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Abstract

The Sturm–Liouville problem −y′′ + qy = �y, y(0) cos � = y′(0) sin �, (y′=y)(1) = h(�)=g(�) is studied,
where h and g are real polynomials. Generalized norming constants 
kn associated with eigenvalues n are
de6ned and formulae are given for recovering the m-function from these constants. This leads to a uniqueness
theorem for the associated inverse problem.
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1. Introduction

In this article we continue our treatment of the regular Sturm–Liouville equation

ly := −y′′ + qy = �y on [0; 1] (1.1)

with q∈AC[0; 1], subject to the boundary conditions

y(0) cos �= y′(0) sin �; �∈ [0; �) (1.2)
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and

y′

y
(1) = f(�); (1.3)

where

f(�) =
h(�)
g(�)

and g and h are polynomials with real coeFcients and no common zeros. When f(�) = ∞, (1.3) is
interpreted as a Dirichlet condition y(1) = 0.

This type of boundary condition has been discussed by numerous authors, e.g., [1,2,4–7,9,11–
13,18–21]. For applications to science and engineering, see the references [7].

Our basic goal is to obtain formulae for the Titchmarsh–Weyl m-function in terms of certain
spectral data for (1.1)–(1.3). Here we recall

De�nition 1.1. Let v(x; �) be a non-identically zero solution of (1.1) satisfying (1.3). The Weyl
m-function of (1.1)–(1.3) is de6ned by

m(�) =
v′(0; �) cos �+ v(0; �) sin �
v′(0; �) sin �− v(0; �) cos �

: (1.4)

The poles of the m-function are precisely the eigenvalues of (1.1)–(1.3) and the order of each pole
coincides with the multiplicity (which we de6ne in Section 2) of the corresponding eigenvalue. The
spectral data will consist of the eigenvalues �n and a generalization (see below) 
kn of the “norming
constants” which, for problems with �-independent boundary conditions, take the form


0
n =

∫ 1

0

v(x; �n)2

v(0; �n)2 dx

in the case � �= 0.
It is known (even for the case of f(�) and g(�) aFne with real coeFcients, cf. [3]) that the

eigenvalues may be nonreal or even nonsemisimple. In fact one of our main contributions is to 6nd
(as far as we know for the 6rst time) an appropriate generalization of the norming constants for
such eigenvalues. We employ a bilinear form on L2 ⊕CM , for suitable M , evaluated on appropriately
de6ned “links” of the Jordan chains for an operator L corresponding to (1.1)–(1.3). This is equivalent
to using a sesquilinear form � on left and right Jordan chains for L.

It is worth noting that the above form � is in general inde6nite, in contrast with the work of
several of the works cited above, e.g., [6,21], where f is a Nevanlinna function (i.e., f∈N0). In
our case f belongs to a generalized Nevanlinna class Nk and as a consequence L is self-adjoint in a
Pontryagin, not Hilbert, space in general. Thus the nonreality and non-semi-simplicity noted above is
limited to a 6nite number of eigenvalues and can be seen directly from our data �n and 
kn. We note
that m is also a generalized Nevanlinna function, a fact exploited in [10,11] and several references
therein. The existence (and uniqueness) of � was noted by Russakovskii [18,19]. The general case
can be tackled via Bezoutians (cf. [19]), but to shorten the presentation we make an assumption
(see Section 2) about the simplicity of the roots of g or of h since then there is a particularly simple
formula for �—see (2.2).
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The basic constructions noted above are introduced in Section 2, and the singular part of the
Laurent series of m at �n is developed in terms of the �n and 
kn in Section 3. The full formulae
for the recovery of m are given for the non-Dirichlet and Dirichlet cases in Sections 4 and 5,
respectively, our main results being Theorems 4.4, 5.2 and 5.3.

An important by-product of our formulae is an “inverse uniqueness” result. From [7] we know
that q; � and f depend uniquely on m (i.e., if q̃; �̃ and f̃ also give rise to the same m, then
q = q̃; � = �̃ and f = f̃). It will follow from our formulae that q; � and f also depend uniquely
on �n and 
kn (see Theorem 6.1), thus generalizing the classical result of BOorg [8], Krein [15] and
Marchenko [16] to boundary conditions of the form (1.3). In fact, combining the results of [7] with
those here, we see that each member of the following list of data sets depends uniquely on each of
the others: (q; �; f); m; (�; �) where �(x; �) is the PrOufer angle (speci6ed at x=1); and (�n; 
kn). Pairs
of spectra (�n; �n), where �n corresponds to (q; �; f), may be added to this list although obviously
� must then be assumed known.

