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Abstract

We compute the Hochschild, cyclic, and periodic cyclic homology groups of algebras of
families of Laurent complete symbols on manifolds with corners. We show in particular that
the spectral sequence associated with Hochschild homology degenerates at E and converges
to Hochschild homology. As a byproduct, we identify the space of residue traces on fibrations
by manifolds with corners. In the process, we prove some structural results about algebras of
complete symbols on manifolds with corners.
© 2003 Elsevier Inc. All rights reserved.

0. Introduction

Some of the main tools in the applications of non-commutative geometry to index
theory and other arcas of mathematics are the Hochschild and periodic cyclic
homology groups. Hochschild homology, for example, can be used to understand
the residue trace introduced by Guillemin and Wodzicki [14,49]. Other higher residue
cocycles appear when studying more complicated singular spaces. See [11] for
example.

In this paper, we study the Hochschild homology of certain algebras of complete
symbols. Recall that an algebra of complete symbols is the quotient of the algebra of
all pseudodifferential operators by the ideal of regularizing (or order —oo),
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operators. Previously, results in this direction were obtained in [3,7,19,28,33,39], and
by Wodzicki [50] (unpublished). See also [35].

Our algebras of complete symbols can be obtained as algebras of complete
symbols on differentiable groupoids [20,31,32,38]. For this class of examples, it has
been shown in [3] that the periodic cyclic homology can be computed, without any
further assumption on the groupoid under consideration, in terms of the Laurent
cohomology spaces of the cosphere bundle of the associated Lie algebroid. The
Hochschild homology groups of algebras of complete symbols on differentiable
groupoids, however, cannot be described in general in a simple, uniform way
for all differentiable groupoids. Finding the right language in which to express
these Hochschild homology groups seems to be a problem in itself—clearly an
interesting one.

Let n: M — B be a fibration with the base B smooth (no corners), but whose fibers
(and also M) are allowed to have corners. On M we consider a Z/27-graded vector
bundle £ — M, to which we associate the algebra .o/ ¢ (M|B; E) of complete symbols
of smooth families of pseudodifferential operators acting between sections of E
along the fibers of M — B and with at most Laurent singularities at the faces (see
Section 3 for precise definitions). The precise construction of this algebra is done
using groupoids, see Section 3, but the resulting algebra depends only on n: M — B,
and not on the groupoid ¥ used to define it, as long as the groupoid ¥ satisfies
assumptions (15) and (16) of Section 3. In particular, one can take ¥ to be the
groupoid that defines the families b-calculus [27] (this is recalled in Section 6).

In the present paper, we determine the Hochschild, cyclic, and periodic cyclic
homology of the above algebra .o/ »(M|B;E). Let S, (M) = (T;,M\0)/R"
denote the cosphere bundle of the vertical cotangent bundle to the fibration
7n: M — B. To any manifold with corners X, we functorially associate in Section 2 a
space Z(X) by replacing each face F<X of codimension k with F x (S')*, the
product of the unit circle with itself k-times. We denote H?, (X) .= H/(£(X)) and
H{ ,(X) = H.(Z(X)), for simplicity. We shall call these groups the Laurent
cohomology groups, respectively the compactly supported Laurent cohomology groups
of X. The periodic cyclic homology of the algebra .7 »(M|B; E) of Laurent vertical
complete symbols with coefficients in the Z/27Z-graded vector bundle E is then given
by Theorem 3:

HP;(/ 4(M|B; E))~ @z H/ L (S)

vert(M)XSI)a J=0,1 (1)

The Hochschild homology groups turn out to be infinite dimensional, in general,
unlike the case of ordinary algebras of pseudodifferential operators (when B is
reduced to a point), see [3] and the references therein. Let #* be the local coefficient
system over B given by the Laurent cohomology groups of the fibers of S}, (M) x
S!' > B and let p be the dimension of the fibers of m: M — B. Then

HH,,( o (M|B; E)) =~ ® 1 jem Q"(B, 7 7F) (2)
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(Theorem 6). This result leads, in particular, to an explicit description of the space of
residue supertraces on our algebras of families of pseudodifferential operators. For
example, when M is smooth (no corners) and n has connected fibers of dimension at
least 2, we obtain that

HH(o/(M|B;E))~%""(B) = ¢ (B), (3)

that is, that the space of supertraces on .o/(M|B; E) identifies with the space of
distributions on B. (Note that in this case .«/ »(M|B; E) = o/ (M|B; E).) The space
of traces in the general case of fibrations = : M — B when M has corners is obtained
by replacing B in the above formula by the union of the minimal faces of M
(Theorem 9).

Let us now briefly describe the contents of each section. In Section 1, we quickly
recall the basic definitions of Z/2Z-graded homologies for topologically filtered
algebras and give an appropriate criterion for the convergence of the associated
spectral sequences. Section 2 is devoted to the description of the algebras
o ¢(M|B; E) of complete symbols that we are interested in. In Section 3, we
introduce the assumptions on our groupoids and also prove that the resulting
algebras o7 (M |B; E) depend only on n: M — B, as long as Assumptions (15) and
(16) are satisfied. Section 4 is devoted to the computation of the Hochschild
homology of our algebras of complete symbols. In the process, we compute several
other homology groups associated to Poisson manifolds. In Section 5, we extend the
main results of the previous sections to the relative case. The last section, Section 6,
treats in detail a few examples. In particular, we obtain an explicit description of the
space of traces on our algebras of complete symbols. Note that in this paper almost
all results are formulated in the Z/2Z-graded case, in view of some possible
applications.

We hope that the results of this paper will find applications to the index theorem
for families [2] or to its generalization to families of fibrations by manifolds with
boundary [5].

1. Topological filtered algebras

Topologically filtered algebras were introduced in [3] to provide a natural
framework for the algebras of complete symbols associated to algebras of
pseudodifferential operators. In this section we review the definition of topologically
filtered algebras and a few other relevant facts. The complexes computing the various
homologies of these algebras have to be defined appropriately. In view of the
applications that we have in mind, we have found it necessary to extend our setting
to include that of Z/27Z-graded algebras. For basic facts about pseudodifferential
operators, see one of the many nice monographs available [34,42], or [43].

We begin by recalling the definitions of Hochschild and cyclic homology groups
of a topological algebra 7. A good reference is Connes’ book [10]. See also [16,22].
See [17] for the homology of Z/27-graded algebras. These definitions have to be
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(slightly) modified when the multiplication of our algebra is only separately
continuous. We thus discuss also the changes necessary to handle the class of
algebras that we are interested in, that of “topologically filtered algebras,” and then
we prove some results on the homology of these algebras.

First we consider the case of a topological algebra .«/. Here ““‘topological algebra”
has the usual meaning, that is, .o/ is a real or complex algebra, which is at the same
time a locally convex space such that the multiplication .o/ X .o/ — .o/ is jointly

continuous when .o/ x .o7 is endowed with the product topology. Denote by ® the

projective tensor product and #, (/) = .o/ ®""!| the completion of .«#®"*! in the
topology of the projective tensor product. Also, we denote as usual by daeZ/27 the
degree of an element in the Z/27Z-graded algebra and by »’ and b the Hochschild
differentials:

n—1

P(a®@a®- ®a) =Y (—1)a® - @aiai1 ® - Qay,

i=0

blay®@a1® - ®a,) =b(a®a® - ®a,) + (—1)" " a,a0® - @a,_1, (4)

where u = da,(dag + -+ + da,_1).

The Hochschild homology groups of the algebra .o/, denoted HH, (.«7), are then the
homology groups of the complex (#,(.<7), b). By contrast, the complex (#,(.o7),d")
is often acyclic (for example when .o7 has a unit). A topological algebra .o7 for which
(A, (A),b') is acyclic is called H-unital (or, better, topologically H-unital), following
Wodzicki [49].

We now define cyclic homology. Assume first that .o/ is unital. We shall use the
notation of [9]. See also [16].

S(a®a1® - Ray) =1Q®aR®a1® -+ Ray,
Hay@a @+ Qay) = (—1)""4,®a® -+ ®ay_1,

n

By(ay®a1 ® - Qay) = s Flay®a® - ®a,), and B=(1—-1)By, (5)
k=0

where y = da,(0ag + -+ + da,_1), as above. Then [b, B, = bB+ Bb = B> = b* =0,
and hence, if we define

(g(%)n = @kzﬂ e}fn—Zk(JZ{); (6)

(4(</),b+ B), is a complex, called the cyclic complex of o/, whose homology is by
definition the cyclic homology of .o/, as introduced in [9] and [45]. The cyclic
homology groups of the algebra .o/ are denoted HC,,(.7). For an algebra .o/ possibly
without unit, one considers the algebra with an adjoined unit ./ and then the cyclic
homology of .« is, by definition, the kernel of the map HC, (. ") — HC,(C) induced
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by the augmentation morphism .7 —C. It is know that the two definitions are
equivalent if .o/ has a unit.

Consideration of the natural periodicity morphism 4, (/) - %,_2(.<7) easily shows
that cyclic and Hochschild homology are related by a long exact sequence

1 1

> HH, (/) LHC, () S HC, (o) ZHH,_ () L -, (7)

with the maps I, B, and S explicitly determined. The map S is also called the
periodicity operator. See [9,23]. This exact sequence exists whether or not .o/ is
endowed with a topology.

