� i�k −2. If z1qk /∈ E(HI) then we have the following odd cycle:

Ck+2 = (x, z1)(z1, q1)(q1, q2) . . . (qk−1, qk)(qk, x)(x, z1).

714 P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718

In case z1qk ∈ E(HI) we have the following three cases to consider: If z1qi ∈ E(HI), 1� i�k then we have the
following even path (r = k + 3):

Pz2z1 = (z2, z1)(z1, qk)(qk, z1)(z1, qk−2) . . . (q3, z1)(z1, q1)(q1, z1)(z1, x).

If z1qi /∈ E(HI), z1qi+1, z1qi+2, . . . z1qk ∈ E(HI), and i is an even number, 1 < i < k, then we have the following
even path (r = k + 3):

Pz2z1 = (z2, z1) (z1, qk)(qk, z1)(z1, qk−2) . . . (z1, qi+1)(qi+1, qi)︸ ︷︷ ︸
k−i+1

Pi+1,

where Pi+1 = (qi, qi−1)(qi−1, qi−2) . . . (q1, z1)(z1, x).
If z1qi /∈ E(HI), z1qi+1, z1qi+2, . . . z1qk ∈ E(HI) and i is an odd number, 1 < i < k, then we have the following

odd cycle in B ′
I :

Ck+2 = (x, z1) (z1, qk−1)(qk−1, z1)(z1, qk−3) . . . (z1, qi+1)(qi+1, qi)︸ ︷︷ ︸
k−i

Pi+2,

where Pi+2 = (qi, qi−1)(qi−1, qi−2) . . . (q1, z1)(z1, x)(x, z1).
Case 2.3: wz1 ∈ E(HI) and wz2 ∈ E(HI).
In this case we prove that if there is an even path Pz which connects (x, z1) and (x, z2) then there is either (i) a path

Pxz1 (resp. Pxz2) on r1 vertices where r1 is an even number which connects (x, w) and (w, z1) (resp. (w, z2)) or (ii) a
path Pwz on r2 vertices where r2 is an even number which connects (w, z1) and (w, z2). In both cases the result follows
since if (i) holds then the following odd cycle appears in B ′

I (notice that z1v, z2v /∈ E(HI)):

C�+r1+5 = P T
xvPxz1(z1, w)(w, v)(v, w),

and if (ii) holds then we have the following odd cycle:

Cr2+3 = (v, w)Pwz(z2, w)(w, v)(v, w).

To justify the existence of the paths Pxz1 and Pxz2 , observe first that if wq1 /∈ E(HI) and wqk /∈ E(HI) then we have
the following even path (r1 = k + 5):

Pxz1 = (x, w) (w, x)(x, qk)(qk, qk−1) . . . (q2, q1)(q1, z1)(z1, w)︸ ︷︷ ︸
k+3

(w, z1). (1)

If wqi ∈ E(HI), 1� i�k, then we have the following even path (r = k + 1):

Pxz1 = (x, w) (w, qk−1)(qk−1, w)(w, qk−3)(qk−3, w) . . . (q4, w)(w, q2)(q2, w)︸ ︷︷ ︸
k−1

(w, z1).

Now in all other cases let qjw /∈ E(HI) and q1w, q2w, . . . , qj−1w ∈ E(HI), and let qiw /∈ E(HI) and qi+1w,

qi+2w, . . . , qkw ∈ E(HI), 1�j � i�k. Depending on the values of i and j, we have the following four cases to
consider:

• If i is an odd number and j is an even number then we have the following odd cycle in B ′
I :

Ck+2 =

⎧⎪⎪⎨
⎪⎪⎩

(x, w)Pj (qj , qj+1) . . . (qi−1, qi)︸ ︷︷ ︸
i−j

Pk−i (w, x)(x, w) if i < k

(x, w)Pj (qj , qj+1) . . . (qk−1, qk)︸ ︷︷ ︸
k−j

(qk, x)(x, w) if i = k,

where Pj = (w, q1)(q1, w)(w, q3)(q3, w) . . . (qj−3, w)(w, qj−1)(qj−1, qj)

and Pk−i = (qi, qi+1)(qi+1, w)(w, qi+3) . . . (qk−3, w)(w, qk−1)(qk−1, w).

