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In this paper we address the question of solvability of the differential inclusions
(1.1). Our approach to these problems is based on the idea of constructing a
sequence of approximate solutions which converges strongly and makes use of
Gromov's idea (following earlier work of Nash and Kuiper) to control convergence
of the gradients by appropriate selection of the elements of the sequence. In this
paper we identify an optimal setting of this method. In particular we show that the
existence result holds for general upper semicontinuous functions H without extra
requirements like quasiconvexity of H with respect to Du, which was assumed in
previous works, where the idea to apply the Baire category lemma to the sets of
approximate solutions was developed. We also apply our result to identify the
minimal sets, where the function H should vanish to guarantee solvability of the
inclusions. � 2001 Academic Press
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1. INTRODUCTION

In this paper we are interested in identifying an optimal principle which
guarantees solvability of the problems

H( } , u( } ), Du( } ))=0, u|�0= f, u # W1, �(0; Rm), (1.1)

where H�0 is defined in a subset of 0_Rm_Rm_n and (x, f (x), Df (x))
belongs to this subset for a.e. x # 0. Here and everywhere in the paper we
assume that 0 is a Lipschitz bounded domain in Rn.

doi:10.1006�jfan.2000.3726, available online at http:��www.idealibrary.com on

447
0022-1236�01 �35.00

Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

1 The work of the second author was partially supported by the Grant N 00-01-00912 of
the Russian Foundation for Basic Research.

2 On leave from the Sobolev Institute of Mathematics, Novosibirsk 630090, Russia.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81164186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Consider first the homogeneous case H=H(Du), f =lA , where lA is an
affine function with the gradient equal to A. Assume that U/Rm_n is a
domain of definition of a continuous nonnegative function H and assume
that the set K :=[v # U : H(v)=0] is compact.

If we can solve the problem (1.1) with f =lA , A # U, then there exists a
sequence of functions ,k # lA+W 1, �

0 (0; Rm) with the properties D,k # U
a.e., dist(D,k( } ), K) � 0 in L1 as k � �. This motivates

Definition 1.1. Let U, K be bounded subsets of Rm_n.
We say that U can be reduced to K if for every A # U there is a sequence

of piece-wise affine functions ,k # lA+W 1, �
0 (0; Rm) with the properties:

(1) D,k # U a.e. in 0, k # N,

(2) &dist(D,k , K)&L1(0) � 0 for k � �.

Here and in the following we say that , is piece-wise affine if it is
Lipschitz and there exist at most countably many disjoint open sets
0j /0, whose union has full measure, such that ,|0j is affine.

It turns out that the conditions that arise in the definition already imply
solvability of the differential inclusion.

Theorem 1.2. Assume that U is a bounded subset in Rm_n, and assume
that K is a compact subset in Rm_n to which U can be reduced.

Then for each piece-wise affine function f # W1, �(0; Rm) with Df # (U _ K)
a.e. in 0 the problem

Du # K a.e. in 0, u # W1, �(0; Rm), u| �0= f |�0

has a solution. Moreover, each =-neighborhood of f in the L�(0; Rm)-norm
contains a solution of this problem.

Before we state the main result in the nonhomogeneous case we recall
the definitions of standard distance functions. For a point A # Rm_n and a
set S/Rm_n we define

dist(A, S) := inf
v # S

|A&v|.

For two sets S1 , S2 we define

dist(S1 , S2) := sup
A # S1

dist(A, S2).

The Hausdorff distance between the sets S1 and S2 is

distH (S1 , S2) :=dist(S1 , S2)+dist(S2 , S1).
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We will use some other standard notions and notations the complete list
of which is located at the end of this section.

The main result of this paper is Theorem 1.3, which generalizes
Theorem 1.2 to the nonhomogeneous case. We state it under rather general
assumptions on the function d in view of further applications. More specific
cases will be considered as corollaries.

Theorem 1.3. Let U: 0_Rm � 2Rm_n
, K: 0_Rm � 2Rm_n be multi-valued

functions with equi-bounded values. Let also

d: [(x, u, v) # 0_Rm_Rm_n : v # (U(x, u) _ K(x, u))] � [0, M]

be an upper semicontinuous function such that for each (x, u) # 0_Rm the
set K(x, u) is compact, K(x, u)=[v # (U(x, u) _ K(x, u)) : d(x, u, v)=0],
and d(x, u, vk) � 0 if and only if dist(vk , K(x, u)) � 0, k � �.

Assume that for each (x0 , u0) # 0_Rm, each v0 # U(x0 , u0), and each
=>0 there exists a piece-wise affine function , # W 1, �

0 (0; Rm) such that

|
0

d(x0 , u0 , v0+D,( y)) dy�= and v0+D,( } ) # U(x, u) a.e. in 0

for all (x, u) sufficiently close to (x0 , u0).
Then for each piece-wise affine function f # W1, �(0; Rm) with Df ( } ) #

U( } , f ( } )) a.e. in 0 and each '>0 the problem

Du( } ) # K( } , u( } )) a.e. in 0,

u # W1, �(0; Rm), u|�0= f |�0 , &u& f &L��',

has a solution.

It is helpful to state explicitly a version of Theorem 1.3 in the case when
d is the standard distance function.

Corollary 1.4. Let U: 0_Rm � 2Rm_n
, K: 0_Rm � 2Rm_n be multi-

valued functions with equi-bounded values, where the sets K(x, u) are also
compact and the mapping (x, u) � K(x, u) is lower semicontinuous.

Assume that for each (x0 , u0) # 0_Rm, each v0 # U(x0 , u0), and each
=>0 there exists a piece-wise affine function , # W 1, �

0 (0; Rm) such that

|
0

dist(v0+D,( y), K(x0 , u0)) dy�= and v0+D, # U(x, u) a.e. in 0

for all (x, u) sufficiently close to (x0 , u0).
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Then for each piece-wise affine function f: 0 � Rm with Df (x) # U(x, f (x))
a.e. in 0 and each '>0 we can find a function f' # f +W 1, �

0 (0; Rm) such
that & f& f'&L��' and Df'(x) # K(x, f'(x)) a.e. in 0.

Note that one of the cases of Corollary 1.4 was stated by M. Gromov
[G, p. 218] as a further development of the method of convex integration.
The main difference is that in [G] a more special approximation of the sets
K in Corollary 1.4 is required. Such approximations are not always possible
in applications, see e.g. [MSv2]. Those applications are motivated by
mathematical models of solid-solid phase transitions, see [BJ1], [BJ2],
[BJFK] for discussions.

A general existence theory for the vectorial case m>1 was developed by
Dacorogna and Marcellini in [DM1�DM4]. Theorem 1.3 of this paper
shows that the result of that theory can be refined since requirements on
quasiconvexity of d with respect to Du can be dropped. We state
Theorem 1.3 in the case of one equation d=0, but one can also cover the
cases of systems of equations L1=0, ..., Lq=0 from [DM1�DM4] by tak-
ing d :=L1+ } } } +Lq (again quasiconvexity of Li , i=1, ..., q, with respect
to Du is not required).

Theorem 1.3 gives also some improvements in the scalar case m=1 since
we do not require the level sets U(x, u) :=[v # Rn : L(x, u, v)<0] to form
a continuous multi-valued mapping contrary to the case considered in
[BF], [DeBP]. In the later case optimal results were obtained in the
paper [BF], and assumptions on regularity of boundary data were
weakened in [DeBP]. Of course in the scalar case there exists the well-
known theory of viscosity solutions, see e.g., [Ba], [BCD], [CrEL], [K],
[L], [Su]. However those solutions can not cover all the existence results
available in the Sobolev class, as it was recently shown in [CDGG].