Recall that an algebra .o/ with a given topology, is a topologically filtered algebra if
there exists an increasing multi-filtration F)'.o/ =.o/,

Fl'o/cF)of, if n<n', I<I';, and m<n,

by closed, complemented subspaces, satisfying the following properties:

(1) o = Un,m F’;"JZ/;
(2) the union &/, =J,, F)'</ is a closed subspace such that

Fl'of = of 0 (U F;“ﬂ);
J

(3) multiplication maps F".«/ @ F" o/ to Fr’,’ﬂ’,”/@{ :
(4) the maps

n+n' n+n'—

F}TM/F:‘LJ'%@)F;ZI/JZ{/FZZLij—)Fm+m/&//Fm+m’jM

induced by multiplication are continuous;
(5) the quotient F,’,’lszf/l*",’;ij&/ is a nuclear Frechet space in the induced topology;
(6) the natural map

Fp'ed > lim F'JFiof . j— o0

is a homeomorphism; and
(7) the topology on .27 is the strict inductive limit of the subspaces F} ., as n— o

(recall that F".c/ is assumed to be closed in FI'T{.7).

(The above definition is a simplified version of the original definition in [3].)

For topologically filtered algebras, the multiplication is not necessarily jointly
continuous, and the definition of the Hochschild and cyclic homologies using the
projective tensor product of the algebra .7 with itself, as above, is not very useful.
For this reason, we change the definition of the space #,,(</) as follows.
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Consider

T Nq m
Fp=Jim > ®L ®)
ko+---4ky=p

(projective tensor products) which defines an increasing sequence of subspaces

(i.e. filtration) of .o/ ®7*'. We use this filtration to define #,(.+/) as a completion.
Namely,

Fy (o) =1im Fy/Fy  and A y(f) = F 0 (() (9)

where j— oo in the projective limit. The operator B extends to a well defined map
B: A (o)~ H 441(), which allows us to define the cyclic complex and the cyclic
homology of the algebra .o/ as the homology of the complex (%.(«/),b + B), with
Cy(A) = ®H 421 (), as for topological algebras.

For any topologically filtered algebra, we denote

Gr(d) = @A) A

the graded algebra associated to o7, where <7, is the union | J,,,, F"'.<, as before. Its

m,n
topology is that of an inductive limit of Frechet spaces:

Gr(s/)~  lim ®N F'o|F" o,
M= o0
which makes sense by (2) in the definition of the topologically filtered algebra .o7.
For the algebras like Gr(.<), we need yet a third way of topologizing its iterated
tensor products. For our purposes, the correct definition is then

H(Grl(o)) = lim (@) _y Fyt [Fy ) O
The Hochschild homology of Gr(«/) is the homology of the complex
(#.(Gr(£)),b). The operator B  again extends to a map
B: A ((Gr(L))— H41(Gr(/)) and we can define the cyclic homology of Gr(.</)
as above. The operators S,B and I associated to #,(Gr(.«/)) are the graded
operators associated with the corresponding operators (also denoted S, B and 1)
on A ().

The Hochschild and cyclic complexes of the algebra Gr(.«/) decompose naturally
as direct sums of complexes indexed by peZ. For example, #,(Gr(.</)) is the direct
sum of the subspaces #y(Gr(.</)),, where

(), = i, (8L 41 1),

where ko + ki + --- +k, =p and —N<k;<N.
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The corresponding subcomplexes of the cyclic complex are defined similarly. We
denote by HH,(Gr(.«/)), and HC,(Gr(</)), the homologies of the corresponding

complexes (Hochschild and, respectively, cyclic).
The following two results are well-known consequences of standard results in
homological algebra (for topologically filtered algebras they were proved in [3]).

Lemma 1. Let o/ be a topologically filtered algebra. Then the natural filtrations
on the Hochschild and cyclic complexes of o/ define spectral sequences EH} , and EC}
such that

EH, , ~HH;;4(Gr(+#)), and EC;,~HCi(Gr()),.

Moreover, the periodicity morphism S induces a morphism S': EC} , >EC, , of
spectral sequences. For r = 1, the morphism S' is the graded map associated to the
periodicity operator S: HC,(Gr(+/)) ->HC,_2(Gr(.#)) and the natural filtration of
the groups HC,(Gr(</)).

Proof. The filtration F,# ,(.«/) of the complex computing the Hochschild homology
of .o/ gives rise to a spectral sequence (E"),.; with

Epjy = Hicon(Fe H () | Fry H (),

by standard homological algebra. By the definition of the Hochschild complex of
Gr(#/), we have:

Hyon(Fx A () [ Fyr H (7)) 2 HHpe (Gr (/).

This completes the proof for Hochschild homology. The proof for cyclic homology is
similar. [

In our considerations below, we shall need the following classical result, which was
proved for topologically filtered algebras in [3]. Due to the importance of this result
in what follows and for the convenience of the reader, we include a proof of it.

Theorem 1. Fix an integer N and a>=1. Let o/ be a topologically filtered algebra such
that EHy (/) =0, for all k<N and all h. Then the spectral sequence EH} , =

EH; (/) defined in Lemma 1 converges to HHyp(o7). More precisely, we have
HH;(+)~®;Zy EH;”; ;.
A similar result holds for the cyclic homology spectral sequence.

Proof. We have

%q(&/):“f' H () [ FyH y( ). (10)



8 M.-T. Benameur, V. Nistor | Journal of Functional Analysis 205 (2003) 1-36

This enables to write, for every fixed ¢, the well-known associated lim' exact
sequence (see [3, Lemma 6], for example)

0 lim' Hy 1 (A (0) [ Fy # (1)) = Hy (A (o)) = im Hy(H () Fy H (1)) 0.

Let E;,(p) be the spectral sequence associated to the homology of the filtered
complex (#()/F,#(</),b). Then E[ ,(p) converges because it is a translation

of a first quadrant spectral sequence. Therefore, the homology groups
Hy (A (/)| F,# (</)) are endowed with a filtration #,(p) (= the image of the
homology of the complex F;#(/)/F,# (</)) so that

F ()T (p)=E_(p). (11)

Moreover, we have the following non-natural isomorphism

H, (A2 [ Ey (1)) = @ oy 7 ( )- (12)
Furthermore, the spectral sequence Ej ,(p) satisfies:
E(p) = {0 | %f k<p and
; EH), if k>p+r.
Consider now the projective system
Ay = Hy(H(A))Fy (), By = Fn nara(N —na), and C,:=A,/B,
Then the ker—coker lemma [1] for the short exact sequence

0—-IIB,-IIA,—»1IC,—0

gives rise to the following well-known exact sequence:

0— lim B,— lim 4,— lim C,— lim' B, — lim' 4, - lim! C, —0.

(See [3, Lemma 7], for example).
By conditions (11) and (13), the natural map 4, — A, restricts to the zero map
B, .1 — B, and it induces an isomorphism C,,; — C,, for n>2. Therefore we get:

lim' 4, =0 and lim 4, =C,, Vn>2.

And hence, finally,

HH,,(&/):CHO = ('BIZN E[?;712 @[eZEH[OAZf]- O
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The above isomorphism is not natural, in general, but comes from a filtration
FiHH,(</) of HH,(«/) whose subquotients FHH,(«)/F,_1HH,(«/) identify
naturally with EH” . see [25,26].

It is useful to mention here that the composite map

HH, (/) > HC, (/) > HH, (/)

preserves the filtrations and hence it induces natural maps
(BoD)": EHL (/) > EHy (/).
For r = 1, this map is the composition of the corresponding morphisms
HH,(Gr(/)) >HC,(Gr(#)) > HH 41 (Gr (7))

for the graded algebra of .«/.

2. Algebras of complete symbols

We now introduce the algebras of complete symbols that we study in this paper.

We shall follow the standard notation for groupoids and Lie algebroids, using the
conventions of [20]. In particular, if ¢ is a differentiable groupoid with space of units
M, then d,r:%— M denote the domain and range maps, respectively, so that the
composition gg’ of two elements ¢, ¢’ €% is defined if, and only if, d(g) = r(¢g').

We shall also follow [3] for some specific constructions involving manifolds with
corners, some of which are recalled below. As in that paper, we are interested in
certain specific groupoid algebras associated to manifolds with corners. If 4 is a
differentiable groupoid with space of units M and E— M is a Z/27Z-graded vector
bundle, then we shall denote by

¥ (4,E)= ] P"(%E)

meZ

the algebra of pseudodifferential operators on % acting on sections of the vector
bundle r*E. We also define

YO(GE) = ) Y"(YE)

meZ

(see [20] or [38] for definitions). These two algebras are naturally Z/2Z-graded.
We shall denote by /(M) the space of smooth functions on the interior of M that

have only Laurent singularities at the boundary faces. If every hyperface H of M has

a defining function xy, then O(M) is the ring generated by ¥ (M) and x3!. Let then

A(G,E) =V (9,E)/V *(9,E) and A »(9,E)=0M)Ad(Y;E).
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The Z/27-grading on E then provides us with a natural Z/27-grading on the
algebras o7 (%; E) and o »(%; E) too.