2. Preliminaries

If deg(g)¿ deg(h) then we set M = deg(g) and assume that g is monic with real simple zeros,
and if deg(g)¡ deg(h) then we set M = deg(h) and assume that h is monic with real simple zeros.

We now de6ne v as the solution of (1.1) satisfying the terminal conditions

v(1; �) = g(�);

v′(1; �) = h(�)

and write

D(�) = v′(0; �) sin �− v(0; �) cos �;

where, as in the rest of this paper, ′ = 9=9x giving v′(1; �) = 9v(x;�)
9x |x=1 and ( j) = 9 j=9�j giving

v(j)(x; ) = 9 jv(x;�)
9� j |�=.

The eigenvalues �n are the zeros of D(�), listed by increasing real part, according to multiplicity
as zeros of D(�). For brevity (1.1)–(1.3) will frequently be denoted by the shorthand (�; f; q).

At various points in the analysis we shall need to distinguish the cases deg(h)6 deg(g) (respec-
tively deg(h)¿ deg(g)). The abbreviation ‘resp*’ will be used consistently for this purpose. Our
assumptions on g and h allow us to write f(�) (1.3) in the form

f(�)(resp∗ 1=f(�)) = b−
M∑
k=1

bk
�− ck (2.1)

in the case deg(h)6 deg(g) (resp* deg(h)¿ deg(g)), where the coeFcients b; bk ; ck for k=1; : : : ; M
are real.

We de6ne a sesquilinear form on H = L2[0; 1] ⊕ CM by

〈Y; Z〉 =
∫ 1

0
y Tz +

M∑
k=1

yk Tzk
bk

(
resp∗

∫ 1

0
y Tz −

M∑
k=1

yk Tzk
bk

)
; (2.2)
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where y and z denote the L2-components of Y and Z , respectively, and (yi) and (zi) the CM
components of Y and Z . For later use, we de6ne the bilinear form [X; Y ] = 〈X; TY 〉 for X; Y ∈H .

The boundary value problem (1.1)–(1.3) can then be posed in the Pontryagin space (H; 〈·; ·〉) as
an eigenvalue problem for the operator

LY =




ly

c1y1 − b1y(1)

: : :

cMyM − bMy(1)





resp∗




ly

c1y1 − b1y′(1)

: : :

cMyM − bMy′(1)





 with Y =



y

y1

: : :

yM


 (2.3)

and domain

D(L) =

{
Y ∈H :y; y′ ∈AC; ly∈L2; y(0) cos �= y′(0) sin �; [y′ − by](1) =

M∑
k=1

yk

}
(

resp∗ D(L) =

{
Y ∈H :y; y′ ∈AC; ly∈L2; y(0) cos �= y′(0) sin �; [y − by′](1) =

M∑
k=1

yk

})
:

Note that � is an eigenvalue of (1.1)–(1.3) with eigenfunction y if and only if � is an eigenvalue
of L and a corresponding eigenvector of L is

Y =




y(x)
b1
c1−� y(1)

...

bM
cM − � y(1)







resp∗




y(x)

b1

c1 − � y
′(1)

...

bM
cM − � y

′(1)







provided that � �= cj; j = 1; : : : ; M . The operator L is self-adjoint and bounded below with compact
resolvent in the Pontryagin space H from which we can deduce that the spectrum of L is discrete,
has a 6nite number of nonreal eigenvalues, and has +∞ as its only accumulation point. These results
can be found in [18], although some are only stated, and the inner product is not speci6ed explicitly.
Complete proofs in the Hilbert space case can be found in [6], and they extend readily to the case
here. See also Remarks 2.1.

For � �= cj; j = 1; : : : ; M; let

V (x; �) =




v(x; �)

b1

c1 − � v(1; �)
...

bM
cM − � v(1; �)







resp∗




v(x; �)

b1

c1 − � v
′(1; �)

...

bM
cM − � v

′(1; �)
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and in the case of �= cj let

V (x; cj) =




v(x; cj)

0

...

0

v′(1; cj)

0

...

0

0




=




v(x; cj)

0

...

0

−bjg(1)(cj)

0

...

0

0







resp∗




v(x; cj)

0

...

0

v(1; cj)

0

...