We will also discuss a problem which is inverse to the one considered in
Corollary 1.4, i.e., given a multi-valued mapping U we identify the smallest
subsets K/U for which the differential inclusions are solvable (in optimal
control this problem is known as bang-bang principle). In the case of con-
vex sets U this problem can be completely solved, as Theorem 1.6 below
shows.

We say that a set E/Rm_n contains no rank-one connections if
rank(A&B)>1 for all A, B # E with A{B.

Definition 1.5. For a compact convex subset U of Rm_n we define the
set of gradient extremum points gr extr U as the union of the set of all
extremum points of U and of all those faces of �U which do not contain
rank-one connections.

Theorem 1.6. Let U : Rn_Rm � 2Rm_n be a continuous multi-valued
mapping, which is compact and convex. Let f # W1, �(0; Rm) be a piece-wise
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affine function which satisfies the inclusion Df ( } ) # int U( } , f ( } )) a.e. in 0.
Then for each =>0 there exists u # W1, �(0; Rm) such that

u|�0= f, &u& f&L��=, and

Du( } ) # gr extr U( } , u( } )) a.e. in 0.

In Section 4 we will also show that the choice of the multi-valued map-
ping (x, u) � gr extr U(x, u) is optimal to solve the differential inclusion, cf.
Theorem 4.4.

To identify an optimal result in the general case of nonconvex sets U one
needs to introduce a definition of well-behaved gradient extremum points
in this case, see Section 4 for a discussion. However Theorem 1.3 allows us
to indicate a rather general sufficient condition, which is Theorem 4.5. In its
turn Theorem 4.5 allows us to prove an attainment result in the non-
homogeneous version of the 2D two-well problem, which was previously
studied in [Sv], [MSv1], [DM2], [DM4] in the homogeneous case.

Consider matrices A, B # R2_2 and let *1(BA&1)�*2(BA&1) denote
the singular values of BA&1, i.e. the eigenvalues of [(BA&1)t (BA&1)]1�2.
Suppose that

det B>det A>0, 0<*1(BA&1)<1<*2(BA&1). (1.2)

Then one easily checks that there are exactly two matrices B1 , B2 in the set
SO(2) B which satisfy rank(Bi&A)=1, i=1, 2. Let K :=SO(2) A _
SO(2) B and let U be the set of all those v # R2_2 for which there exists a
sequence ,j # lv+W 1, �

0 (0; R2) with the property dist(D,j , K) � 0 in L1.
This set was explicitly computed in [Sv].

To indicate the dependence of U on A and B, we write UA, B . If A and
B are functions we use the notation U(x, u)=UA(x, u), B(x, u) .

Theorem 1.7. Suppose that A, B: 0_R2 � R2_2 are continuous func-
tions which satisfy (1.2). Then for each piece-wise affine function f #
W1, �(0; R2) with

Df (x) # [int U(x, f (x)) _ K(x, f (x))]

and each =>0 we can find a function u # f +W 1, �
0 (0; R2) such that

Du(x) # K(x, u(x)) a.e. in 0, &u& f &L�(0; R2)�=.

The paper will be organized as follows.
In Section 2 we prove general reduction principles, which are Theorems 1.2,

1.3. The first theorem was proved in [S1], however we include its proof for
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convenience of a reader. The basic technical ingredient is Lemma 2.1, which
is closely related to ideas of Nash [Na], Kuiper [Ku] and Gromov [G].
This lemma shows how to construct a sequence uj of perturbations of a
given function to assure strong convergence of Duj . We follow the con-
struction from [S1]. Another realization of the same idea can be found in
[MSv1], [MSv2].

In Section 3 we prove solvability of Hamilton�Jacobi equations

L( } , f ( } )+,( } ), Df ( } )+D,( } ))=0,

where L: 0� _Rm_Rm_n � R is a countinuous function such that lim inf |v| � �

L(x, u, v)>0 and f is a piece-wise affine function with L( } , f ( } ), Df ( } ))�0
a.e. in 0, , is an unknown function, see Theorem 3.2. Of course this result
is a straightforward corollary of the main result, which is Theorem 1.3.
Note also that the result still holds for those L which are upper semicon-
tinuous in x since, in fact, Theorem 1.3 can be generalized to this situation.
However lower semicontinuity may prevent solvability of the problem.
To show this we develop the arguments of the example by P. L. Lions
[L, Ch. 7], which were communicated to us by M. Crandall.

In Section 4 we reduce Theorem 1.6 to Corollary 1.4. We show that the
choice K(x, u) :=gr extr U(x, u) is optimal to resolve the differential inclu-
sions in question for a convex-valued multifunction (x, u) � U(x, u). We
discuss also which progress can be made in the case of general multi-valued
functions. The main result in this direction is Theorem 4.5. As a conse-
quence one obtains Theorem 1.7 stated above.

In Section 5 we compare our approach to the problem of solvability of
equations and inclusions with the approach based on application of the
Baire category lemma to the sets of approximate solutions. The latter
approach was developed in particular by Italian School, see e.g.,
[DM1�DM4] and papers mentioned therein for the vectorial case and
[C], [B], [BF], [DeBP] for the scalar case. We show that Theorem 1.3
allows to obtain sharper results than those in [DM1�DM4]. The main dif-
ference is that to apply the Baire category approach one needs to require
openness of the sets of approximate solutions in the L�-norm, see
Section 5. We compare the methods on example of convex sets, which is
the best studied case in literature.

Notation

We use the following notation: for a subset U of Rn the sets int U,
re int U, co U, and extr U are respectively the interior of U, the relative
interior of U, the convex hull of U, and the set of extremum points of U
(a point a belongs to extr U if it can not be represented as a convex com-
bination of other points of U). The set B(a, =) denotes the ball of radius =
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which is centered at the point a # Rn. The boundary of the set U is denoted
by �U. Note that if U is a convex and compact set then by the
Hahn�Banach theorem for each A # �U we can find a hyperplane H such
that A # (�U & H) and U lies on one side of this hyperplane. The sets
�U & H are also convex and compact.

For each point A # �U one defines faces (of �U) containing A inductively
as follows. First there exists a hyperplane H such that A # (�U & H) and U
lies on one side of H. The set �U & H is a face containing A. If A is not an
interior point (relative to H) of the set �U & H then there exists a hyper-
plane H$ in H such that A # (�U & H$) and the set �U & H lies on one side
of H$ in H. The set �U & H$ is also a face containing A. Proceeding induc-
tively we come to the situation when either A is an interior point of the face
or the face has dimension zero, i.e., it is the singleton [A]. In the latter case
we also consider A as an interior point of the face.

It is not difficult to show that the face which contains A as an interior
point is unique and that the dimension of this face is minimal among the
dimensions of all the faces containing A. This face will be called the
smallest face containing A and its dimension will be called the index
(ind A) of the point A. Note that if A is not an extremum point of U then
ind A>0.

Weak and strong convergence of sequences are denoted by ( and � ,
respectively.

Recall that a multi-valued mapping F: 0_Rm � 2Rm_n
is called lower

semicontinuous if for each (x0 , u0) # 0_Rm, each v0 # F(x0 , u0), and each
sequence (xk , uk) converging to (x0 , u0) one can find vk # F(xk , uk) such
that vk � v0 as k � �. If F has compact values then we call F continuous
if it is continuous in the Hausdorff metric. F is called compact or convex
if its values are compact or convex sets, respectively.

2. GENERAL REDUCTION PRINCIPLES

In this section we prove Theorems 1.2, 1.3 and then derive Corollary 1.4.
Note that Theorem 1.2 is a homogeneous version of Theorem 1.3. However
we include its proof for the convenience of the reader.