Proposition 1. Assume that 9 and M are as above and that M is o-compact. Then the
quotients o/ (9, E) and o/ ¢(9; E) are topologically filtered algebras.

Proof. Let M =|JK,, be an exhaustion of M with compact sets (that is,
K, cint(K,,11)). Also, let xi,...,x; be defining functions of the hyperfaces of M
and f = x;...x;. We define F"o/ »(9; E) to be generated by f~"+ (P + ¥~ *(%; E)),
my = max{0,m}, where Pe V" (%; E) is such that its distribution kernel is contained
in K,,, X K,,,.

The proof then is exactly the same as the one for £ =C in [3]. O

Let A(%) be the Lie algebroid of ¢ (see [20]) and let S*(%) be the sphere bundle
of A*(¥), that is, the set of unit vectors in the dual of the Lie algebroid of ¥,
and denote H[C"] =& keZHZ+2k (singular cohomology with compact support and
coefficients in C).

Theorem 2. Assume that the base M is o-compact, then the periodic cyclic homology of
the algebra </ (9; E) is given by

HP,(/(%; E))~HY(S* (%) x S"). (14)

Proof. An argument similar to that of Lemma 5 in Section 4 shows that the
Hochschild homology is unchanged by introducing the extra vector bundle E and the
Z/27-grading. Standard homological algebra arguments then show that the same is
true for cyclic and periodic cyclic homology. The result follows then from the case
E = C that was proved in [3]. O

To state the result for the algebra .o (¥; E), we need first to recall a construction
from [3] that will be used several times in what follows.

Let P be a manifold with corners. We shall assume that P has embedded faces, for
simplicity. Then #(P) is a space naturally associated to P and defined as follows.
Consider for each face F of P the space F x (Sl)k , where k is the codimension of the
face. We establish a one-to-one correspondence between the canonical &k copies of

the unit circle in (Sl)k and the faces F’ of P containing F, of dimension one higher
than that of F. We then identify the points of the disjoint union |JF x (S')* as
follows. If FcF' and F' corresponds to the variable 0,eS' we identify
(X, 01, ..., 0i_1,1,0,41, ..., 00) €F x (SH to the point (x,01,...,0i 1,01, ...,0c)
eF' x (SV)*! (same x). The resulting quotient space is by definition Z(P). This

construction extends to the case when the faces are not necessarily embedded by
localization.
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By construction, there exists a continuous map pg: ¥ (P)—>P. Let J, =
S'U[1,1+¢)=C, for some £>0, with S' identified with the subset {|z| =1} of
the complex plane. Then the space Z(P) is locally modeled by J* x R"*_ above each
point of P belonging to an open face of codimension k.

Suppose now that P— B is a fibration by manifolds with corners with B smooth.
Let Q be the typical fiber of the fibration P— B. Then we obtain by the above
construction, a fibration #(P)— B, with typical fiber the locally compact space
2(0).

In [3], the periodic cyclic homology of several algebras of complete symbols was
computed. These results include our algebras .o/ ¢ (%; E), when E is trivial. The result
is the same in general.

Theorem 3. For j = 0,1, we have
HP,(/ ¢ (; E)) ~HU (2(5°(9)) x §").

Proof. When FE is trivial one-dimensional, this result was proved in [3]. The general
case is proved in the same way, using the same argument as in the proof of Lemma 5,
which shows that the Hochschild homology of the algebras .o/ ¢(%; E) does not
depend on the bundle E, thanks to the Morita invariance of Hochschild
homology. O

Assume now that 7 : M — B be a fibration of smooth manifolds (no corners) and
G =M xgM = {(m,my),n(m) =n(my)} be the fibered product groupoid. More
precisely, the structural maps of ¢ are defined by d(my,my) = my, r(my,my) = my,
and (my,my)(ma,m3) = (my,m3). Then the algebra ¥*(%;E) identify with the
algebra of smooth families of pseudodifferential operators along the fibers of
n: M—B that have compactly supported Schwartz kernel. Also, note that
A (Y E)~.of (9; E), because there are no corners (or boundaries). We shall denote
by of (M|B; E) = </(%; E) the algebra associated to this groupoid.

Corollary 1. For any fibration n: M — B of smooth manifolds (without boundary), we
obtain

HP;(«/(M|B; E)) ~HL(S”

vert(M) XSI)? ]:071

This leads to a complete determination of the periodic cyclic homology of the
algebras o/ (%, E) = V" (%, E)/V “(9,E) and o (%, E) = O(M)L(%;E). The
result is moreover easily expressed in a uniform manner for all differentiable
groupoids ¥. The Hochschild homology of these algebras seems to be more difficult
to compute. Finding the groups HH.(/ #(¥; E)), in general, seems to depend on
finding the right language in which to express the result. Needless to say, finding the
right language to express the groups HH. (.o (¥; E)) and then determining them is
a worthy problem.
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We shall determine the groups HH.(o/ ¢(%; E)) for a class of groupoids that,
roughly speaking, consists of families of groupoids of the kind considered in [3]. We
now proceed to describe this class in detail.

3. Families of manifolds with corners

To describe the class of differentiable groupoids ¢ for which we shall determine
the groups HH..(.o7 (¥; E)), we first describe the assumptions on the space of units
of 4. We shall denote the space of units of 4 by M, where M is a differentiable
manifold, possibly with corners, as before. We shall assume that there exists a
smooth manifold (without corners) B and a map n: M — B that makes M a
differentiable fiber bundle over B with fiber F. We regard this fiber bundle as a being
the fiber bundle associated to a principal bundle with structure group Diffeo(F), the
group of diffeomorphisms of F that map faces to faces. From now on and
throughout the paper, we shall denote n = dim(M), ¢ = dim(B). Also, we shall
denote by p the dimension of the fibers of n: M — B, so, in particular, n =p + q.

Assumptions. Fix M as above. We shall now describe our three assumptions on the
groupoid ¥.

Our first assumption on 9 is that for any arrow ge ¥, the domain and range of g
are in the same fiber of n: M — B, that is,

n(d(g)) = n(r(9)), Vge¥. (15)

The intuitive meaning of this condition is that the natural action of ¥* (¥; E) on
€ (M) via the vector representation [18,38] is given by families of operators acting
on the fibers of =.

Let TyertM be the vertical tangent bundle to the fibration 7 : M — B. Denote as
above by (O(M) the space of smooth functions on the interior My of M that have
only Laurent (or rational) type singularities at the faces of M. Let us denote by
0:A(%)— TM the anchor map of the Lie algebroid of .

Our second assumption on 9 is that the map o : I'(A(%9)) > I'(Tyere M) defined by ¢
induces an isomorphism

O(M)® ¢ () T (A(%)) =~ O(M) ® c= (ay T (Tver M), (16)

of vector spaces. Clearly the above map preserves the Lie bracket, so we get an
isomorphism of Lie algebras also.

Our next assumption on ¥ is a local triviality condition on the algebra .« (¥%; E).
To state this assumption, we need to introduce some notation. For any open set
V < B, we denote by 4y the reduction of % to n~! (V). Our previous assumptions on
4 give that 9y = (nod)~' (V). Similarly, for every point be B, we denote by %, the

reduction of % to n~!(b). Again, our assumptions give us that 4, = (nod)”' (b) =
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(mor)"'(h). Let us observe that
O 'MW (V x Gy E))¥~ 7 (V x 9y, E))

has a natural filtration and a natural completion to a topologically filtered algebra,
denoted

On " (V) (P*(V x G, E) /P~ (V x 9y E)).

Our third and last assumption on % is the following. For any be B, we assume the
existence of an open neighborhood V' < B of b and a ¥ (B)-linear isomorphism

A g (n (V)Vi Epy) = 0@ (V)P Gy E) /¥ (9r; E))
~ O (V) @y (P> (V x 95 E)[¥~ " (V x 4y, E))  (17)

of topologically filtered algebras, where V' x %, is the product groupoid, with V
consisting of just units and the operations being defined pointwise.

The three assumptions above, Egs. (15)—(17) are not completely independent, as
we shall see shortly. We do not impose in this section these assumptions on our
groupoid 9. Each result below will specify which assumptions are needed. However,
beginning with the next section, we shall use all three assumptions on ¥.

Lemma 2. Assume that (16) is satisfied. Then the morphism @ above induces an
isomorphism

M)

vert

O(M)® () C” (A(9)) = O(M) ® = () C* (T,
of Poisson algebras.

Proof. Let X, Y, and ZeI'(A(%)). Then X, Y, and Z define functions (denoted by
the same letter) X,Y,Z: 4*(9) - R. Assume Z = [X, Y]. Then the Poisson bracket
on C*(A*(%)) is uniquely determined by {X, Y} = Z. The equation ¢([X, Y]) =
[0(X),0(Y)] shows that the natural map
Cr(4°(9)) - C™ (T,

vert

M)
is a Poisson map. The proof is completed by including (M )-coefficients. [

See [47] for some basic facts about Poisson manifolds.