0

0




=




v(x; cj)

0

...

0

−bjh(1)(cj)

0

...

0

0







:

The V (x; �) will provide the key to de6ning the generalized norming constants, but 6rst they need
an appropriate normalization as de6ned below. Let

U (x; �) =




sin �
V (x; �)
v(0; �)

; � �= 0

V (x; �)
v′(0; �)

; �= 0
for all x∈ [0; 1]; �∈C

(U (x; �) has a pole when v(0; �) = 0 in the case � �= 0 and when v′(0; �) = 0 in the case �= 0, and
is consequently not de6ned at such values of �).

Let n denote the eigenvalues of (�; f; q) listed without repetition and let +n¿ 1 denote the
multiplicity of the eigenvalue n; n= 0; 1; 2; : : : . For large n, n = �n++ where

+=
∞∑
n=0

(+n − 1): (2.4)

Here 06 +¡∞, [18], 6niteness again following from self-adjointness of L in H . For an eigenvalue
n, let

U 0
n (x) = U (x; n):

If +n ¿ 1 we denote the associated root functions, [17, pp. 16–21], by

U jn (x) = U (j)(x; n); j = 1; : : : ; +n − 1:

It should be noted [7, Lemma 2.1], that the algebraic multiplicity of the eigenvalue n of (1.1)–(1.3)
coincides with the order of n as a zero of D. Moreover, the eigenvalues are geometrically simple
and the U jn ; 06 j6 +n − 1, form a Jordan basis of the algebraic eigenspace at n. We denote the
L2[0; 1] components of U (j)

n (x) and V (j)(x; �) by u(j)
n (x) and v(j)(x; �). It should be observed that

u(j)
n (x) and v(j)(x; �) are also the jth partial derivatives of u(x; �) and v(x; �) with respect to � and

evaluated at n and �, respectively.
Note that u(x; �) is a solution of (1.1) and for � �= 0, u(0; �)=sin � and consequently u(j)(0; �)=0

for all j¿ 1. At � = n, u′(0; �) sin � − u(0; �) cos � has a zero of order +n, so u(j)′(0; n) = 0 for
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16 j6 +n−1 and u(+n)′(0; n) �= 0. In the case �= 0, u′(0; �) = 1 giving u(j)′(0; �) = 0 for all j¿ 1,
and u(0; �) has a zero of order +n at n, giving u(j)(0; n)=0 for 06 j6 +n−1 and u(+n)(0; n) �= 0.
In addition we observe that L̃V (x; �) = �V (x; �) and L̃U (x; �) = �U (x; �) for all x∈ [0; 1] where L̃ is
the extension of L to the domain

D(L̃) = {Y ∈H :y; y′ ∈AC; ly∈L2}:
We are now ready for the construction of our generalized norming constants associated with the
eigenvalue n via the equations


jn =
[
U jn ; U

+n−1
n

]
; j = 0; : : : ; +n − 1:

Together with the �n, these will form our data from which the m-function will be reconstructed.

Remark 2.1. Since L is self-adjoint in H , the nonreal eigenvalues appear as a 6nite number of
conjugate pairs, even as to multiplicity. Moreover, if n is nonreal then the above constructions
also appear in conjugate pairs, e.g., v(x; Tn) = v(x; n), U j(x; Tn) = U j(x; n) and similarly for the

jn; j = 0; : : : ; +n − 1.

3. The Laurent expansion of m

The 6rst lemma in this section will supply the necessary background to express the coeFcients
of the negative power terms in the Laurent expansion of m(�) at an eigenvalue n in terms of the
� derivatives of u(0; �) and u′(0; �) at n.

Lemma 3.1. Let Z(�) be analytic in a neighbourhood of a and have a zero of order N at a. If
ak = (1=k!)(9kZ=9�k)(a) then the Laurent expansion of 1=Z about a has the form

1
Z

(�) = E(�) +
N∑
k=1

pk
(�− a)k ;

where E(�) is analytic in a neighbourhood of a and

pN =
1
aN
;

pN−j = − 1
aN

j−1∑
k=0

pN−kaN+j−k ; j = 1; : : : ; N − 1:

The proof is left to the reader.
The next theorem links the derivatives u(+n+j)(0; n) to the norming constants 
jn; j= 0; : : : ; +n− 1.