P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718 715

• If i is an odd number and j is an odd number then we have the following even path:

Pxz1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(x, w)Pk−i (qi, qi−1) . . . (qj+1, qj)︸ ︷︷ ︸
i−j

Pj−1(w, z1) if 1 < j � i < k,

(x, w)(w, x)(x, qk) (qk, qk−1) . . . (qj+1, qj)︸ ︷︷ ︸
k−j

Pj−1(w, z1) if 1 < j and i = k,

(x, w)Pk−i (qi, qi−1) . . . (q2, q1)︸ ︷︷ ︸
i−1

(q1, z1)(z1, w)(w, z1) if j = 1 and i < k,

where Pj−1 = (qj , qj−1)(qj−1, w)(w, qj−3) . . . (w, q4)(q4, w)(w, q2)(q2, w)

andPk−i = (w, qk−1)(qk−1, w)(w, qk−3) . . . (qi+3, w)(w, qi+1)(qi+1, qi). Note that the first path has k +1 vertices,
whereas the next two paths have k + 3 vertices, respectively. Recall that if j = 1 and i = k, then the corresponding
path is described in Eq. (1).

• If i is an even number and j is an even number then we have the following even path (r1 = k + 3):

Pxz2 = (x, w)Pj (qj , qj+1) . . . (qi−1, qi)︸ ︷︷ ︸
i−j

Pk−i+1(w, z2),

where Pj = (w, q1)(q1, w)(w, q3)(q3, w) . . . (qj−3, w)(w, qj−1)(qj−1, qj)

and Pk−i+1 = (qi, qi+1)(qi+1, w)(w, qi+3) . . . (qk−2, w)(w, qk)(qk, w).
• If i is an even number and j is an odd number then we have the following even path (r2 = k + 3):

Pwz =

⎧⎪⎪⎨
⎪⎪⎩

(w, z1)(z1, w)Pj−1 (qj , qj+1) . . . (qi−1, qi)︸ ︷︷ ︸
i−j

Pk−i+1(w, z2) if 1 < j,

(w, z1)(z1, q1) (q1, q2) . . . (qi−1, qi)︸ ︷︷ ︸
i−1

Pk−i+1(w, z2) if j = 1,

where Pj−1 = (w, q2)(q2, w)(w, q4)(q4, w) . . . (qj−3, w)(w, qj−1)(qj−1, qj)

and Pk−i+1 = (qi, qi+1)(qi+1, w)(w, qi+3) . . . (qk−2, w)(w, qk)(qk, w). �

Now we show that adding the incompatibilities at the second for-all loop starting at line 12 does not create an odd
cycle, if we skip the first for-all loop starting at line 10.

Lemma 15. Assume that BI is bipartite. If xv is a conflict at step I, then there is no path on even number of vertices
connecting (v, u1) and (v, u2) in B ′

I , for every pair of vertices u1, u2 such that u1, u2 ∈ NHI
(v), u1, u2 /∈ NHI

[x] and
xu1, xu2 are marked non-edges.

Proof. Notice that the incompatibilities (x, w)(w, u1) and (x, w)(w, u2) are present in B ′
I since xu1 and xu2 are

marked non-edges. Thus if we swap vertices x and v, and if we set u1 and u2 to be z1 and z2, respectively, then the
proof is similar (identical) to that of Lemma 14. �

Thus we have seen that each of the two for-all loops maintains the bipartite graph if we skip the other for-all loop.
Let us now show that together they do not create a problem.

Lemma 16. Assume that BI is bipartite. If xv is a conflict at step I, then there is no path on even number of vertices
connecting (x, z1) and (u1, v) in B ′

I , for every pair of vertices z1, u1 such that u1 ∈ NHI
(v), u1 /∈ NHI

[x], xu1 is a
marked non-edge and z1 ∈ NHI

(x), z1 /∈ NHI
[v].

Proof. Assume for the sake of contradiction that there is an even path Pzu connecting them. By Lemma 11 this path
has the following form:

Pzu = (x, z1)(z1, y1) . . . (ys, u1)(u1, v),

716 P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718

where s�1 is an odd number. Hence the path Pzu contains s + 3 vertices. We will prove that in this case there is an
odd cycle in B ′

I which is a contradiction since B ′
I is a bipartite graph. First we prove that if z1u1 ∈ E(HI) then we

have the following odd cycle in B ′
I by the fact that z1 /∈ NHI

[v] and u1 /∈ NHI
[x]:

Cs+6 = Pzu(v, u1)(u1, z1)(z1, x)(x, z1).