Let My .= M \OM be, as above, the interior of M and let T\ M, be the vertical
tangent bundle to the smooth fibration My— B. Our second assumption, Eq. (16),
implies, in particular, that the anchor map ¢ restricts to an isomorphism

A(g)|MO2 vertMOa (18)

of vector bundles.
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We now discuss the relation between our three assumptions on %. It turns out that
these assumptions do not play equal roles. In fact, the second assumption implies the
third one, and, under some weak assumptions on ¢ (d-connectivity) it also implies
the first assumption. The following considerations are however somewhat
independent from the rest of the paper, and, for the purpose of Hochschild
homology computations, the reader can just ignore some of the results below, but
instead impose all three assumptions on %.

First, let us notice that, in the same spirit as the above lemma, we get an
isomorphism of the algebras of differential operators corresponding to 4 and to M.
More precisely, let Diff(M,%) be the algebra of differential operators on M
generated by ¥* (M) and I'(A(%)). Similarly, let Diff(M) be the algebra of
differential operators on M generated by € (M) and I'(TM). The Poincaré—
Birkhoff—Witt theorem of [38] shows that the anchor map ¢ then gives rise to a
morphism

Proposition 2. Assume that the map o :I'(A(9))—>T'(TM) defined by ¢ is injective,
then our second assumption on 9, Eq. (16), is equivalent to the fact that
opirr - Diff (M, %) — Diff (M) induces an isomorphism

O(M) Diff(M,%)— O(M) Diff (M).
Proof. The space of vector fields on a manifold coincides with the space of first order
differential operators without constant term (i.e. that send the function constant
equal to 1 to 0). Thus, the isomorphism

O(M) Diff (M, %) ~ 0(M) Diff (M)

is equivalent to the fact that O(M)I'(4(%)) maps surjectively onto O(M)I'(TM).
Since this map is injective by assumption, the result follows. [

The algebras .o/ (%; E) turn out to depend only on n: M — B.

Theorem 4. The algebras </ #(9; E) are independent of 4, as long as assumptions (15)
and (16) are satisfied.

Proof. Assume F is trivial, for simplicity. Let 7y be the restriction of 7 to the interior
of M and let ¥ (M|B) be the algebra of smooth, properly supported families of
operators acting on the fibers of

. My = M \OM — B.
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Recall [18,38] that the vector representation 7, : ¥* (%) —End(%.° (My)) is defined
uniquely by

(mo(P)f) or = P(f or).

Assumption (15) shows that n, factors through a morphism ¥* (%) - ¥ 1 (M|B).
Assumption (16) then implies that .o/ (%) identifies with a subalgebra of % =
¥ orop(M|B) /¥ 155 (M| B).

We now argue that Proposition 2 and asymptotic completeness imply that the
image of O(M)¥ ™ (%) in # is independent of %. Indeed, it is enough to check that
the image of O(M)¥Y"(9)— % is independent of ¥, for any m. Let DeO(M)
Diff (M; %) be an elliptic differential operator in O(M)¥*(%), for some fixed k>1.
Let Q be a parametrix of D. Then Proposition 2 implies that

O(M) Diff(M; %)[0] = ¢(M) Diff (M)]0). (20)

Let ¢, be another differentiable groupoid satisfying assumptions (15) and (16),
then

0(M) Diff(M: %,)[0] = 0(M) Diff (M; )(Q),

by using Eq. (20) twice. Because O(M)(¥Y"(9)/¥Y~*(%))— % is continuous and
injective and the image of the space of operators of order at most m of
O(M) Diff(M;9)[Q] is dense in O(M)P™(9)/¥P~ (%), we obtain that the closure
of the range of O(M)¥" (%) in # does not depend on ¥. By looking at the complete
symbols of the images of O(M)(P"(¥9)) and O(M)P"(%,) in # and using the
asymptotic completeness of the algebras of pseudodifferential operators
O(M)(P*(9)) and O(M)P*(%,), we obtain that the actual range of Y"(¥) in %
is independent of ¥, as desired. [

In view of the above result, we shall denote o7 »(M|B;E) = o ¢(%;E), if
% is a groupoid satisfying the first two assumptions, Egs. (15) and (16), of this
section.

Let us recall that & is d-connected if, and only if, all the sets %, == d!'(x) are
connected.

Corollary 2. Suppose 9 is a differentiable groupoid with units M. Then assump-
tion (16) implies assumption (17). If % is also d-connected, then (16) implies also
assumption (15).

Proof. By Theorem 4, it is enough to check (17) for any fixed groupoid ¥ satisfying
(16). In particular, we can choose ¢ to be locally a product, in which case (17) is
trivially satisfied. (For example, we could take ¥ = %, ;, the b-groupoid defined in
Section 6.)
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Let X1, ..., X, be sections of 4(%). We shall write ¢(X;) for ¢ (X;) (in our case ¢
is an inclusion). Then

n(exp(e(X1))...exp(e(Xm))x) = n(x),

for all xe M. The assumption that ¥ be d-connected is equivalent to the assumption
that, for any ge ¥, there exist X1, ..., X}, as above such that

r(g) = exp(e(X1))...exp(e(Xn))d(g),

see [24]. O

It also follows from the above discussion that it is enough for our computations to
consider a “typical” algebra for each fibration 7 : M — B. There are several choices of
“typical” algebras, in general. One possible choice, the “b-calculus” [27], as well as
the result of our computations for this algebra, will be described in Section 6.

4. Hochschild homology for families

In this section, we compute the Hochschild homology groups of the algebras
o ¢(M|B; E) = of (¥; E) introduced in the previous section. Recall that these
algebras are algebras of complete symbols associated with a groupoid ¢ with
units M and a fibration n: M — B by manifolds with corners satisfying the
assumptions of Equations (15) and (16). The results of this section are already
interesting when the manifold M has no boundary. Recall that n = dim(M),
¢ =dim(B), and n =p +gq.

In addition to helping us eliminate our third assumption on %, Eq. (17), the
introduction of the Laurent-type factors also simplifies the calculations, as in [3,28].
When B is reduced to a point *, this also ensures that the Hochschild homology of
oL (M) = of o(M|x) is finite dimensional. For example, the dimension of the space
of traces on .o/ ¢ (M|x) is the number of minimal faces of M [3]. Moreover, the “cone
algebras™ described for example in [40] are more closely related to the algebras
o/ (M|B; E) than to the algebras .o/(M|B; E). See also [21,39].

Our computations will use the Poisson structure of 4*(%) and, more precisely, the
“homogeneous Laurent—Poisson homology” of 4*(%)\0, where 4*(%)\0 is the dual
of the Lie algebroid of ¢, with the zero section removed. The homogeneous Laurent—
Poisson homology of 4*(%)\0 is defined below and will be identified in terms of the
“homogeneous, vertical Laurent-de Rham cohomology” of the fibration
A*(%9)\0— B (this cohomology is also defined below). The homogeneous Laurent—
Poisson homology and the homogeneous vertical Laurent—-de Rham cohomology are
natural analogues of the Poisson and, respectively, de Rham cohomology, which are
obtained, roughly speaking, by introducing Laurent type singularities at the corners
of M and by considering homogeneous forms (on A4*(%)\0, for example). See
[30,48,51] for more on Poisson homology.
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We begin with the definition of the groups Hi‘ﬁi,}(A*(@)\mB) ;, the homogeneous,
vertical Laurent-de Rham cohomology of the fibration 4*(%)\0— B. Then we shall
discuss Poisson homology and its variant, the homogeneous Laurent—Poisson
homology.

Let X be a manifold with corners and let my: X — B be a fiber bundle with B
smooth. Let us call the sections of Ty X vertical vector fields, as it is customary.
Then the sections of the dual T7, X are called vertical differential forms. There exists

vert
a natural (i.e. independent of any choices) differential operator

dyert : T(AF T,

vert

X) > T (AT X)), (21)

vert

the vertical de Rham differential.

Every vertical vector field on X is also a vector field on X in the usual sense. On
the other hand, a form on X restricts to a vertical form on X. Moreover, every
vertical form on X is the restriction of a form on X, but we cannot choose that form
in a canonical way. A convenient way to choose extensions of vertical forms is to
consider a splitting of 7X into vertical and horizontal parts. We shall hence fix from
now an isomorphism (or splitting)

O : TX = Tyen X 7 TB. (22)

The splitting @ of Eq. (22) gives rise to an embedding @ : I'(A* T X) —>Qk(X).
More generally, we get isomorphisms

AT X > @,y AT X @A T B.

Let Q" (X) =T (X, AT

F X ®m5AT*B). Then QF(X)~ @, = Q/(X), and we
also have isomorphisms

Q(X)®¢= (3 Q) (B)20®n—>wAmgne ™ (X). (23)

The embedding @) can then be used to define a map dyer : Q°°(X) - Q*10(X)
(using the same notation for the differential is unlikely to cause any confusion in our
case). We extend then d,¢ to a map

dyer : Q7 (X) > QT (X),
by using the isomorphisms of Eq. (23) above and setting
dvert(w A 77.'31’]) = dvm(w) A 7'5617

if neQ™*(X) and weQ/(B). Clearly d2,, = 0. The extension dyey that we obtain
depends on the splitting @ of Eq. (22). The isomorphism class of the resulting
complex, however, does not depend on 6.