Theorem 3.2. For j = 0; : : : ; +n − 1,

+n
jn

(
+n + j

+n

)
=

{
u(+n+j)′(0; n) sin �; � �= 0;

−u(+n+j)(0; n); �= 0:
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Proof. Integration by parts, along with the de6nitions of V (x; �) and [·; ·], gives

(�− �)[V (x; �); V (x; �)]

=[�V (x; �); V (x; �)] − [V (x; �); �V (x; �)]

=[L̃V (x; �); V (x; �)] − [V (x; �); L̃V (x; �)]

=[v(x; �)v′(x; �) − v′(x; �)v(x; �)]x=1
x=0

+
M∑
k=1

v(1; �)v(1; �)
bk

[(
ckbk
ck − � − bk

)
bk
ck − � −

(
ckbk
ck − � − bk

)
bk
ck − �

]

=[v(1; �)v′(1; �) − v′(1; �)v(1; �)] − [v(0; �)v′(0; �) − v′(0; �)v(0; �)]

+(�− �)v(1; �)v(1; �)
M∑
k=1

bk
(ck − �)(ck − �)

=v(1; �)v(1; �)[f(�) − f(�)] − [v(0; �)v′(0; �) − v′(0; �)v(0; �)]

+v(1; �)v(1; �)[f(�) − f(�)]

=v′(0; �)v(0; �) − v(0; �)v′(0; �)

(resp∗ (�− �)[V (x; �); V (x; �)]

=[�V (x; �); V (x; �)] − [V (x; �); �V (x; �)]

=[L̃V (x; �); V (x; �)] − [V (x; �); L̃V (x; �)]

=[v(x; �)v′(x; �) − v′(x; �)v(x; �)]1
0

+
M∑
k=1

v′(1; �)v′(1; �)
[
bk
ck − � − bk

ck − �
]

=v′(0; �)v(0; �) − v(0; �)v′(0; �)):

Thus, independently of deg(g) and deg(h),

(�− �)[V (x; �); V (x; �)] = v′(0; �)v(0; �) − v(0; �)v′(0; �): (3.1)

In the above we have assumed �; � �= cj for all j = 1; : : : ; M . However, by continuity, (3.1) still
holds if � or � is equal to cj for some j.

We consider next the case � �= 0. Dividing (3.1) by v(0; �)v(0; �) and multiplying by sin � we
have

(�− �)
sin �

[U (x; �); U (x; �)] = u′(0; �) − u′(0; �):

Taking the jth derivative, j¿ 1, of the above expression with respect to � we see that

(�− �)[U (j)(x; �); U (x; �)] + j[U (j−1)(x; �); U (x; �)] = sin �u(j)′(0; �) (3.2)
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and hence for all j¿ 1:

j[Uj−1
n (x); U 0

n (x)] = sin �u(j)′(0; n): (3.3)

In particular

[U+n−1
n (x); U 0

n (x)] =
sin �
+n
u(+n)′(0; n): (3.4)

DiVerentiating (3.2) k¿ 1 times with respect to � we obtain

(� − �)[U (j)(x; �); U (k)(x; �)] + k[U (j)(x; �); U (k−1)(x; �)] = j[U (j−1)(x; �); U (k)(x; �)]

which evaluated at �= n = � results in the following recurrence formula:

k[U jn (x); U k−1
n (x)] = j[Uj−1

n (x); U kn (x)]:

Iterating the above relation we obtain(
+n + k − 1

k

)
[U+n−1
n ; U kn ] = [U+n+k−1

n ; U 0
n ]

which along with (3.3) and (3.4) gives

sin �u(j++n)′(0; n) = (+n + j)[Uj++n−1
n ; U 0

n ]

= (+n + j)
(+n + j − 1)!
(+n − 1)!j!

[U+n−1
n ; U jn ]

= +n
(+n + j)!
+n!j!


jn;

as required.
Now assume �= 0. Dividing (3.1) by v′(0; �)v′(0; �) we have

(�− �)[U (x; �); U (x; �)] = u(0; �) − u(0; �):
Thus we may proceed as in the non-Dirichlet case but with u′ replaced by u and sin � by −1.

Combining Lemma 3.1 and Theorem 3.2 we are able to express the coeFcients of the singular
part of the Laurent expansion of m(�) in terms of the norming constants as follows. Note that 
0

n �= 0
–cf. (3.4) and its analogue for �= 0 (see above).