Notice that if z1u1 ∈ E(HI) and s = 1 then there is no path on even number of vertices connecting (x, z1) and (u1, v)

in B ′
I . Thus we continue by knowing that z1u1 /∈ E(HI) and s�1. Notice also that by Observation 12 there is a vertex

w which induces a path Pxv with � + 3 vertices in B ′
I , where � is an even number. We distinguish four cases according

to whether w is adjacent or not to z1 or/and v1:
Case A: wz1 /∈ E(HI) and wu1 /∈ E(HI).
It is easy to see that the following odd cycle appears in B ′

I :

C�+s+6 = PzuP
T
xv(x, z1).

Case B: wz1 ∈ E(HI) and wu1 /∈ E(HI).
Here we have two cases to consider according to whether or not wy1 ∈ E(HI). In both cases we prove that an odd

cycle appears in B ′
I . First notice that if wy1 /∈ E(HI) then the following odd cycle occurs in B ′

I :

Cs+4 = (w, z1) (z1, y1)(y1, y2) . . . (ys−1, ys)(ys, u1)︸ ︷︷ ︸
s+1

(u1, v)(v, w)(w, z1).

Also notice that if wyi ∈ E(HI) for 1� i�s then we have the following odd cycle:

Cs+�+6 = (x, w) (w, y1)(y1, w)(w, y3) . . . (w, ys)︸ ︷︷ ︸
s

(ys, u1)(u1, v)P T
xv(x, w).

In case wy1, wy2, . . . , wyi−1 ∈ E(HI) and wyi /∈ E(HI) then we distinguish two cases according to the value of i. If
i is an odd number then the following odd cycle appears in B ′

I :

Cs+4 = (w, z1)(z1, w)Pi−1 (yi, yi+1) . . . (ys, u1)︸ ︷︷ ︸
s−i+1

(u1, v)(v, w)(w, z1),

where Pi−1 = (w, y2)(y2, w)(w, y4) . . . (yi−3, w)(w, yi−1)(yi−1, yi).
Otherwise (i is an even number) we have

Cs+�+6 = (x, w)Pi (yi, yi+1) . . . (ys, u1)︸ ︷︷ ︸
s−i+1

(u1, v)P T
xv(x, w),

where Pi = (w, y1)(y1, w)(w, y3) . . . (yi−3, w)(w, yi−1)(yi−1, yi).
Case C: wz1 ∈ E(HI) and wu1 /∈ E(HI).
This case is similar (symmetric) to the previous one. By swapping vertices z1 and u1 we conclude to the same result;

notice that the incompatibility (x, w)(w, u1) is present in B ′
I since xu1 is a marked non-edge of HI .

Case D: wz1 ∈ E(HI) and wu1 ∈ E(HI). Here we obtain the following odd cycle in B ′
I :

C�+9 = (z1, w)(w, v)P T
xv(x, w)(w, u1)(u1, w)(w, z1)(z1, w). �

Now we are ready to reach the desired result.

Lemma 17. At each step of the algorithm BI is a bipartite graph.

Proof. At the beginning of the algorithm, we know that BG ∪ Bx is bipartite, and that all possible conflicts of Gx are
contained in L. Assume that BI is a bipartite graph. We show that BI+1 is also a bipartite graph. At step I, we have two
cases to consider. If HI+1 = HI , then this is because BI+1 = BI ∪ CHI

(xv) is a bipartite graph. Let HI+1 be obtained
from HI by adding fill edge xv. Then BI+1 is obtained from BI by adding an isolated edge (x, v)(v, x), and some

P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718 717

incompatibilities incident to the endpoints of this edge, implied by non-edges outside of L. These incompatibilities are
added by the first for-loop at line 10 and the second for-loop at line 12.

For the first for-loop if the set NHI+1(x) ∩ NHI+1 [v] contains only one vertex, say z1, then there is an even cycle in
BI+1 formed by the vertices (x, v), (v, z1), (v, x), (z1, v) and no odd cycle is created in BI+1. It is easy to see that
the same argument (for one vertex u1) holds for the second for-loop. Now in general notice that any odd cycle created
in BI+1 will still be an odd cycle in B ′

I+1 by Observation 12 since BI+1 ⊆ B ′
I+1. But since B ′

I is bipartite any odd
cycle in B ′

I+1 can be created only if the conditions of Observation 10 are true. Thus by Lemmata 14–16 we justify that
the corresponding cases cannot exist and therefore B ′

I remains bipartite by applying the two for-loops, i.e., B ′
I+1 is a

bipartite graph. Hence the result follows from the fact that BI+1 ⊆ B ′
I+1. �

Theorem 18. The graph H returned by Algorithm MCC is a minimal comparability completion of Gx .