Let us denote by @, (X) the space of k-differential forms on the interior of X that

have only rational (or Laurent) singularities near the corners. We shall sometimes
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call forms with these properties Laurent-differential forms. The above definitions
and properties extend to Q%,(X) as follows. Let Q%/(X) = O(X)['(X, AT, X ®
A/ T*B). Then

5 (X) = @1y Q3 (X),
and, as before, we obtain a differential
dyer s Q) (X) - Q5" (X).
We shall denote by
HY/(X) = ker(dyent)/dhen @y (X)

the homology of the above complex. Similarly, if compactly supported forms are
considered, we obtain a complex whose homology we denote by H’cfg)(X ).

Define the horizontal differential dho : Qig/;/(X )—»Qig/;/H(X ) as the component of
bidegree (0,1) of d. Then O := d — dyert — dhor is known to be a differential and to
have bidegree (—1,2). See for instance [44].

The equality d*> = 0 is equivalent to the following relations:

dverldhor + dhordverl = O, d}zlor + 8dvert + dverla = O; 62 = Oa

d’>. =0, and Odnor + dnord = 0.

vert —

The vertical Laurent—-de Rham cohomology can be computed in a fairly explicit way.
Indeed, let Z* be the local coefficient system determined by the Laurent cohomology

groups of the fibers of X — B. Thus Z* is a canonically flat vector bundle over B
whose fiber at be B is

FH(b) = H{ 4 (m5 (b)) = H{ o (n5 " (D) |b). (24)
Let Q’f (B) be the space of compactly supported k-forms on B.

Proposition 3. Using the above notation, we have that
k.h Y] 3 ak\y _. oh . gk
H o (X|B)~Q/(B) @5 (F7) = Q/(B; 77), (25)

the space of compactly supported h-forms on B with values in F*. In particular, the
vertical Laurent—de Rham cohomology groups Hfff/(X |B) are independent of the
splitting TX ~ Tyer X @ niTB used to define them, see Eq. (22).

In addition, the action induced by the horizontal de Rham differential dnoy on
H];f;(X |B) is isomorphic under (25) to the de Rham differential on B with coefficients
in the locally constant sheaf F*.
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Proof. The above formula is checked right away when n: X — B is a trivial fiber
bundle (i.e. X = B x F) by using the Kiinneth formula for the tensor product of
complexes of nuclear vector spaces, [15]. Moreover, an automorphism of the trivial
fiber bundle X = B x F does not affect the isomorphism of the proposition. A
partition of unity argument then completes the proof. [

Let A*(%)\0 be obtained from the vector bundle 4*(%), as before, by removing the
zero section. We are interested in the above constructions when X = 4*(%)\0 and
ny: A*(9)\0— B is obtained from the composition of the maps 4*(¥9)— M and
n: M — B. More precisely, for us, the relevant cohomology groups are the
cohomology groups obtained by considering homogeneous forms. Let then

Qf,"(,{g(A*(%)\O), be the space of /-homogeneous forms in
Q(A*(9)\0) = O(M)I(A*(9)\0, A'T?, (47 (9)\0) @ A/ T* B)

whose support project onto a compact subset of M. Here the homogeneity is
considered with respect to the natural action of R} on 4*(%)\0 by dilations. We
denote then by

H./,(4°(9)\0|B),

the homology of the complex Q’”’ #(A4(9)\0), with respect to the vertical de Rham
differential d,e;. We shall call these groups the homogeneous, vertical Laurent—de
Rham cohomology groups of A*(9).

Similar constructions and definitions are obtained with T, M in place of 4*(¥).
Our second assumption on the groupoid ¥, Eq.(16), gives that the two
cohomologies are isomorphic.

Lemma 3. The anchor map ¢ : A(9) - Tvere M induces a natural isomorphism
H% (A4"(9)\01B) = (T e M\O|B),.
These groups vanish if [#0 and, for | = 0, we have
HCl (A7(9)\01B)g ~ Hily Ty M\0|B),

~ i,j *
- HC,Q’ (Sverl

(M) x S'|B)~H}%,(S*(%) x S'|B).

Proof. The map ¢ induces an isomorphism of the corresponding complexes, by

Eq. (16) and the definition of the spaces Q’r/ #(A*(9)\0),. The vanishing of the

groups Hii\{;[(T wert\0| B), for [#0 follows from the homotopy invariance of de Rham
cohomology. The computation of the 0-homogeneous cohomology spaces is

elementary, see for instance [3,7,28]. [
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We can thus replace 4*(%9) with T7,, M for the rest of our computations of the

homogeneous, vertical Laurent-de Rham cohomology groups of 4*(9).
The homogeneous, vertical Laurent—-de Rham cohomology can be computed using
a method similar to the one we used to determine the non-homogeneous homology.

Indeed, let Z* be the local coefficient system determined by the Laurent cohomology
groups of the fibers of my: S*_ (M) x S'— B. Thus ¥ is a canonically flat vector

vert
bundle over B whose fiber at be B is

FH(b) = H y(my ' (b)) = H{(ZL (5 ())). (26)

Proposition 4. Using the above notation, we have that
HE (A7 (9)\01B)y = (B) @ - ([ (F) =: QU(B; 7% (27)

(recall that for [#0, the groups Hif;f;(A*((ﬁ)\mB) ; vanish). The horizontal de Rham
differential dyo, induces a differential on H’;j;(X |B) which is isomorphic under (27) to
the de Rham differential on B with coefficients in the locally constant sheaf F*.

Proof. The proof is completely similar to that of Proposition 3 and Lemma 3. O

Let us now introduce the Poisson homology groups that we are interested in. The
following considerations apply to any regular Poisson structure. Recall that the
Poisson structure on A*(%) is defined by a two tensor

GeC” (A7 (9), A*TA* (%))

so that {f,g} = ig(df ndyg). Clearly, the tensor G must satisfy some non-trivial
conditions for the map {, } to satisfy the Jacobi identity. These conditions turn out
to be equivalent to [G, G]gy = 0, where [, ]y is the Schouten—Nijenhuis bracket [46].
The formula for the Poisson bracket is determined in terms of the Lie algebra
structure on the space of sections of 4(%). (This was recalled in Lemma 2.)

Let ig : QX(A4*(9)) - Q"2(4%(%)) be the contraction with the tensor G. It satisfies
iG: Q" (A" (%)) —Q~/(4*(%)) Then we obtain as in [5] a differential

d=igod —doig: Q" (4" (%)) Q"1 (4*(9)). (28)

Explicitly, for any (fy, ...,fx) %™ (4*(%))"", the differential 6 is given by the
formula

S fodhidfs...dfic) = > (=1 {fo.fi}dfr...dfs ..dfi
1<j<k

+ > =0YRd{f Y df L dfi. (29)

I1<i<j<k
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Let ¢ be a differentiable groupoid, as above, satisfying Assumptions (15) and (16),
we can then use the splitting @ of Eq. (22). One then shows that 6 decomposes into
the sum of two bihomogeneous differentials [46]

0= 5vert + o,

where Overt = iG © dyert — dyert © ig 18 the vertical Poisson differential. The vertical
Poisson differential has bidegree (—1,0). The extra term o has bidegree (-2, +1) and
is in fact given by [4]:

o =g Odhor - dhor °olg.

In particular, the commutator [ig, d] is trivial. It is straightforward to see that the
restriction of dye¢ to vertical differential forms is given by the following local
expression

5vert (f()dvert fl dvertf2 (X dvert fk)

= Z <_1)j+1{f0a.}5'}dvertfl---d\;t\f}-ndvertfk

1<)

<k
+ > ) Yodwendfi S e fi - uert S dvert o dier fr (30)

1<i<j<k

The above formula determines dyer 0n Q7 ‘O(A*(fé)). To determine ¢ in general,
we can use the following lemma.

Lemma 4. Let aeQ'(A*(%)), let BeQ/(B), and let my: A*(9)— B be the composite
projection. Then

d(anmy(B)) = o(a) Amg(B) and  Sver(anmg(B)) = dvert (o) Ao ().

Proof. It is enough to check the first equation when =g or f§ = dg, for some
smooth function g on B. Our claim then follows from the fact that {f,g-no} = 0, for
any smooth function f on M and from the explicit formula for 6, Eq. (29).

The equation for Oyert = iG © dyert — dvert © i follows from the equation for 6 by
checking bidegrees. [

The formula of Eq. (29) is valid also when M has corners and it is easy to check
that the differential 6 is homogeneous of degree —1 with respect to the action of R’}

on A*(%)\0. Let Q%(A4*(%)\0), be the space of k-forms on A*(%)\0 that are
homogeneous of order /. We hence obtain a differential

5: Q44" (9)\0), - QA (9)\0),,.
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Let QF (47(%)\0), be the subspace of QF(4*(%)\0), consisting of forms whose
support projects onto a compact subset of M, as before. Because J preserves the
support, it maps the space Q’r‘c(A*(g)\O), to ch_l(A*(g)\O)l_l.