Corollary 3.3. The Laurent expansion of m(�) about n takes the form

m(�) = En(�) +
+n∑
k=1

pkn
(�− n)k ;

where En(�) is analytic in a neighbourhood of n and

p+nn =
(+n − 1)!

0
n
;

p+n−jn = −
j−1∑
k=0

p+n−kn

j−kn

(j − k)!
0
n
j = 1; : : : ; +n − 1:
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Proof. We begin by considering the non-Dirichlet case (i.e., � �= 0). Simple manipulation using the
de6nitions of m(�) and u′(0; �) shows that the Weyl m-function (1.4) can expressed as

m(�) = cot �+
1
Z(�)

;

where

Z(�) = sin �u′(0; �) − cos � sin �:

Applying Lemma 3.1, we obtain

m(�) = En(�) +
+n∑
k=1

pkn
(�− n)k ;

where En(�) is analytic in a neighbourhood of n and

akn =
1
k!
dkZ
d�k

(n);

p+nn =
1
a+nn
;

p+n−jn = − 1
a+nn

j−1∑
k=0

p+n−kn a+n+j−kn ; j = 1; : : : ; M − 1:

But then by Theorem 3.2

a+n+jn =
sin �

(j + +n)!
u(+n+j)′(0; n) =


jn
(+− 1)!j!

giving

p+nn =
(+n − 1)!

0
n
;

p+n−jn = −
j−1∑
k=0

p+n−kn 
j−kn
(j − k)!
0

n
;

concluding the non-Dirichlet case.
For the Dirichlet case �= 0, the de6nitions of m(�) and u(0; �) give

m(�) = − 1
u(0; �)

:

Applying Lemma 3.1 with Z(�) = −u(0; �) we obtain

a+n+jn =
−1

(+n + j)!
u(+n+j)(0; n) =


jn
(+n − 1)!j!

;

and we now proceed as in the non-Dirichlet case.
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4. Representation of the m-function

Our task now is to represent the analytic part of m, i.e., En of Corollary 3.3, in terms of the spectral
data. From this point on, asymptotics will be needed for several quantities related to (1.1)–(1.3).
For the m-function, the basic asymptotics as �→ −∞ are as follows.

Theorem 4.1 (Binding et al. [7, Lemma 4.1]). For �→ −∞ we have

m(�) =




cot �+ O

(
1√|�|

)
; � �= 0;

√
|�| + O(1); �= 0:

Here and below we take positive square roots. We recall that for large n, each eigenvalue is
simple. Thus asymptotic expressions for the norming constants relate only to simple eigenvalues,
so only 
0

n will be required, and we now give the corresponding asymptotics to the order we
need.

Theorem 4.2. For q∈W 1;1(0; 1) (i.e., q in AC), the norming constants for (�; f; q) obey the
following asymptotics as n→ ∞:


0
n =




sin2 �
2

+ O
(

1
n2

)
; � �= 0;

1
2n

+ O
(

1
n4

)
; �= 0:

(4.1)

Remark. Note that for q∈L1 we obtain the above theorem but with O(1=n2) replaced by O(1=n)
which is suFcient for us in the case � �= 0, but is inadequate for � = 0 where we need O(1=n1+2)
for some 2¿ 0. Weaker conditions than q∈AC which suFce for us are q∈Hs for some s¿ 0 [14],
or q HOolder continuous for some non-zero HOolder exponent [23].

Proof. As +n = 1 for large n


0
n = [U 0

n ; U
0
n ] =

∫ 1

0
u2
n +

M∑
k=1

(
bk

ck − n

)2 u2
n(1)
bk

=
∫ 1

0
u2
n + f(1)(n)u2

n(1);

(
resp∗ 
0

n = [U 0
n ; U

0
n ] =

∫ 1

0
u2
n −

M∑
k=1

(
bk

ck − n

)2 (u′n)2(1)
bk

=
∫ 1

0
u2
n +
f(1)

f
(n)u2

n(1)

)
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(recall f(1) means 9f=9�). But from [7, Appendix] we have as n→ ∞

u2
n(x; �) =




2 cos
√
nx√
n

[cos �sin �sin
√
nx+sin2 �

∫ x

0
q(t) cos

√
nt sin

√
n(x−t) dt]

+ sin2 � cos2
√
nx + O

(
e|I

√
nx|

n

)
; � �= 0;

sin2 √
nx

n
+

2 sin
√
nx

3=2
n

∫ x

0
q(t) sin

√
nt sin

√
n(x − t) dt

+ O

(
e|I

√
nx|

2
n

)
; �= 0:

Recalling that M = max{deg(g); deg(h)} and +=
∑∞
j=0 (+j − 1), we obtain from [7, Theorem 2.2]

√
n =

{
(++ n−M)�+ O(1=n); � �= 0;

(++ n+ 1
2 −M)�+ O(1=n); �= 0

(4.2)

(resp*

√
n =

{
(++ n+ 1

2 −M)�+ O(1=n); � �= 0;

(++ n+ 1 −M)�+ O(1=n); �= 0;
(4.3)

which gives

u2
n(1) =




sin2 �+ O(1=n); � �= 0;

1
n

+ O(1=n3); �= 0

(resp*

u2
n(1) =

{
O(1=n2); � �= 0;

O(1=n4); �= 0

and

u2
n(1)f(1)(n)

(
resp∗ u2

n(1)
f(1)

f
(n)

)
=

{
O(1=n2); � �= 0;

O(1=n4); �= 0:

From the above expressions for
√
n and u2

n(x) we get∫ 1

0
cos2

√
nt dt =

1
2

+
sin 2

√
n

2
√
n

=
1
2

+ O
(

1
n2

)
;

∫ 1

0
sin2

√
nt dt =

1
2

+ O
(

1
n2

)
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and

1√
n

∫ 1

0
2 cos

√
nx sin

√
nx dx=

1√
n

∫ 1

0
sin 2

√
nx dx

=
1 − cos 2

√
n

2n

= O(1=n2):

Further as n→ ∞∫ 1

0

2 cos
√
nx√
n

∫ x

0
q(t) cos

√
nt sin

√
n(x − t) dt dx

=
∫ 1

0
2q(t) cos

√
nt

∫ 1

t

cos
√
nx sin

√
n(x − t)√

n
dx dt

=
∫ 1

0

q(t) cos
√
nt√

n

∫ 1

t

[
sin

√
n(2x − t) − sin

√
nt

]
dx dt

= − 1
2
√
n

∫ 1

0
(1 − t)q(t) sin 2

√
nt dt + O(1=n)

= − 1
4n

[
q(0) +

∫ 1

0

d[(1 − t)q(t)]
dt

cos 2
√
nt dt

]
+ O(1=n)

= O(1=n):

Similarly∫ 1

0

2 sin
√
nx√
n

∫ x

0
q(t) sin

√
nt sin

√
n(x − t) dt dx = O(1=n):

The result now follows by combining the above asymptotics.

In the remainder of this paper we assume that 0 is not an eigenvalue of (�; f; q). This does not
result in a loss of generality, since if 0 is an eigenvalue we can replace the problem (�; f(�); q(x))
by (�; f(�+ 6); q(x) − 6), where 6∈R is not an eigenvalue of (�; f; q). Then (�; f(�+ 6); q(x) − 6)
does not have 0 as an eigenvalue. The spectrum of (�; f(� + 6); q(x) − 6) is obtained from that of
(�; f(�); q(x)) by translation through 6. The norming constants are the same for both problems.

Lemma 4.3. If � is not an eigenvalue of (1.1)–(1.3), then

m(�) = m(0) +
∞∑
n=0

+n∑
j=1

pjn

[
1

(�− n) j − 1
(−n) j

]
(4.4)

with pjn as given in Corollary 3.3.

Proof. Let 7n = {82 | 8∈ 9n} where 9n is the contour from −i6n to i6n as indicated in Fig. 1 and

6n = (n+ 1
4 )�:
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Fig. 1. 9n in the 8-plane.

We observe that for large n

m(�) = O(n) uniformly for �∈7n
and that length(7n)6 n2K for some positive constant K , independent of n.

Letting

H (�) =
m(�)
�(� − �) ;

we see that H (�) = O(n−3) on 7n and so

lim
n→∞

∫
7n

H (�) d� = 0:

Thus, assuming � �= 0 and that � is not an eigenvalue, we have

0 =
m(�)
�

− m(0)
�

+
∞∑
n=0

+n∑
j=1

pjn
(j − 1)!

9j−1

9�j−1

(
1

�(� − �)
)∣∣∣∣
�=n

giving

m(�) = m(0) +
∞∑
n=0

+n∑
j=1

pjn
(j − 1)!

9j−1

9�j−1

(
1
�

+
1
�− �

)∣∣∣∣
�=n

from which the statement of the lemma follows.