Proof. First we show that H is a comparability completion of Gx . During the algorithm, every time a new incompatible
pair is created, the corresponding incompatibility is added to BI unless it is implied by a non-edge of L. Incompatibilities
implied by members of L that remain non-edges are added one by one until L is empty. At the end of the algorithm, the
graph B contains all incompatibilities implied by the non-edges in H, since L=∅. Thus B is the correct incompatibility
graph of H, i.e., B = BH . Since BH is bipartite graph by Lemma 17, the resulting graph H is a comparability graph by
Theorem 1.

Now we want to prove that H is minimal, that is, if any subset of the fill edges is removed the remaining graph is
not comparability. Recall that at any step of the algorithm we do not remove any edges from the graph BI (see also
Lemma 7). Assume for the sake of contradiction that there is a subset F of the fill edges such that H ′ = H − F is
a comparability graph. First note that BH ′ is obtained from BH by removing the vertices (x, u) and (u, x), and then
adding the set CH ′(xu), for every xu ∈ F . Let I be the earliest step in which Algorithm MCC adds a fill edge xv ∈ F .
Thus no non-edge of Gx belonging to F has been processed before step I, and HI is a subgraph of H ′. Furthermore,
BI does not contain any edge belonging to

⋃
xu∈F CH ′(xu), and BI does not contain any pair of vertices (x, u) and

(u, x), for xu ∈ F . Thus BI is a subgraph of BH ′ . Now, observe that for each xu ∈ F , CHI
(xu) ⊆ CH ′(xu), since

NHI
(x) ⊆ NH ′(x). In particular, CHI

(xv) ⊆ CH ′(xv). Since xv is a non-edge of H ′, all edges of CH ′(xv) are present
in BH ′ . Therefore BI ∪ CHI

(xv) is a subgraph of BH ′ . In Algorithm MCC, at step I, we know that BI ∪ CHI
(xv)

contains an odd cycle, otherwise xv would not be a fill edge. Since it is not possible to remove an odd cycle by adding
edges or vertices, this means that there is an odd cycle in BH ′ . This gives the desired contradiction, because by Theorem
1 H ′ cannot be a comparability graph as assumed. �

5. Time required to compute minimal comparability completions

Let G be an arbitrary graph on n vertices and m edges. First we prove the following observation.

Observation 19. The incompatibility graph BG of a given graph G has O(mn) edges.

Proof. Let G be a graph on n vertices and m edges, and let BG be its incompatibility graph. By definition BG has
precisely 2m vertices. Clearly BG contains m edges of the form (a, b)(b, a). For the other edges of BG (incompatibilities)
it is easy to see that each edge of G (two vertices of BG) can define at most O(n) incompatibilities in BG since they
are induced by the neighbors of its endpoints in G. Thus BG has O(nm) edges. �

Now we are ready to give the time bounds of the Algorithm MCC.

Lemma 20. Given a comparability graph G and its incompatibility graph BG, Algorithm MCC computes a minimal
comparability completion of Gx in O(n2m) time.

Proof. Let G be a comparability graph on n vertices and m edges, and let BG be its incompatibility graph. Since only
non-edges incident to x are processed, |L| = O(n), and since non-edges removed from L are never reinserted in L, the
algorithm has O(n) steps. By Observation 19 BG has O(nm) edges. Since |Nx | = O(n), Bx has O(n) vertices and thus
O(n2) edges. At each of the O(n) steps, we can add at most O(n) edges to B since |CH (xv)| = O(n) for each xv ∈ L.