The same result holds with ..,y and we have:

Overt : ch,$<A*(g>\0)l _)erct:flf(A*(g)\O)l—l'
We obtain in this way a direct sum of complexes (2), _,

ok )
s 9
,72[) g-1

P* 0Pk

2p+q iylik_)a (31)

where 2§ = Q1 (A*(9)\0),.
We shall denote the homology groups of the above complex by

' ker(5: 2k — 2% )
HY (A" (9)\0|B), = —
f,k+/( ( )\ ‘ )l 5(?;c+1)

In the same way we define the vertical homogeneous Laurent—Poisson homology
groups using ey instead of § and denote them by

, . ker(Syer : PX > 25 )
H?Z\f,l]:'-‘rl(A (g)\()'B)l — vert )lk =1
Overt(Z111)

Furthermore, we define for any (i,/)

i,j — it j s
‘@l '_ ‘Q‘rc,f[’ (Tvert

M\0),.
From the results of Section 3, we deduce that
Py~ @ i Py
Note that with respect to the splitting (22), we have:
dvert 1 Py — 2,

and the vertical Laurent Poisson homology can be computed by fixing (i,j) and
restricting to each P = (—B]@;’j . However, the extra term o does not preserve Pphi ,
and sends 2"/ to 21/t

The relevance for us of Poisson homology, in general, and of homogeneous
Laurent—Poisson homology, in particular, is that they are related to the Hochschild
homology groups of the algebras &/ ¢(M|B;E) = O(M)(Y*(4;E)/¥Y " (%;,E))
introduced in the previous section, where E is a Z/2Z-graded vector bundle. The
following lemma makes this connection precise.
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Lemma 5. The algebra </ (M|B; E) is topologically H-unital. The EH? term of the
spectral sequence associated to of (M|B; E) by Lemma 1 is given by

EHi,h = Hi/,ﬂh (A4*(9)\0|B),-

Proof. When E is a trivial one-dimensional vector bundle and % is an arbitrary
groupoid, the above proposition was proved in [3, Proposition 7].

The extension to a non-trivial vector bundle and the Z/27Z-graded case is obtained
as a consequence of Kiinneth formula as follows.

Let us recall that the trace Tr : My (C) — C defines a morphism of complexes from
the Hochschild complex of My(A) to the Hochschild complex of A:

TI'*(WZ()®b()® ®mk®bk) = Tr(mgrm ...mk)b()®b1 @ @bk, (32)

where mje My(C) and bje 4, so that m; @bje My(C)®@A~My(A4).
Let us assume first that E is trivial of rank N (i.e. E = C") with trivial grading.
Then

o o(M|B; E) = My(/ o(M|B;C)).

The result then follows from the invariance of Hochschild homology under Morita
equivalence and a comparison of the canonical Hochschild homology spectral
sequences associated to .7 »(M|B; E) and o7 »(M|B;C) using the above morphism
of Hochschild complexes (defined by the trace).

Assume now that E is trivially graded, but not necessarily trivial, as a vector
bundle. Then the graded algebra of .o/ »(M|B;E) is the algebra generated by the
homogeneous sections of the lift of End(E) to 4*(%)\0. We claim that the statement
that we need to prove is local in the following sense. All these Hochschild homology
groups are the spaces of global sections of certain sheaves and the morphisms
between them are induced by morphisms of sheaves. It is known then that a
morphism of sheaves that is locally an isomorphism is also globally an isomorphism.
We use now this argument and the fact that E is locally trivial. We obtain that all
these algebras will have the same Hochschild homology as that of the algebra
corresponding to a trivial line bundle, with the isomorphism again induced by the
trace. The spectral sequence of Lemma 1 then tells us that the Hochschild homology
of the algebra .o/ »(M|B; E) is independent of E.

In general, let E = E. @ E_ be the decomposition of E into the direct sum of the
+1 and, respectively, —1 eigenvalue of the grading automorphism. As above, we
observe that the statement of the lemma is again local, so we can assume that
E = E, ®FE_ is such that both E. and E_ are trivial bundles. Denote by N the rank
of E. Then .«/ (M|B; E)~ My(</ #(M|B)), as before, except that now the grading is
not necessarily trivial, but is induced by conjugation with a matrix in My(C). Our
lemma then follows from the following general fact.

Let 4 be a (topologically filtered) algebra 4 and N an integer. Assume that the
grading automorphism of the algebra My(A) is given by conjugation with a matrix
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in My(C). Then
HH.(My(A))~HH,(A).

This follows, for example, from the Kinneth formula in (Z/2Z-graded) Hochschild
homology (see [17]). O

As with the homogeneous, vertical de Rham homology, we can replace 4*(%) in
H‘;ﬁk(A*(%)\mB), with T, M, the vertical cotangent bundle to n: M — B.

Lemma 6. The anchor map ¢ : A(9) — Tye M induces an isomorphism

H??’.,k (4"(%9)\0|B), ~ H??’,k (T3 M\O|B),.

Proof. This follows from Lemma 2 and the explicit formula for the Poisson bracket,
Eq.(29). O

We now proceed as usual and construct a chain map ey from the complex that
defines vertical Poisson homology to the complex that defines de Rham cohomology.
The chain map * 18, in a certain sense, a vertical symplectic x-operator. It corresponds
to the canonical symplectic forms on the cotangent spaces of the fibers of n: M — B.
Denote by M}, = n~!(b), be B, and by w}, the symplectic form on T* M,. There exists
then a 2-form w on T}, M = J,.p T* M, that restricts on each fiber 7* M, to the form
wp. This form is certainly not unique. There will be, however, a unique form

weQi))O(ijM ) with this property, because restriction defines an isomorphism from
Q?(;O(ijM ) to the space O(M)I'(A*(T%, (T:, M))). We shall call this form o the

vertical symplectic form of T, M. It depends on the splitting of Eq. (22).

The vertical symplectic volume form on 7% M is defined by analogy to be

vert
Volyer (M) = w”/p!. Next, we define #yer : Q50 (T, M) — QL (T M) by the

vert
equation

M),

vert

BA (kvertt) = (B, ), - VOlyert (M), Vmﬁle‘yj}O(T*

where (,),, is the bilinear form induced by the symplectic form. Then we obtain that
svert (2 (TiM),) = Q4 (T M), Finally, to define

vert vert

*vert © Qi;’](TjertM) HQ?ZP;I“]‘(T*

vert

M)

in general, it is enough to define *o when o =nAmn;f, with neQ’;’;(M) and
BeQ’(B), where mg : T, M — B is the induced projection. We set then

vert
*vcrt((x) = *vcrt(’? /\TL’S,B) = *vcrt(’?) AﬁSﬁ (33)

Similarly, we obtain again that sy (@3 (75, M),) = QL "/(Tr,,

M)]+p—i'
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The usual properties of the symplectic x-operator in relation to de Rham and
Poisson homology extend to s*yer.

Proposition 5. Let e be the operator defined above. Then

(M *gert = id;
(2) (_l)Hldvert O kyert = *vert © 5vert on Qlﬂj(T*

vert

M).

We can extend the range of both formulas to include homogeneous forms or forms with
Laurent type singularities.

Proof. Both formulas are well known when B is reduced to a point [6]. Using a
version with parameters of this particular case, we obtain that the two formulas are
correct on Q°(T%, M).

For the general case, let aeQ™(T%,,
neQ (M) and eQ/(B), and my: T7,,
Eq. (33), we obtain

M) be of the form a«=nAmn;f, where
M — B is the induced projection. Then, using

Eert(a) = *3ert(’7) /\TESB = o. (34)

*
Similarly, using the definition of dye, Lemma 4, and Eq. (33), we obtain
(_l)[ﬂdvert o Hyert () = (_1)[+1dverl o syert (1) ATof

= yert © Overt () ATHS = *vert © Overt (00).

This is enough to complete the proof. [

We are ready now to determine the homogeneous, Laurent—Poisson homology
groups of 4*(%). Recall that p denotes the dimension of the fibers of M — B and ¢ is
the dimension of the manifold B. We set for any fixed keZ,

K = T
: -

)

so that
Svert : KM - K71 and o K9 KM

To compute the homogeneous Laurent d-homology of 4*(%)\0, we use that the
complex splits into subcomplexes (?]’k, 0). Thus we can fix the integer k€ Z and define
a filtration of the above bicomplex K// by

— .l
Fy = ®@jez, j<nK’.

Proposition 6. The spaces H‘;’,(+,(A*(%)\O|B), and Hf}f‘,‘(+,(A*(€4)\O|B), are iso-
morphic.
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Proof. Recall that we have

0= 5vert + o and 5verl oo+ oo 5vert =0.

We then use for any fixed k the decomposition 2* ~ ®,1j—?"/ into a finite double
complex and the decreasing filtration Fj defined above. This yields a spectral
sequence (E"),., which converges to the J-homology by classical homological
arguments. The E' term of this spectral sequence is given by
2p—v—k+u, *
ELLL‘ = H; ’ +u’u(Tverlm0|B)p—k+u'

But again by a homotopy argument, the homogeneous vertical de Rham
cohomology space HZ "F““(T*  M\0|B)
fore, we get:

p—k+u 18 trivial unless u = k — p. There-

E,i_’vzﬂ if v# -k —p.