We are now able to give an expansion of m directly in terms of the spectral data n, +n and

jn; j = 0; : : : ; +n − 1, (and � which can be obtained from (4.1)).

Theorem 4.4. For � �= 0 and � �= n; n= 0; 1; 2; : : :,

m(�) = cot �+
∞∑
k=0

+k∑
j=1

pjk
(�− k) j ;

where pjk satisfy Corollary 3.3.
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Proof. For large k, +k = 1 and so pjk =p1
k = 1=
0

k = O(1) by Corollary 3.3 and (4.1). Thus we may
let � tend to −∞ in (4.4) and using Theorem 4.1 we obtain

cot �= m(0) −
∞∑
n=0

+n∑
j=1

pjn
(−n) j :

The result now follows by using the above expression to eliminate m(0) from (4.4).

5. The Dirichlet case

In this section we establish analogues of Corollary 4.4 for the case � = 0. The primary diFculty
is that eliminating m(0) from (4.4) requires signi6cantly more care.

We start with an improved version of Theorem 4.1 for this case.

Lemma 5.1. In the Dirichlet case �= 0,

m(−�2) = � + O(1=�); as �→ ∞:
In particular m(�) + i

√
�→ 0 as �→ −∞.

Proof. Referring to [7, Appendix] with
√
�= i� we get

v(0;−�2) =
(−1)M�2Me�

4
[2 + O(�−1)];

v′(0;−�2) =
(−1)M+1�2M+1e�

4
[2 + O(�−1)]

(resp*

v(0;−�2) =
(−1)M−1�2M−1e�

4
[2 + O(�−1)]

v′(0;−�2) =
(−1)M�2Me�

4
[2 + O(�−1)]):

Thus

m(−�2) − � = −v
′(0;−�2) + �v(0;−�2)

v(0;−�2)
= O

(
1
�

)
:

The following theorems express m(�) in terms of the eigenvalues and norming constants. The
analysis will depend on the relative magnitudes of deg(h) and deg(g).

Theorem 5.2. For �= 0 and M = deg(h)¿ deg(g)

m(�) = 1 + 2(+−M) +
∞∑
n=0


2 +

+n∑
j=1

pjn
(�− n) j


 ;

where +−M can be obtained from (4.3).
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Proof. First, (4.3) follows from n= (n+ 1 + +−M)2�2 + O(1). Noting that
√
� cot

√
�=−i

√
�[1 +

O(e−|I√�|)] as �→ −∞ we see by Lemma 5.1 that

lim
�→−∞

[m(�) −
√
� cot

√
�] = 0:

Now from (4.4) we have

m(�) = m(0) + S(�) +
∞∑
n=0

p1
n

(
1

�− n +
1
n

)
; (5.1)

where

S(�) =
∞∑
n=0

+n∑
j=2

pjn

(
1

(�− n) j − 1
(−n) j

)
(5.2)

which is in fact a 6nite summation, as all but 6nitely many eigenvalues are simple. Let

S∞ = lim
�→−∞

S(�) = −
∞∑
n=0

+n∑
j=2

pjn
(−n) j : (5.3)

With the aid of the Mittag–LeWer expansion, [22, p. 113]

√
� cot

√
�= −1 −

∞∑
k=0

2�
n2�2 − �

we obtain

m(�) −
√
� cot

√
�

=m(0) + S(�) + 1 +
M−+−2∑
n=0

p1
n

(
1

�− n +
1
n

)

+
∞∑
n=0

[
p1
n+M−+−1

n+M−+−1

�
�− n+M−+−1

− 2
�

�− n2�2

]

=m(0) + S(�) + 1 +
∞∑
n=0

[
p1
n+M−+−1

n+M−+−1
− 2

]
�

�− n+M−+−1

+
M−+−2∑
n=0

p1
n

(
1

�− n +
1
n

)
+

∞∑
n=0

[
2�

�− n+M−+−1
− 2�
�− n2�2

]
: (5.4)

Now Corollary 3.3 and (4.1) yield

p1
n=n = 2 + O(n−2) (5.5)

so

lim
�→−∞

∞∑
n=0

[
p1
n+M−+−1

n+M−+−1
− 2

]
�

�− n+M−+−1
=

∞∑
n=0

[
p1
n+M−+−1

n+M−+−1
− 2

]
:
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Noting that n+M−+−1 − n2�2 = O(1), we see that there exists a constant K such that, for � large
and negative,