We recall the following version of the Vitali covering theorem. A family
G of closed subsets of Rn is said to be a Vitali cover of a bounded set S
if for each x # S there exists a positive number r(x)>0, a sequence of balls
B(xk , =k) with =k � 0, and a sequence Ck # G such that x # Ck , Ck /
B(x, =k), and [meas Ck �meas B(x, =k)]>r(x) for all k # N.

The version of the Vitali covering theorem from [Sa, p. 109] says that
each Vitali cover of S contains an at most countable subfamily of disjoint
sets Ck such that meas(S"�k Ck)=0.
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We will frequently use the following construction which will be called
shortly the Vitali covering argument. Let 0 be a Lipschitz bounded domain.
Given an open set 0� and a function f # W 1, �

0 (0; Rm) we consider a decom-
position of 0� into disjoint sets xi+=i 0� , i # N, and a set of zero measure.
Define u(x)==i f ((x&xi)�=i) for x # xi+= i0� , i # N. Then u # W 1, �

0 (0� ; Rm).
The basic two properties of this construction are that Du has the same

distribution in 0� as Df in 0, in particular for each subset K of Rm_n we
have

1
meas 0� |0�

dist(Du(x), K) dx=
1

meas 0 |
0

dist(Df (x), K) dx,

and we can make L�-norm of u arbitrary small by taking =i , i # N, suf-
ficiently small.

The first basic technical ingredient of our approach is the following
lemma.

Lemma 2.1 (controlled L� convergence implies W1, 1 convergence). Let
uj be a sequence of piece-wise affine functions such that

uj+1=uj+,j , ,j # W 1, �
0 (0; Rm),

and &uj &W 1, �(0; Rm)�const<�.
Let 0j //int 0 be a sequence of subsets of 0 such that meas(0"0j) � 0

as j � �. Suppose that 0j :=� i( j)
i=1 0 i

j is a union of disjoint tetrahedra 0 i
j on

which uj is affine and suppose

diam 0 i
j�c(in-radius of 0 i

j), i # [1, ..., i( j)],

with c>0 independent of j # N. Let

dj := min
1�i�i( j)

in-radius of 0 i
j , Dj := max

1�i�i( j)
diam 0 i

j

and suppose that Dj � 0 as j � �.
Then the estimates

&,j&L��
dj

2 j+1 , &,j+1&L��
&,j&L�

2
, j # N, (2.1)

imply that uj converges in W1, 1(0; Rm) & L�(0; Rm).

Proof. The inequalities (2.1) imply the inequalities

:
�

i= j+1

&,i&L��const�2 j, &uj&u0&L�� :
�

i= j

&, i&L��2 &,j&L� . (2.2)
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Thus the sequence uj converges in L�-norm. Hence there exists u0 # u1+
W1, �

0 (0; Rm) such that u j (* u0 in W1, �(0; Rm) as j � �.
For each j # N we can extend the triangulation 0j=� i( j)

i=1 0 i
j to a tri-

angulation of the whole domain 0, i.e., 0=��
i=1 0 i

j .
Consider piece-wise affine approximations u j

0 : 0j � Rm of u0 associated
with the triangulations 0=��

i=1 0 i
j , i.e. u j

0 are affine in each set 0 i
j , i # N,

and equal to u0 in vertices of these sets. It is not difficult to show that

&u j
0&u0&W 1, 1(0; Rm) � 0, j � �. (2.3)

In view of (2.3) and the convergence

&uj&W1, 1(0"0j ; Rm)+&u j
0 &W 1, 1(0"0j ; Rm) � 0, j � �

it suffices to prove that &u j
0&uj&W1, 1(0j ; Rm) � 0. This convergence follows

from (2.1). In fact, since both functions u j
0 and uj are affine in 0 i

j for each
i # [1, ..., i( j)], maximum of the function |u j

0&uj | in 0 i
j is achieved in ver-

tices, where u j
0=u0 . Then the first inequality in (2.1) together with the

second one in (2.2) imply the inequality

|Duj&Du j
0 |�1�2 j

in each set 0 i
j , i # [1, ..., i( j)], and the convergence (2.3) follows. This

proves the claim of the lemma. Q.E.D.

Proof of Theorem 1.2. Let f be a piece-wise affine function such that
Df # (U _ K) a.e. in 0. We will construct a sequence of piece-wise affine
functions uj : 0 � Rm having the following properties:

Duj # (U _ K) a.e. in 0, &dist(Duj ; K)&L1 � 0, (2.4)

uj |�0= f |�0 , (2.5)

uj � u0 in W 1, 1(0; Rm) & L�(0; Rm). (2.6)

We take u1= f. Assume that uj is already defined. We will show how to
define uj+1 . Let 0j //0 be such that

meas(0"0j)�
meas 0

2 j , (2.7)

and let 0j=� i( j)
i=1 0 i

j , where 0 i
j are disjoint tetrahedra such that Duj is con-

stant in 0 i
j for each i # [1, ..., i( j)], i.e., Duj=A i

j in 0 i
j , i # [1, ..., i( j)]. We

may assume also that

diam 0 i
j�c(in-radius of 0 i

j), i # [1, ..., i( j)],

with some c>0 independent of j # N.
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We assume that dj is the minimum of the set of diameters of balls
inscribed in the sets 0 i

j , i # [1, ..., i( j)], D j is the maximum of the set of
diameters of the sets 0 i

j , i # [1, ..., i( j)]. We may assume also Dj # ]0, 1�j].
Fix i # [1, ..., i( j)]. By the assumptions of the theorem and by the Vitaly

covering argument we can find a piece-wise affine function , i
j # W 1, �

0 (0 i
j ;

Rm) such that , i
j {0 if the inclusion Duj (x) # K a.e. in 0 i

j does not hold and

&dist(A i
j+D, i

j , K)&L1(0i
j )<

1
2 j meas 0 i

j , A i
j+D, i

j # U, (2.8)

&, i
j&L�(0 i

j )
�

d j

2 j+1 , &, i
j&L�(0i

j )�
&u j&uj&1&L�(0)

2
. (2.9)

Define ,j=, i
j in 0 i

j , ,j=0 otherwise.
Define also uj+1 :=uj+,j in 0j , u j+1=u j otherwise. Then (2.8) implies

(2.4). By Lemma 2.1 the inequalities (2.9) show that the limit in (2.6) exists.
Finally (2.4), (2.5) give

Du0 # K a.e. in 0, u0 | �0= f |�0 , u0 # W 1, �
0 (0; Rm). (2.10)

This completes the proof. Q.E.D.

Proof of Theorem 1.3. The argument follows the lines of the proof of
the previous theorem. Fix '>0.

The sequence uj will be constructed in a way to meet the requirements
of Lemma 2.1, i.e., uj+1=uj+,j , where , j # W 1, �

0 (0; Rm) are piece-wise
affine functions such that (2.1) holds with 0j such that meas(0"0 j)�1�2 j.
Note that to choose ,j satisfying the requirement (2.1) we need only know
the function ,j&1 . We will use this flexibility to take ,j with

&,j&L��'�2 j. (2.11)

Moreover the sequence ,j will satisfy one more requirement. We show how
to achieve this knowing the function ,j&1 .

Let x0 be a point such that the restriction of Duj to its neighborhood is
a constant function. Let its value be A.

By assumptions we can find a set V/U(x0 , uj (x0)) such that there
is a piece-wise affine function , # W 1, �

0 (0; Rm) with A+D, # V a.e.,

|
0

d(x0 , uj (x0), A+D,(x)) dx�
1
j

meas 0. (2.12)
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Moreover there exists $>0 such that Duj=A in B(x0 , $) and

V/ ,
|x&x0|�$, |u|�$

U(x, uj (x)+u).