Hence for any r>1, we see that & = 0 and the spectral sequence collapses at E'. The
proof is thus complete. [

Theorem 5. The homogeneous, Laurent—Poisson homology groups of A*(9) are
given by

) * —Lk—1— *
HYy (A" (9)\01B), ~H] 5" " (T M \0|B),.

Proof. The vertical symplectic Hodge operator sy yields isomorphisms
i\ j (o 2p—i, j (o
*vert * ®i+j:/€QS{(TverlM\0)l_) ®i+j:k9é j(TvertM\O)l-‘rp—i

which intertwine the dyery and dyer¢ differentials (up to a sign). Proposition 6 shows
then that

) * 2p—i, ] sk

H?Ak(A (g)\O\B)zﬁ@Hj:kHc,py (T,

vert

M\OlB)H—p—i'

But for / 4+ p — i#0, the cohomology spaces HZI”[’f(TjerlM\0|B),+p_i are trivial by
the homotopy invariance of de Rham cohomology. Hence the only non-trivial
term is:

p—Lk—I—p /s
Hc,:[’ (Tvert

M\0|B),,
and this completes the proof. [

We can now apply the results of Section 1 together with Theorem 5.
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Proposition 7. The EH?-term of the spectral sequence associated in Lemma 1 to the
Hochschild homology of the algebra </ w(M|B; E) is given by:

2 oy pkh—pgx
EHk,lz - HC,J (S

vert

(M) x S'|B),

"
where S},

(M) is the sphere bundle of the vertical cotangent bundle T, M

vert :

Proof. Denote by ¢ the Poisson differential on the vertically symplectic fibration
T: M—B. Lemma 5, Proposition 6 and Theorem 5 give by straightforward

vert
computation:

—kh—p o
EHE, ~H/,"" " (T, M\0|B),.
Now, a classical argument shows that [28]:

H p—k,h—p ( T

[ vert

(M) x S'|B),

vert

M\0B)y~H/ 7 (S
which completes the proof. [

In the following lemma, we shall denote by ®, the completion of the tensor
product of two algebras in the unique natural way that makes the completed tensor
product a topologically filtered algebra. See also Eq. (17) where ®, was used
before.

Lemma 7. Assume that the fibration n: M —B and the bundle of algebras
oL o(M|B; E) are trivial; that is, assume that M = Bx F and of 4(M|B;E)~
A 9(F;E)® 467 (B) as topologically filtered algebras. Then the spectral sequence
associated (in Lemma 1) to the Hochschild homology of the algebra <f w(M|B;E)

collapses at EH? and converges. Moreover, we have

HH(o/ o (M|B; E))~ @ ,1;HX,'(S*(F) x S') ® Q/(B).

Proof. We know from [3] that HH,(.+/ & (F; E)) ~H¥ (% (S*(F)) x S'). The usual
shuffle map ¢ [25] induces a morphism of complexes

g: A (6 (B) @A (A 2(FE)) = H (6 (B)® o #(F; E)),

which preserves the filtrations. The Kiinneth formula for Hochschild cohomology
shows that this morphism induces an isomorphism on the E'-term of the
corresponding spectral sequences. Thus ¢ induces an isomorphism on all
E’-terms. This shows that the spectral sequence associated to .7 ¢(M|B;E) =

% (B)® s (F; E) degenerates at E> = EH”.

c
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Theorem 1 and an application of the usual Kiinneth formula then give that
HHy (o ¢ (M|B; E)) ~ @,y—HH;(% " (B)) @ HH,(# ¢ (F; E))
~ @y QUB)QHL/(S'(F) x 8. O (3)
We now extend the above lemma to more general groupoids.

Lemma 8. The spectral sequence EH" associated to the Hochschild homology of
o o(M|B; E) by Lemma | degenerates at EH? and converges to its Hochschild homology.

Proof. Denote .o/ = .o/ (M|B; E) in this proof, for simplicity. The differential 5 of
the Hochschild complex of <7 is €® (B)-linear, if f € 4> (B) acts on ay® -+ ®a, by
flag® - ®ay) = (fap) ® --- ®a,. The filtrations of the Hochschild complex are
also preserved by the multiplication operators with functions '€ € (B). This shows
that the spectral sequence associated to the Hochschild homology of .o/ » (M|B; E)
by Lemma 1 consists of ¥ (B)-modules.

Denote E} (/) = EHj, in this lemma, to stress the dependence of our spectral
sequence on the algebra /. To prove that Ej (/) =0 or that d" =0 for this
spectral sequence, it is enough to check that f Ef ,(.<7) = 0 (or fd" = 0) for any f in a
trivializing open subset V' of M (that is, a subset satisfying the conditions of our
third assumption on the algebra o = .o/ »(M|B;E), Eq.(17)), more precisely,
satisfying that

Ay =0n (V)P (%v;E)]P " (9r;E))
~ O ' (V)®y (P (V X Gy E) /¥ (V x Gy E)) (36)

is a @”(B)-linear isomorphism. Then f Ef,(/) =f Ef,(«/y). By Lemma 7,
Ej ,(/v)=0if k< —p, and hence E ,(o/y) =0 if k< — p. (Recall that p is the
dimension of the fibers of M — B.) Similarly, fd" = 0 if r=2.

This proves that the spectral sequence in Hochschild homology associated to the
algebra .o/ (M|B; E) by Lemma 1 degenerates at EH?. It also proves that the
assumptions of Theorem 1 are satisfied, so the spectral sequence EH} , converges to
Hochschild homology. [I

Now we can state and prove the main theorem of this section. Let 4 be a
differentiable groupoid whose space of units is a manifold with corners M which is
the total space of a fibration 7 : M — B, as before. Denote by .% / the local coefficient
system defined by

F(b) = HHyp (4 2 (1" (1)) = H] (" () ~H/(ZL (' (b)) (37)

with mp : 87, (M) x S'— B the natural projection.

vert



M.-T. Benameur, V. Nistor | Journal of Functional Analysis 205 (2003) 1-36 29

Theorem 6. Assume that B is smooth (without corners) and that 9 satisfies the
assumptions (15) and (16). Let of (M|B; E) be the algebra of Laurent type complete
symbols on G with coefficients in the 7 /2Z-graded vector bundle E. Then

HH,, (o #(M|B; E)) = @ = (B, 7 7F), (38)
where F/ are the sheaves defined in Eq. (37).
Proof. We apply Lemma 8 and deduce that:
HH,, (o »(M|B; E))~ @ ;- EH; .
The computation of EH? was carried out in Proposition 7 and the result is:

EH,?L/:H({j;;\’*P(S*

vert

(M) x S'|B).

On the other hand, Proposition 3 applied to X = S

vert

(M) x S' gives:

Hé’;}h/*ﬂ(‘s*

vert

(M) x S'|B)~Q/7(B,7 P7).
Therefore we get

HH,, (o ¢(M|B; E))~ @ i4j-n Q! " (B, 7 77").

c

The conclusion follows by setting i = k and j =h. O

Remark 1. The above proposition has to be modified only slightly if B is also a
manifold with corners. For example, when B is compact, the result remains true if we
replace Q/(B) with O(B)Q/(B).

5. The relative case

Let again ¢ be a groupoid with corners satisfying the assumptions (15) and (16)
with respect to the fibration n: M — B of the manifold with corners M over the
smooth manifold B. Let X be a union of faces of M. We shall denote by .7 y the ideal
of smooth functions on M that vanish to infinite order on X.

We shall consider in this section the algebra of Laurent complete symbols on ¥
which vanish to infinite order over X and which represent pseudodifferential
operators acting on sections of the Z/27-graded vector bundle E. This algebra is
denoted by 7 »(M|B, X|B; E). Thus we have:

o/ o(M|B,X|B;E) = O(M).J x.o/(M|B; E).
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Note that if X =0, then we recover the algebras .o »(M|B;E) studied in the
previous sections. The proof of Proposition 3 in [3] extends to show that the algebras
o (M|B, X|B; E) are topologically filtered algebras.

For any fibrations Y — M — B, we denote by py the projection ¥ — M and by ny
the composite projection ¥ — B. When Y is a manifold with corners, we shall denote
by py the projection #(Y)— M which is the composite map of ¥(Y)— Y and
Y - M. This last notation is intended to simplify the statements of this section.
(Recall that the spaces # (M) were introduced before Theorem 3.)

Let again S, (M) be the quotient bundle of 77, M \0 by the radial action of R?, .
In [3], the computations of periodic cyclic homology recover the case of our algebra
o (M|B, X|B; E). The result is as follows:

Theorem 7. [3] For ¢ = 0,1, we have:

HP,(/ #(M|B, X|B; E)) ~HI (L (S, M) x S"\p5' (X)).

vert

Proof. Again by a Morita equivalence argument we can forget the bundle £. We
apply Proposition 5 in [3] and obtain for our groupoid ¥:

HP,(/ #(M|B, X|B)) ~HY(£(5"(%)) x S"\p}} (X)).
As before,
HY(2(S7(9)) x S'p3! (X)) = Hy ((4(9)\0)\ )0 (X))
From Assumption (16), we thus deduce as in Lemma 6 that:

HU, (A*(9)\0)\0250 (X))o ~ HY, (Tl MAO)P7L 1 0(X)),-

vert

HY (2(S%, M) x S"\p} (X)), and this completes the proof. [

The space HE@Z((T* M\O)\P}}_,lM\o(X))o is again isomorphic to the space

Let us state now the corresponding results for Hochschild homology. Let # ﬂ( be
the coefficient system over B given for any b€ B by the relative cohomology space

F(b) = HY (8" (7 (5)) x 8, p5) s (X))

=H!(2(S*(n'(b))) x S, p (" (b))).