∞∑
n=0

∣∣∣∣ 2�
�− n+M−+−1

− 2�
�− n2�2

∣∣∣∣
6K

∞∑
n=0

[ |�|
|�|(n2�2 − �)

]

= − K(
√
� cot

√
�+ 1)

2|�|
→ 0 as �→ −∞:

Assembling these pieces, we see that, as �→ −∞,

m(�) −
√
� cot

√
�→ m(0) + S∞ + 1 +

M−+−2∑
n=0

p1
n

1
n

+
∞∑
n=0

[
p1
n+M−+−1

n+M−+−1
− 2

]

from which we obtain

m(0) =
∞∑
n=0

+n∑
j=2

pjn
(−n) j − 1 − 2(M − +− 1) −

∞∑
n=0

[
p1
n

n
− 2

]
:

Substituting these expressions back into (5.1) we get

m(�) = 1 − 2M + 2++
∞∑
n=0

+n∑
j=2

pjn
(−n) j −

∞∑
n=0

[
p1
n

n
− 2

]

+
∞∑
n=0

+n∑
j=1

pjn

[
1

(�− n) j − 1
(−n) j

]

= 1 − 2M + 2++
∞∑
n=0

+n∑
j=2

pjn
1

(�− n) j +
∞∑
n=0

[
2 +

p1
n

�− n

]
;

proving the theorem.

We now discuss the remaining case. Note that +−M can now be obtained from (4.2).

Theorem 5.3. For �= 0 and deg(h)6 deg(g) =M we have

m(�) = 2(+−M) +
∞∑
n=0


2 +

+n∑
j=1

pjn
(�− n) j


 :
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Proof. Here n = (n+ ++ 1
2 −M)2�2 + O(1) and we note that

√
� tan

√
� = i

√
�[1 + O(e−2|I√�|)]

as �→ −∞. From [22, p. 113] we have

tan
√
�√
�

=
∞∑
k=0

2
(k + 1

2 )2�2 − � :

Thus by Lemma 5.1

lim
�→−∞

m(�) +
√
� tan

√
�= 0:

Using (5.1)–(5.3) and the above Mittag–LeWer expansion, we have

m(�) +
√
� tan

√
�=m(0) + S(�) +

∞∑
n=0

[
p1
n+M−+
n+M−+

− 2
]

�
�− n+M−+

+
M−+−1∑
n=0

p1
n

(
1

�− n +
1
n

)
+

∞∑
n=0

[
2�

�− n+M−+
− 2�
�− (n+ 1

2 )2�2

]
;

cf. (5.4). By (5.5) we have

lim
�→−∞

∞∑
n=0

[
p1
n+M−+
n+M−+

− 2
]

�
�− n+M−+

=
∞∑
n=0

[
p1
n+M−+
n+M−+

− 2
]
:

Noting that n+M−+− (n+ 1
2 )2�2 = O(1), we see that there exists a constant K such that, for � large

and negative,
∞∑
n=0

∣∣∣∣∣ 2�
�− n+M−+

− 2�
�− (n+ 1

2 )2�2

∣∣∣∣∣6K
∞∑
n=0

[
|�|

|�|((n+ 1
2 )2�2 − �)

]

=
K tan

√
�

2
√
�

→ 0 as �→ −∞:
As �→ −∞ we thus have

m(�) +
√
� tan

√
�→ m(0) + S∞ +

M−+−1∑
n=0

p1
n

1
n

+
∞∑
n=0

[
p1
n+M−+
n+M−+

− 2
]

from which we obtain

0 = m(0) + 2(M − +) + S∞ +
∞∑
n=0

[
p1
n

n
− 2

]
:

Substituting this back into the expression for m(�) we get the required result

m(�) = −2(M − +) +
∞∑
n=0

+n∑
j=2

pjn
(�− n) j +

∞∑
n=0

[
2 +

p1
n

�− n

]

as for the proof of Theorem 5.2.
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6. Uniqueness

We conclude the present work by proving that the eigenvalues, their multiplicities and correspond-
ing norming constants of (1.1)–(1.3) uniquely determine g; h and q.

Theorem 6.1. The eigenvalues �n and their generalized norming constants 
kn uniquely determine
q, � and f.

Proof. By Theorems 4.4, 5.2 and 5.3, the �n and 
kn uniquely determine m. The theorem now follows
from [7].
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