We will show that $>0 can be taken so small that

|
0�

d(x, uj (x)+u, A+D,� (x)) dx�
3
j

meas 0� (2.13)

for each open set 0� /B(x0 , $), each u with |u|�$ and each function
,� # W 1, �

0 (0� ; Rm), which is obtained by the Vitaly covering argument
applied to ,, with &,� &L�(0� ; Rm)�$. To prove (2.13) recall that d�M
everywhere and there is a finite set [A1 , ..., Al ] of elements of Rm_n with

meas[x # 0 : D,(x){A1 , ..., D,(x){Al]�
1

jM
meas 0. (2.14)

If $ is sufficiently small then upper semicontinuity of d implies

d(x, uj (x)+u, A+Ai)&d(x0 , uj (x0), A+Ai)�1� j, i # [1, ..., l ],

for each x # B(x0 , $) and |u|�$. Then for each ,� under consideration we
have

d(x, uj (x)+u, A+D,� (x))&d(x0 , u j (x0), A+D,� (x))�1� j (2.15)

in the set 0� 1 :=[x # 0� : D,� # [A1 , ..., Al]]. In view of (2.14) we have also

|
0� "0� 1

d(x, uj (x)+u, A+D,� (x)) dx�
1
j

meas 0� .

The latter inequality together with the inequalities (2.12) and (2.15) implies
(2.13). Applying the Vitaly covering argument once more we can make the
L�-norm of the function ,� arbitrary small and we can assume that
0� /B(x0 , $) is a tetrahedron containing x0 .

Applying the Vitaly covering arguments together with (2.13) we obtain
that for each j # N there exists a subset 0j :=� i( j)

i=1 0 i
j of 0 such that

meas(0"0j)�1�2 j, 0 i
j , i # [1, ..., i( j)], are disjoint tetrahedra, and Duj=A i

j

in each tetrahedron 0 i
j , i # [1, ..., i( j)]. In addition we may assume

diam 0 i
j�c(in-radius of 0 i

j), i # [1, ..., i( j)],
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with c>0 independent of j # N. Moreover there exist $j>0 and sets U i
j ,

i # [1, ..., i( j)], such that

U i
j / ,

x # 0i
j , |u|�$j

U(x, uj (x)+u), (2.16)

and there exist piece-wise affine functions , i
j # W 1, �

0 (0 i
j ; Rm) with (A i

j+
D, i

j) # U i
j a.e. and

|
0 i

j

d(x, uj (x)+u, A i
j+D, i

j (x)) dx�
3
j

meas 0 i
j ,

for all |u|�$j , 1�i�i( j). (2.17)

Moreover we can select , i
j in such a way that

&, i
j&L�(0 i

j )
�$ j �2, &, i

j&L�(0i
j )�&, j&1&L�(0) �2, i # [1, ..., i( j)]. (2.18)

The function ,j is then defined as , i
j in 0 i

j , i # [1, ..., i( j)], ,j=0 otherwise.
Remember that in addition to (2.18) we can assume that ,j satisfies

(2.11) and (2.1). By Lemma 2.1 the latter assumption implies convergence
uj � u0 in L�(0; Rm) & W1, 1(0; Rm). It turns out that (2.16)�(2.18) imply
the identity d(x, u0(x), Du0(x))=0 a.e. in 0. In fact by (2.16)�(2.18) we
have

|
0

d(x, u0(x), Du j+1(x)) dx�
3
j

meas 0+
M
2 j .

We can take a subsequence uj (not relabeled) such that Duj converges to
Du0 a.e. in 0, and d(x, u0(x), Duj (x)) � 0 a.e. in 0.

Since for each (x, u) # 0_Rm the set K(x, u) :=[v # U(x, u) : d(x, u, v)=
0] is compact and the convergence d(x, u, vk) � 0 holds with vk # U(x, u)
if and only if dist(vk , K(x, u)) � 0 we obtain that Du0(x) # K(x, u0(x)) for
a.e. x # 0.

The proof is complete. Q.E.D.

Proof of Corollary 1.4. This is an easy consequence of Theorem 1.3.
In fact it is enough to check that the function

d: [(x, u, v) # 0_Rm_Rm_n : v # U] � R,

defined by d(x, u, v) :=dist(v, K(x, u)), v # U(x, u) UK(x, u), is upper semi-
continuous. The latter property follows from lower semicontinuity of the
multi-valued mapping (x, u) � K(x, u). The verification of other require-
ments of Theorem 1.3 is straightforward. The proof is complete. Q.E.D.
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3. SOBOLEV SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

In this section we show how Theorem 3.2 below can be derived from
general principles discussed in the previous section. We discuss also how
measurable dependence of L on x influences the result. It turns out that
Theorem 3.2 still holds if L is upper semicontinuous with respect to x, but
it might be false if L is only lower semicontinuous in a subset of nonzero
measure.

In the proof of Theorem 3.2 we will use Lemma 3.1, which is a vector-
valued version of Lemma 2.3 from [S2]. To prove Lemma 3.1 we make use
of special functions ws (see (3.3)) proposed in [Ma], [Gu].

Lemma 3.1. Assume that c # Rm and assume that b # Rn. Let b1=t1 b,
b2=t2b, where t2<0<t1 , and let b1 , ..., bq be extreme points of a compact
convex set with 0 # int co[b1 , ..., bq]. Define Bi :=c�bi , i # [1, ..., q].

Then for each =>0 there exists a piece-wise affine function , # W 1, �
0 (0; Rm)

such that

meas[x # 0 : D,(x)=B1 or D,(x)=B2]�meas 0&=, (3.1)

D, # [B1 , ..., Bq] a.e. in 0. (3.2)

Proof. It is enough to prove the lemma in the scalar case m=1 (with
c=1). In fact, if (3.1), (3.2) hold for a function � # W 1, �

0 (0) then we
can define a function ,: 0 � Rm by the rule , i=ci�, i # [1, ..., m]. Then
D,=c�D� and the result holds in the general vector-valued case.

To prove the lemma in the scalar case consider first extremum points
v1 , ..., vq of a compact subset in Rn with 0 # int co[v1 , ..., vq]. Consider the
function

ws( } ) := max
v # [v1, ..., vq]

(v, } ) &s, s>0. (3.3)

It is clear that ws( } ) is a Lipschitz function such that Dws # [v1 , ..., vq] a.e.
and ws( } )=0 in �Ps , where Ps are polyhedra with the property Ps=sP1 .

We can decompose 0 into domains 0i :=xi+s iP1 , i # N, and a set N of
null measure, i.e., 0 :=�i # N (x i+s iP1) _ N. Define u(x) :=wsi (x&xi) for
x # x i+s iP1 , i # N, u=0 otherwise. Then u # W 1, �

0 (0), Du # [v1 , ..., vq] a.e.
in 0.

We can take v1=b1 , v2=b2 and vi # B(b1 , =) & int co[b1 , ..., bq], i #
[3, ..., q]. Then we can perturb the function u in each set 0i :=[x # 0 :
Du(x)=vi ], i # [3, ..., q], in such a way that the perturbation ,= has the
property D,= # [b1 , ..., bq]. We can do this since vi # int co[b1 , ..., bq] and
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the construction in (3.3) can be applied to find a piece-wise affine function
fi # W 1, �

0 (0i) such that Df i # [b1&vi , ..., bq&vi]. Then, the function lvi+ f i

presents the perturbation in question.
Note that

meas[x # 0 : D,= � [b1 , b2]] � 0, = � 0,

since

meas[x # 0i : Df i (x){b1&vi] � 0, = � 0, \i # [3, ..., q].