718 P. Heggernes et al. / Discrete Applied Mathematics 156 (2008) 705–718

Thus at all steps B has O(nm) edges. What dominates our time complexity is to check whether or not B ∪ CH (xv) is
bipartite. This check can be done in time linear in the size of B, namely O(nm). Therefore, each step of the algorithm
requires O(nm) time, which gives a total running time of O(n2m). �

We point out that given an incompatible pair ((a, b)(b, c)) of G there is an O(n+m) time algorithm deciding whether
its incompatibility graph has an odd cycle [6]. However, it is not straightforward to use this result for checking whether
the graph BI ∪ CHI

(xv) of Algorithm MCC is bipartite in O(n + m) time, since at each step of the algorithm, BI is
merely a subgraph of BHI

, and BI is not necessarily equal to BHI
before the last step. The following result follows

from Lemma 3, Lemma 20, and Algorithm MCC.

Theorem 21. There is an algorithm for computing a minimal comparability completion of an arbitrary graph G in
O(n3m) time.

6. Concluding remarks

In this paper, we have shown that minimal comparability completions of arbitrary graphs can be computed in
polynomial time. Comparability graphs can be recognized in time O(n2.38) [13]. As a comparison, both chordal and
interval graphs can be recognized in linear time; the best known time for minimal chordal completions is O(n2.38)

[5], and for minimal interval completions is O(nm) [14]. Hence even with the straight forward O(n3m) running time
analysis of our algorithm for computing minimal comparability completions the difference between recognizing and
completing is comparable to the same difference for chordal and interval graphs.

Although minimal comparability completions can be computed in polynomial time, this does not imply that the
following problem is solvable in polynomial time: Given a comparability completion H of an arbitrary graph G, is H
a minimal comparability completion of G? We would like to know whether this problem can be solved in polynomial
time. In fact, it would be very useful and interesting to obtain a characterization of minimal comparability completions.

There are minimal comparability completions which the algorithm given in this paper cannot compute. For the goal
of using minimal comparability completions in the search for minimum comparability completions, we would need an
algorithm that is able to generate any possible minimal comparability completion of a given graph. We leave it an open
problem to design an algorithm that is both efficient and able to do this.

References

[1] A. Berry, P. Heggernes, Y. Villanger, A vertex incremental approach maintaining chordality, Discrete Math. 306 (3) (2006) 318–336.
[2] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[3] S.L. Hakimi, E.F. Schmeichel, N.E. Young, Orienting graphs to optimize reachability, Inform. Process. Lett. 63 (5) (1997) 229–235.
[4] P. Heggernes, F. Mancini, Minimal split completions of graphs, LATIN 2006: Theoretical Informatics, Lecture Notes in Computer Science,

vol. 3887, Springer, NY, 2006, pp. 592–604.
[5] P. Heggernes, J. A. Telle,Y. Villanger, Computing minimal triangulations in time O(n� log n)=o(n2.376), in: Proceedings of SODA 2005—16th

Annual ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 907–916.
[6] D. Kratsch, R.M. McConnell, K. Mehlhorn, J.P. Spinrad, Certifying algorithms for recognizing interval graphs and permutation graphs, SIAM

J. Comput. 36 (2006) 326–353.
[7] D. Kratsch, J.P. Spinrad, Between O(nm) and O(n�), in: Proceedings of SODA 2003—14th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2003, pp. 709–716.
[8] D. Kratsch, J.P. Spinrad, Minimal fill in o(n3) time, Discrete Math. 306 (3) (2006) 366–371.
[9] A. Natanzon, R. Shamir, R. Sharan, Complexity classification of some edge modification problems, Discrete Appl. Math. 113 (2001) 109–128.

[10] I. Rapaport, K. Suchan, I. Todinca, Minimal proper interval completions, in: Proceedings of WG 2006—32nd International Workshop on
Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 4271, Springer, NY, 2006, pp. 217–228.

[11] F.S. Roberts, Graph Theory and Its Application to Problems of Society, SIAM, Philadelphia, PA, 1978.
[12] D. Rose, R.E. Tarjan, G. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266–283.
[13] J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (1985) 658–670.
[14] K. Suchan, I. Todinca, Minimal interval completion through graph exploration, in: Proceedings of ISAAC 2006—17th International Symposium

on Algorithms and Computation, Lecture Notes in Computer Science, vol. 4288, Springer, NY, 2006, pp. 517–526.
[15] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete Math. 2 (1981) 77–79.

	Minimal comparability completions of arbitrary graphs62626262
	Introduction
	Notation and background
	Comparability graphs
	A vertex incremental approach for minimal completions

	An algorithm for minimal comparability completion of Gx
	Correctness of Algorithm MCC
	Time required to compute minimal comparability completions
	Concluding remarks
	References