This proves the claim of the lemma. Q.E.D.

Theorem 3.2. Let L: 0� _Rm_Rm_n � R be a continuous function such
that lim inf |v| � � L(x, u, v)>0 uniformly on compact sets in the x and u
variables, and let f # W1, �(0; Rm) be a piece-wise affine function such that
L( } , f ( } ), Df ( } ))�0 a.e. in 0.

Then for each =>0 one can find a function , # W 1, �
0 (0; Rm) such that

&,&L��= and

L(x, f (x)+,(x), Df (x)+D,(x))=0 a.e. in 0.

Proof. We assume

U(x, u) :=[v # Rm_n : L(x, u, v)<0], K(x, u) :=�U(x, u). (3.4)

We define d :=&L.
To prove the assertion it is enough to verify the assumptions of

Theorem 1.3. Let v0 # U(x0 , u0) and let =>0. It suffices to show that there
exists a set U= % v0 reducible to the set

K= :=[v # U(x0 , u0) : dist(v, K(x0 , u0))�=]

and such that U= /U(x, u) for all (x, u) sufficiently close to (x0 , u0).
Note that

inf[d(x0 , u0 , v) : v # U(x0 , u0)"K=]>&>0.

Since v0 # U(x0 , u0) we infer d(x0 , u0 , v0)='>0. It is clear that K= con-
tains the boundary of the set

U= := ,
|x&x0|�$, |u&u0|�$

[v # U(x, u) : d(x, u, v)�min['�2, &�2]]
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and that v0 # U= if $=$(=)>0 is sufficiently small. We can apply
Lemma 3.1 to show that the set U= can be reduced to its boundary �U= .
To do this consider a rank-one matrix A and consider t1<0, t2>0 such
that v0+t1A, v0+t2A # �U= , v0+tA # U= for t # ]t1 , t2[. We can use
Lemma 3.1 to assert that there exists a piece-wise affine function
,= # lv0

+W 1, �
0 (0; Rm) such that

D,= # U= a.e.,

meas[x # 0 : D,=(x) # [v0+t1A, v0+t2A]]�meas 0&=.

Then �0 d(x0 , u0 , D,=( y)) dy � 0 as = � 0.
By construction

U= / ,
|x&x0| �$, |u&u0|�$

U(x, u)

if $=$(=)>0 is sufficiently small. The proof is complete. K

Note that Theorem 3.2 can be extended to the case of upper semicon-
tinuous dependence of L on x. This follows from the possibility to replace
the requirement of Theorem 1.3 on upper semicontinuity of the function

d: [(x, u, v) # 0_Rm_Rm_n : v # (U(x, u) _ K(x, u))] � [0, M]

by a weaker assumption on the validity of this requirement with a sequence
of subsets 0k of 0 instead of 0 itself, where meas(0"0k)�1�k. In this case
the proof follows the lines of the proof given in Section 2 with the only
change that some estimates hold in the integral sense.

Note that the existence result is well-known in the scalar case m=1 for
Hamilton�Jacobi equations of the eikonal type H(Du( } ))= f ( } ), see
[L, Chap. 7]. Moreover for this type of equations a theory of well-posed
solutions similar to the theory of viscosity solutions was developed recently
in [NJ].

It is also obvious that instead of requiring upper semicontinuity in x in
the whole domain 0 we can take an open subset 00 of full measure.
However if we admit that L is no longer upper semicontinuous in a subset
0$ of 0 with nonzero measure then the existence result may fail.

Consider the problem |Du|= f, u # W1, �(0), where 0=[0, 1]_[0, 1]
and u: 0 � R. It was remarked in [L, Remark 7.5], [Cr] that one can find
an open, dense, and connected subset 0� of 0 with meas[0"0� ]>0. Then
taking f =0 in 0� , f =1 otherwise, we infer that each solution u of the
problem satisfies Du=0 in 0� . Connectedness of 0� implies that u is con-
stant in 0� . Then density implies that u is constant everywhere in 0, i.e.,
Du=0 a.e. in 0.
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In this example f is forced to be equal to zero in a large set. It turns out
that this example can be modified to include the case with f # [1, 3]. In fact
let G be an open dense subset of [0, 1] with (1&=)<meas G<1, =>0 is
given. Consider the set 0� :=G_G. Assume f =1 in 0� , f =3 in 0"0� .

Assume that u # W1, �(0) and |Du|� f in 0� , i.e. |Du|�1 in 0� . Our
claim is that |Du|�2 a.e. in 0. To see this notice that if A1=(x1 , y1) # 0�
and A2=(x2 , y2) # 0� then the point A=(x1 , y2) also belongs to 0� . Since

|A1&A2 |�max[ |A&A1|, |A&A2 |]

and

|u(A1)&u(A)|�|A1&A|, |u(A2)&u(A)|�|A2&A|

we obtain that |u(A1)&u(A2)|�2 |A1&A2 |.
Since 0� is dense in 0 we infer that u is Lipschitz with the constant 2 in

the whole set 0. Therefore |Du|<3 for a.e. x # 0"0� , i.e., |Du|< f in this
set. This shows that no solution of the equation |Du|= f a.e. in 0 exists.

4. DIFFERENTIAL INCLUSIONS WITH GRADIENT
EXTREMAL POINTS

In this section we give the proof of Theorem 1.6. Then we show that the
choice (x, u) � gr extr U(x, u) is optimal to solve the differential inclusions.
We also discuss which progress can be made in the general case of con-
tinuous multi-valued functions and we prove Theorem 1.7.

To apply the general reduction principles to the case of Theorem 1.6 we
have to establish first

Lemma 4.1. Assume that U is a compact convex set with nonempty
interior. Then its interior can be reduced to the set gr extr U.

Proof. To prove the lemma we have to show that given A # int U and
$>0 there is a piece-wise affine function u # lA+W 1, �

0 (0; Rm) with the
properties:

(1) Du # int U a.e. in 0,

(2) &dist(Du, gr extr U)&L1(0)�$.

Without loss of generality we can assume that A=0. To each point
F # �U we can associate an integer number ind F which is dimension of the
smallest face (of �U) containing F. It is clear that F # extr U if and only if
ind F=0.

462 MU� LLER AND SYCHEV



Let =>0. Consider the set U = :=[(1&=) v : v # U].
Take a matrix B # Rm_n with rank B=1. Then there exist t1<0, t2>0

such that Ai :=ti B # �U = (i=1, 2) and tB # int U = for t # ]t1 , t2[. By
Lemma 3.1 we can find a piece-wise affine function u # W 1, �

0 (0; Rm) the
gradient of which assumes finitely many values and satisfies

Du # U = a.e., meas[x # 0 : Du(x){Ai , i=1, 2]<=1<=. (4.1)

In the case A1 � gr extr U = we can isolate a face U1 /�U = such that
A1 # re int U1 (in this case ind A1 is equal to dimension of U1). We can also
find a matrix B1 with rank B1=1 such that for some t3<0, t4>0 we have

A3 :=A1+t3B1 # �[re int U1], A4 :=A1+t4B1 # �[re int U1],

and A1+tB1 # re int U1 for t # ]t3 , t4[.
Applying Lemma 3.1 to the set 01 :=[x # 0 : Du=A1] we can find a

piece-wise affine function , # lA1+W 1, �
0 (01 ; Rm) such that D, # int U a.e.

in 01 and for u1 :=u+, we have

meas[x # 01 : Du1 {A3 or Du1 {A4]<=2 , where 0<=2 , =1+=2<=.

In this case

meas[x # 0 : Du1 � [A2 , A3 , A4]]<=. (4.2)

Note that max[ind A3 , ind A4]<ind A1�mn. If one of the points Ai

(i # [2, 3, 4]) still does not belong to the set gr extr U = then we can con-
tinue the same process in the set 0i=[x # 0 : Du=Ai]. In this case we can
no more guarantee that the gradients of the perturbations stays in the set
U =. However we can select such a perturbation with the gradient staying in
the set int U.

It is clear that we need at most mn iterations to achieve the points of the
set gr extr U =. The final function u # W 1, �

0 (0; Rm) is piece-wise affine with
the gradient assuming finitely many values. Moreover, following (4.1), (4.2)
we can choose u in such a way that meas[x # 0 : Du(x) � gr extr U =]�=.

Since =>0 can be taken arbitrary small the claim of Lemma 4.1 is
proved. Q.E.D.

To apply Corollary 1.4 we need to establish lower semicontinuity of the
mapping (x, u) � gr extr U(x, u).

Lemma 4.2. Assume that U: 0� _Rm � 2Rm_n is a continuous multi-valued
mapping whose values are convex compact sets.

463DIFFERENTIAL INCLUSIONS



Then the multi-valued mapping (x, u) � gr extr U(x, u) is lower semicon-
tinuous, i.e., if v0 # gr extr U(x0 , u0) and (xk , uk) � (x0 , u0), k � �, then
there exist vk # gr extr U(xk , uk) such that vk � v0 as k � �.

Proof. It is enough to show that the mapping (x, u) � gr extr U(x, u) is
lower semicontinuous.

Recall that to each point v # �U of a convex set U we can assign an
integer number ind(v), which is dimension of the smallest face h of �U
containing v (in this case v # re int h).

Let v0 be a gradient extremum point of the set U(x0 , u0). Assume that
there exists a sequence (xk , uk) � (x0 , u0) and =>0 such that for each
k # N the set B((x0 , u0), =) does not contain extremum points of U(xk , uk).

Define

I :=inf[lim inf
k � �

ind(v~ k) : v~ k � v0 , v~ k # �U(xk , uk)]. (4.3)

Switching, if necessary, to a subsequence we can find a sequence vk #
�U(xk , uk) such that vk � v0 and ind(vk)=I�1 for all sufficiently large
k # N.

Let Vk /�U(xk , uk) be the face of dimension ind(vk) which contains vk ,
k # N. We claim that for all sufficiently large k # N the face Vk does not
contain rank-one connections. Otherwise we can find a subsequence (not
relabeled) each element of which contains a rank-one direction ak with
|ak |=1, ak � a0 . Moreover there exists a $>0 such that

vk # [vk&ak$, vk+ak$]/Vk , k # N. (4.4)

If the claim (4.4) fails then there exists a subsequence vk (not relabeled) and
v~ k # �(re int Vk) such that vk&v~ k � 0. Then ind(v~ k)<ind(vk) for all suf-
ficiently large k and this contradicts (4.3). Therefore (4.4) holds.

In view of (4.4) we have v0 # [v0&a0$, v0+a0$]/U(x0 , u0), where
rank(a0)=1. This contradicts the assumption v0 # gr extr U(x0 , u0). The
contradiction proves that Vk does not contain rank-one connections if k is
sufficiently large.

Therefore vk # gr extr U(xk , uk) for all sufficiently large k # N. This
proves that in case v0 can not be approximated by extremum points of
U(xk , uk) it still can be approximated by gradient extremum points of these
sets. The proof of the lemma is complete. Q.E.D.

Proof of Theorem 1.6. This will be reduced to the verification of the
assumptions of Corollary 1.4.

Let A # int U(x0 , u0), and let =>0. Without loss of generality we can
assume A=0.
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To meet the requirement of Corollary 1.4 we can take the set U$ :=
(1&$) U(x0 , u0) with $>0 so small that

dist(gr extr U$ ; gr extr U(x0 , u0))<=�2.

By Lemma 4.1 U$ can be reduced to the set gr extr U$ .
In view of convexity and continuity of the function (x, u) � U(x, u) the

inclusion U$ /U(x, u) holds for all (x, u) sufficiently close to (x0 , u0).
Moreover, lower semicontinuity of the mufti-valued function (x, u) �
K(x, u) :=gr extr U(x, u) is the content of Lemma 4.2.

Since all the requirements of Corollary 1.4 hold the claim of Theorem 1.6
follows. Q.E.D.

Now we want to show that the function (x, u) � gr extr U(x, u) is an
optimal choice to resolve the differential inclusions. Then we discuss the
general case, i.e. we allow nonconvex sets U(x, u).

To treat the convex case we will use the following auxiliary lemma.

Lemma 4.3. Let U be a compact and convex subset of Rm_n with non-
empty interior. Let K be a compact subset of U such that for each A # int U
we can find a sequence uj # W 1, �

0 (0; Rm) with the property

|
0

dist(A+Duj (x), K) dx � 0, j � �.

Then gr extr U/K.

This result was proved in [Z1]. The key ingredient of the proof is the
observation that given a linear subspace V of Rm_n without rank-one
connections and given A # V the estimate

|
0

|D,(x)&PrV D,(x)|2 dx�c |
0

|D,(x)|2 dx, c>0,

holds for every function , # lA+W 1, �
0 (0; Rm), where PrV D, is the projec-

tion of the vector D, on the space V (see [BFJK]; the result also follows
from Theorem 3 in [Ta], see also [Se], [DP]).

Theorem 4.4. Let U: 0 � 2Rm_n be a continuous multi-valued function
whose values are compact convex sets with nonempty interior. Let also
K: 0 � 2Rm_n be a lower semicontinuous and compact multi-valued function
with K( } )/U( } ).
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If for a.e. x # 0, each A # int U(x), and each =>0 the problem

A+D,( } ) # K( } ), , # W 1, �
0 (B(x, =); Rm) (4.5)

has a solution, then gr extr U( } )/K( } ) a.e. in 0.

Remark. It follows from the proof that the analogous result (with an
additional requirement &,&C�=) holds if U: 0_Rm � 2Rm_n

is a compact,
convex and lower semicontinuous function and if U and K in addition have
the following property: for each $>0 there exists a subset 0$ of 0 with
meas(0"0$)�$ such that the restrictions of U and K to 0$_Rm are con-
tinuous.

Proof of Theorem 4.4. Note that there exists a sequence 0k of compact
subsets of 0 such that meas(0"0k) � 0, k � �, and the restriction of K to
0k is continuous in the Hausdorff metric, cf. [CV].

Fix k # N and fix a Lebesgue point x0 of 0k . We assert that there exists
a sequence uk # lA+W 1, �

0 (0; Rm) such that

dist(Duk( } ), K(x0)) � 0 in L1 as k � �.

In fact by (4.5) for each =>0 we can find a function ,= # lA+W 1, �
0 (B(x0 ,

=); Rm) such that D,=( } ) # K( } ) a.e.. Since x0 is a Lebesgue point of 0k and
the restriction of K to 0k is continuous we infer

|
B(x0 , =)

dist(D,=(x), K(x0)) dx�meas B(x0 , =) � 0, = � 0.

Then we can apply the Vitaly covering argument to construct a family
u= # lA+W 1, �

0 (0; Rm) with the property

dist(Du=( } ), K(x0)) � 0 in L1, = � 0.

Lemma 4.3 implies that gr extr U(x0)/K(x0). Therefore the inclusion
gr extr U( } )/K( } ) holds a.e. in 0. Q.E.D.

To treat the general case (without requiring convexity of U( } )) one has
to establish an effective characterization of those subsets of U to which U
can be reduced.

The result of [Z2] says that given a compact set U one can always find
the smallest subset K/�U which ``generates'' U. More precisely for each
A # int U one can find a sequence of perturbations ,k # W 1, �

0 (0; Rm) such
that dist(A+D,k , K) � 0 a.e. in 0 and each set K$ having the same
property contains K as a subset. It is not known, however, whether the
sequence ,k can be selected to satisfy the inclusion A+D,k # U. Moreover
it is not known how the sets K/�U depend on parameters.
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However we can apply Corollary 1.4 to establish the following abstract
result. We say that a compact set U with nonempty interior can be properly
reduced to a set K/�U if for each A # int U and each =>0 there exists a
piece-wise affine function , # W 1, �

0 (0; Rm) such that

dist(A+D,, (Rm_n"int U ))�$>0 a.e.,

|
0

dist(A+D,(x), K) dx�=. (4.6)

Theorem 4.5. Assume that U: 0_Rm_n � 2Rm_n is a continuous com-
pact multi-valued function such that for each (x0 , u0) # 0_Rm_n and each
v # int U(x0 , u0) there exists a neighborhood of v which belongs to all sets
U(x, u) with (x, u) sufficiently close to (x0 , u0).

Let K: 0_Rm_n � 2Rm_n be a lower semicontinuous compact function such
that for each (x, u) # 0_Rm_n the set U(x, u) can be properly reduced to the
set K(x, u).

Then for each piece-wise affine function f # W 1, �
0 (0; Rm) with Df ( } ) #

int U( } , f ( } )) a.e. and each '>0 there exists a solution of the problem

Du( } ) # K( } , u( } )) a.e. in 0,

u # W1, �(0; Rm), u|�0= f |�0 , &u& f &L��'.

Proof. It suffices to apply Corollary 1.4 with V(x, u)=int U(x, u)
instead of U. To verify the main hypothesis of Corollary 1.4 one uses the
fact that, for $>0, the set S=[v : dist(v, Rm_n"U(x0 , u0))�$] is compact.
Hence S/U(x, u) for all (x, u) sufficiently close to (x0 , u0) and the
argument is easily concluded. Q.E.D.

Theorem 1.7 is an easy corollary of Theorem 4.5.

Proof of Theorem 1.7. It is enough to treat the case of the linear
boundary data f, i.e., f =lv . Moreover without loss of generality we can
assume that v # int U(x, lv(x)) everywhere in 0, otherwise we can switch to
an open subset 0� of 0 such that v # K(x, lv(x)) a.e. in 0"0� , v # int U(x,
lv(x)) everywhere in 0� . The latter holds because of continuity of the map-
ping (x, u) � K(x, u).

In order to verify the assumptions of Theorem 4.5 we use the following
facts (we always assume (1.2)).

(i) (A, B) � UA, B is upper semicontinuous (this follows imme-
diately from the description of U as a level set, see [Sv] or [MSv1])

(ii) �(int UA, B)=�UA, B (see [MSv1], Lemma 5.1)
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(iii) if F # int UA, B , then F # int UA$, B$ for all (A$, B$) close to (A, B)
(see [MSv1, Corollary 5.2)

(iv) int UA, B can be reduced to SO(2) A _ SO(2) B (see e.g., [MSv1],
Lemma 3.2).

Now it follows from (i)�(iii) that the maps (A, B) � UA, B and
(x, u) � U(x, u)=UA(x, u), B(x, u) are continuous. In connection with (ii)�(iv)
this shows that UA, B can be properly reduced to SO(2)(A) _ SO(2)(B).

Q.E.D.

5. COMPARISON WITH THE BAIRE CATEGORY APPROACH

In this section we discuss difference between the Baire category method
developed in particular by the Italian school (see e.g. [C], [B], [BF],
[DeBP], [DM1]�[DM4] and papers mentioned therein) and our method
of constructing sequences of approximate solutions converging strongly in
W1, 1-norm, which is based on Gromov's idea (whose theory of convex
integration greatly generalizes earlier work of Nash and Kuiper on the
embedding problem).

Recall that the Baire category approach for solving differential inclusions

L(Du)=0 a.e. in 0, u|�0= f |�0

consists in proving that the sets of approximate solutions, i.e. of those
admissible functions u that �0 |L(Du(x))| dx<=, are open and dense in the
L�(0; Rm)-norm. Then a Baire category argument allows to conclude that
the set of solutions is dense in the L�-norm in the set of admissible
functions.

The advantage of the method is that it reduces the problem to the con-
struction of approximate solutions. On the other hand one has to verify
openness in L� of the set of approximate solutions, which is a rather
restrictive property.

For a more specific comparison with our approach we first recall the
notion of quasiconvexity introduced by Morrey, cf. [Mo].

Definition 5.1. Let U be a bounded subset of Rm_n, let L: U � R be
continuous and bounded from below, and let L(v)=� for v � U. We say
that L is quasiconvex at a point A # U if for each piece-wise affine function
, # W 1, �

0 (0; Rm) such that A+D, # U a.e. in 0 the inequality

|
0

L(A+D,(x)) dx�L(A) meas 0

holds.
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The function Lqc is called the quasiconvexification of L if for each A # U
we have

Lqc(A) :=inf
,

1
meas 0 |

0
L(A+D,(x)) dx,

where , # W 1, �
0 (0; Rm) are piece-wise affine functions such that A+D, # U

a.e. in 0.

It is easy to show that Lqc is a quasiconvex function.
A typical result available by the Baire category method is

Theorem 5.2 [DM1, Thm.2.1]. Let 0/Rn be an open set, and let
, # W1, �(0; Rm) and L: Rm_n � R satisfy the following hypotheses:

L is quasiconvex; (5.1)

there exists a compact convex set U such that U/[! # Rm_n : L(!)�0];

(L&)qc=0 on int U, where L&=&L on U and +� otherwise; (5.3)

D, is compactly contained in int U. (5.4)

Then there exists u # W1, �(0; Rm) such that

L(Du(x))=0, a.e. x # 0,

u(x)=,(x), x # �0. (5.5)

Moreover Du(x) # U a.e.

Here the authors define the set of the admissible functions as

V :=[u # ,+W 1, �
0 (0; Rm) : Du(x) # U a.e. in 0].

and the sets of approximate solutions as

Vk={u # V : |
0

L&(Du(x)) dx<
1
k= .

Convexity of U allows to approximate original functions by admissible
piecewise affine ones in W1, �-norm, see [DM1, Sect. 6]. Moreover it
implies completeness of V in the L�-norm.

The requirement of quasiconvexity of L allows to obtain openness of
Vk in the L�(0; Rm)-norm since integral functionals with quasiconvex
integrands are sequentially weak* lower semicontinuous in W1, �(0; Rm).
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Moreover quasiconvexity of integrands is just a characterization of this
property of integral functionals [Mo]. Therefore the requirement (5.1) is
necessary for sequential weak* upper semicontinuity of the integral func-
tional with integrand L&, that means that this condition is optimal for
applying the Baire category arguments (since we need openness of Vk).
Note that density of the sets Vk follows from the identity (L&)qc=0 on
int U. Then the set �k Vk is dense in V and contains only solutions of the
equation (5.5).

Note that continuity and quasiconvexity of L|U�0 imply that the set
K :=[! # U : L(!)=0] is generally larger than the set gr extr U. First, it
follows from [Z1] that gr extr U/K, see also Section 4. Moreover, if
A # gr extr U and there are B1 , B2 # gr extr U with A # ]B1 , B2[, rank(B2&
B1)=1, then [B1 , B2]/K. This follows from continuity of L and
Lemma 3.1. The set of such A might be nonempty in the case n�3, but
other points of ]B1 , B2[ may not lie in the set gr extr U (see the example
of the set U based on Proposition 5.3). Therefore K is generally larger than
the set gr extr U.

Another interesting idea to modify the Baire category argument was
proposed recently in [DM3, Section 4], see also [DM4, Section 6]. There
the authors proved Theorem 1.2 under the additional requirement that K
has the property: for each =>0 and each A # U there exists $=$(=)>0
such that if u # lA+W 1, �

0 (0; Rm) satisfies &dist(Du( } ), K)&L1�$ then for
each sequence ,k # lA+W 1, �

0 (0; Rm) with D,k # U a.e. and ,k ( * u in
W1, �(0; Rm) the inequality

lim sup
k � �

&dist(D,k ; K)&L1�= (5.6)

holds.
Given a piece-wise affine function , with D, # (U _ K) the set V of

admissible functions is defined as the closure of the set of all piece-wise
affine functions

u # ,+W 1, �
0 (0; Rm), Du # (U _ K),

in the L�(0; Rm)-norm. It is clear that V is a complete metric space in the
L�-metric.

The authors consider the standard abstract lower semicontinuous
extension of the functional u # V � &�0 dist(Du(x), K) dx, which is

I(u) :=inf {lim inf
j � �

&|
0

dist(Duj (x), K) dx : uj (* u, uj # V= .

We have that if u # V and I(u)=0 then Du # K a.e. in 0.
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The sets

Vk :=[u # V : I(u)>&1�k]

of approximate solutions are automatically open in the L� topology since
the functional I(u) is sequentially lower semicontinuous in this topology.
Density of the set Vk follows from the requirement (5.6). In fact by (5.6)
the set Vk contains all functions u # V with

&|
0

dist(Du(x), K) dx�$,

where $=$(1�k)>0. Since the latter set is dense in V by the assumptions
of Theorem 1.2 and the Vitaly covering argument (see Section 2) we infer
that all Vk , k # N, are dense in V. The Baire category argument allows to
conclude that the set �k Vk , which consists of solutions f # W1, �(0; Rm)
of the differential inclusion

Df # K, f =, in �0,

is dense in V (in the L�-norm).
Note that in this construction the authors exploit the fact that to apply

the Baire category argument it is enough to deal with neighborhoods of the
functional u � &�0 dist(Du(x), K) dx at zero, i.e. it is enough to require
stability in the L�-norm of those approximate solutions which have the
gradients sufficiently close to K in the integral norm.

In the latter result one does not specify the structure of the set U.
However K should have special structure which in the case of convex U
gives the same result as Theorem 5.2 stated above.

Some improvements of the Baire category approach are still possible. In
the case of convex U one can, e.g., try to use upper semicontinuous
quasiconvex integrands L like in the original approach due to A. Bressan
(see [B], [BF]), where the scalar case was completely treated in the case
of continuous multi-valued functions. However the construction of such
integrands might be a bit tricky. It is also possible to use more flexible
integrands which give functionals lower semicontinuous in a class of func-
tions smaller than all admissible Lipschitz functions (like rank-one convex
integrands and the functions given by iterative application of Lemma 3.1
and their limits). In any case the requirement of openness of the sets of
approximate solutions in the L�-norm requires a special structure of U
and K, which we can avoid by dealing with strongly convergent approxi-
mate solutions as in Theorem 1.2.
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Theorem 1.3 shows how to develop our method in the case of non-
homogeneous differential inclusions and allows to remove the quasicon-
vexity requirement (i.e., the requirement that L(x, u, } ) is quasiconvex),
which is responsible for openness of the approximate solutions in L�, in
the results contained in the papers [DM2�DM4].

The case of convex sets is the best studied in literature and it is easier to
show the difference in the constructions described above in this case. We
will exploit a well-known fact that in the case n�3 the set of extremum
points extr S of a compact convex subset S of Rn can be nonclosed. More
specifically we will need an example of a set S with the properties described
in Proposition 5.3. Then the set U in question will be

U :=[v # R3_2 : (v11 , v21 , v31) # S, vi2 # [0, 1], i # [1, 2, 3]].

Let f: [0, 1] � [0, 1] be a decreasing concave function such that
f (0)=1, f (1)=0, and f is affine in each interval Ik :=]1�2k, 1�2k&1[, k # N.
Let dk denote the value of f $ in Ik and assume dk<dk+1 , dk � 0 as k � �.

Consider another function g: [0, 1] � [0, 1] such that g(0)=1 and
g$=dk+1 in Ik , k # N. Then g> f everywhere in ]0, 1].

Consider the sets

S& :=[(v1 , v2 , v3) : 0�v1�1, v2=&1, 0�v3� f (v1)],

S+ :=[(v1 , v2 , v3) : 0�v1�1, v2=1, 0�v3� f (v1)],

S0 :=[(v1 , v2 , v3) : 0�v1�1, v2=0, 0�v3�g(v1)].

The set S/R3 is defined as the convex hull of the set S& _ S+ _ S0 .

Proposition 5.3. We have

[(0, 1, 1), (0, &1, 1), (1�2k, 1, f (1�2k)), (1�2k, &1, f (1�2k)),

(1�2k, 0, g(1�2k)), k # N]/extr S.

However no point of the set [(0, &1, 1), (0, 1, 1)]"[(0, 0, 1)] belongs to the
set extr S.

Proof. It is obvious that the points

(0, 1, 1), (0, &1, 1), (1�2k, 1, f (1�2k)), (1�2k, &1, f (1�2k)), k # N,

belong to the set extr S. To prove the proposition we also have to show
that (1�2k, 0, g(1�2k)) # extr S, k # N, and

([(0, &1, 1)(0, 1, 1)]"[(0, 0, 1)]) & extr S=<.
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Fix k # N. Let a=(1�2k&1, 0, g(1�2k&1)). Note that

dk= f $ in Ik , dk= g$ in Ik&1 .

Consider the plane H &
k which contains the segments J &

k :=[[x, &1,
f (x)] : x # Ik], J 0

k :=[[x, 0, g(x)] : x # Ik&1] (there exists such a plane
since the segments are parallel).

Since the functions f, g are concave we infer that the set S lies below H &
k .

Moreover H &
k & S=S &

k , where S &
k is the convex hull of the set J &

k _ J 0
k .

Since a is an extremum point of the set S &
k it is also an extremum point

of the set S.
To show that each point b # (](0, 1, 1), (0, &1, 1)["[(0, 0, 1)]) does not

lie in the set extr S consider a sequence bj � b. We will show that
bj � extr S for all sufficiently large j # N. If bj is sufficiently close to b and
the first coordinate of bj is zero, then bj # [(0, x, y) : &1<x<1, 0< y�1]
and bj can not be an extremum point of the latter set. Another possibility
to stay in the set extr S is bj # (�k (H +

k _ H &
k )) & S, i.e. bj # �k (S &

k _ S +
k ).

However all extremum points of the sets S +
k , S &

k have the second coor-
dinate equal to 1, &1 or 0. This shows that bj � extr S for all sufficiently
large j # N. This proves the claim. Q.E.D.

Very recently a new type of arguments was suggested by B. Kirchheim
[Ki]. He observed that one can use the set of all uniform limits f of
piecewise affine admissible functions to define a function L� � L1 ( f � Df ).
This function is continuous in a dense set since it can be obtained as a
pointwise limit of continuous functions (we can take e.g. mollifications of
Df with radius =>0 instead of Df and send = to 0). It can be shown that
the points of continuity are solutions of the differential inclusion.
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