Theorem 8. The Hochschild homology spaces of the algebra <f o(M|B, X |B; E) are
given by:

HH,,(/ o(M|B, X|B; E)) ~ ® s (B, 7L 75).
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Proof. We can again assume that the graded vector bundle E is trivial, one-
dimensional. The proof of this theorem is similar to the proof of Theorem 6,
replacing cohomology by relative cohomology and using excision. More precisely,
the natural filtration of the topologically filtered algebra .o (M|B, X|B) by the
order of the symbols gives rise to a spectral sequence for Hochschild homology given
by Lemma 1. This spectral sequence was studied in [3] where the E’-term was
identified with the homogeneous Laurent—Poisson relative homology of the Poisson
manifold 4*(%)\0. Indeed, we have [3, Proposition 7]:

EH} ,~HY, ,((4*(9)\0)\p! @0(X))-

Now using the immediate extension of Lemma 6 to the relative case, we obtain:

HY 4 (A (004 0 (X)) = Y g (Tien M \0)P7E g 0(X)e

The vertical symplectic Hodge operator .4 preserves the forms vanishing above X,
therefore we deduce using the proof of Proposition 7 that:

k,h * _
EH, ~H/,"" 7 ((Sje (M) x S")|B,p (X)|B).

The arguments ensuring the degeneracy of the spectral sequence at the second level
in the proof of Lemma 8 again obviously extend to the relative case. In addition, we
can apply Theorem 1 to deduce the convergence of the spectral sequence to
Hochschild homology. Hence we finally obtain:

H,,(/ #(M|B,X|B;E))~ @ i-mEH},

—k,h— * _
= @k+/1 mH &L p((Svert( ) X S1)|B7p,‘[1(X)|B)'

To end the proof we simply observe that Proposition 3 extends straightforward to
the relative case. [

6. Examples and applications

We begin by providing a construction of a groupoid ¥ satisfying the assumptions
(15) and (16), for any fibration 7 : M — B, where B is a smooth manifold (no corners)
and M is a manifold, possibly with corners. For each fibration 7 as above we shall
construct a canonical groupoid %y, the “b-groupoid,” satisfying the assumptions
(15) and (16).

Our examples are obtained by first defining the Lie algebroid of ¢, and then by
integrating it. (See [12,36] for general results on the integration of Lie algebroids.)
Let #",(M|B) be the space of vertical vector fields on M that are tangent to all faces
of M. Then ¥",(M|B) is a Lie algebra with respect to the Lie bracket of vector fields
and is also a projective € (M )-module. By the Serre-Swan theorem [17] there exists
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a vector bundle 4, — M such that
“Vb(M|B) :F(A[,),

naturally. (See [29].)

The procedure in [36] then provides us with groupoids %s, whose Lie algebroid
are isomorphic to Ap. The minimal groupoid with this property is obtained as
follows. For each face F of M, consider the interior of that face, Fy = F\OF.
Assume F has codimension k. Define then % to be the groupoid associated to an
equivalence relation: two units are connected by an arrow if, and only if, they are
equivalent. The equivalence relation that we consider is that x, y € Fj are equivalent
if, and only if, they belong to the same connected component of a set of the form
1 (b)"Fy. Let

G =9 x R, (36)

the union being a disjoint union, and with the induced groupoid structure. Then it
can be checked directly that the charts provided in [36] define a smooth structure on
% such that A4(9 ) ~ Ap. This structure must then be unique [36]. See also [8,12,31].

Let # be the locally constant sheaf (or coefficient system) that associates to be B
the complex vector space with basis the minimal faces of n~!(b). (All faces of a
manifold with corners are connected, by definition.)

Theorem 9. Let n: M — B be as above. Then
HHo(«/ ¢ (M|B; E))~C. (B, F),

the space of compactly supported sections of the sheaf & . The space of traces of
o o(M|B; E) identifies with the dual of this space:
HH(o/ o (M|B;E))~C~*(B,#) =: C* (B, 7).

c

Proof. This follows from Theorem 6. [

In the particular case when M is smooth, our construction simplifies and we
obtain ¥y, = M xp M. Then the algebra ¥~ (%) consists of differentiable families
of pseudodifferential operators along the fibers of M — B. Similarly, let us consider
Y*(M|B;E), the algebra of smooth families of pseudodifferential operators along
the fibers with coefficients in the Z/2Z-graded vector bundle E, introduced in [1]. Let
oA (M|B;E) = VP*(M|B;E)/W “(M|B;E) be the algebra of vertical complete
symbols. Then .«/(M|B; E) = o/ (M|B; E), and we obtain

Corollary 3. Assume G =M xg M, with M smooth (without corners) and let
oA (M|B;E) = of y(M|B; E) be the algebra of families of complete symbols along
the fibers of m: M — B, as above. Also, let 7/ be the locally constant sheaf given by the
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cohomology of the fibers of Sie, (M) x S'— B. Then we have:
HH,, (/ (M|B; E)) ~ @ k1= 2 (B, 7).

In particular, for m = 0 and provided that the fibers of M — B are connected and
have dimension >2, this isomorphism becomes

HHy(o/(M|B; E))~% . (B).
Therefore, the space of traces is given by
HH"(/(M|B; E))~ %~ (B) = % (B) | (37)

the space of distributions on the base manifold B.

Let w be as before the vertical symplectic form on 77, M — B. The isomorphism
of Eq. (37) can be made more explicit as follows. Let # be the radial vector field on
the fibers of T}, ;M — B and o = iy(w? /p!) the corresponding Liouville form on the
fibers of S}, (M)— B. Let STr be the graded trace on the endomorphisms of the
fibers of E, that is STr(4) = Tr(y - 4), where v is the involution defining the grading.
Also, let m, be the fiberwise integration on the fibers of S M. Then, for any

a = Zj<m aj’ we set

vert

tu(a) = {u,m STr(a_p)o). (38)

This formula defines a super (or graded) trace on .«/(M|B; E) such that p— 1, is the
isomorphism described in Corollary 3, for m = 0.
Fix a quantization function

q: | S (T;M; End(E)) - | ¥*(M|B; E), (39)

where S*(Ty.M; End(E)) denotes classical vertical symbols of order s. The
function ¢ is thus assumed to be continuous and to satisfy os(q(a)) =a if a is a
symbol of order s. Let p be a positive symbol on T, M, such that p(¢) = ||, for

vert
|£|=>1. We consider a family D(z) such that
D(z) = q(p")Bi(2) + R(2), (40)
where Bj is a holomorphic function on C with values in ¥°(M|B; E), B;(0) = 1, R(z)

is a holomorphic function on C with values in ¥~ (M|B; E) and satisfying R(0) =
0. Then D(0) = 1.

Proposition 8. Let u be a distribution on B and A€ ¥Y" (M |B; E) and D(z) be as above.
Then the function

2o F4(z) = (u, STrp(AD(2)) )
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is well defined for Re(z) < — m — p, where p is the dimension of the fibers of m: M — B.
The function F 4 extends to a meromorphic function on C, with at most simple poles at
the integers. For z = 0, the residue of this function is up to constant t,(A).

Proof. This is proved as in the classical case when D(z) is given by the complex
powers of a positive elliptic operator (see [13,41]). One can follow the approach from
[37], for example. [

We remark that we used above only a weak result from [36] on the integration of
Lie algebroids (namely Theorem 2). Let us use this opportunity however to mention
that there is a missing assumption in the general gluing theorem of [36] (i.e. Theorem
3 of that paper). Here is the corrected version.

Theorem 10. Let A be a Lie algebroid on a manifold with corners M. Suppose that M
has an A-invariant stratification M =\JS such that, for each stratum S, the
restriction Ag is integrable and let G5 be d-simply connected differential groupoids such
that A(9s)~As. Then A is integrable if, and only if, the exponential map
Exp : A>% = Ys is injective on an open neighborhood of the zero section of A
for some (equivalently, for any) connection on A. Moreover, if these conditions are
satisfied, then the disjoint union 9 =\ 95 is naturally a differentiable groupoid such
that A(%)~A.

The above condition on the injectivity of the map Exp is seen to be necessary in
view of the work of Crainic and Fernandes [12], and also from some earlier results of
Weinstein. The map Exp introduced in [36] seems to be essential for both the results
of that paper and for the results of [12]. The second author would like to thank
M. Crainic for pointing out a possible problem with the original statement of the
above theorem.

Let us mention for completeness the result for the computation of the cyclic
homology of the algebras .« »(M|B; E). Note first that

HC;(/ o (M|B; E)) ~HP,(/ o (M|B; E)) for j>2p+2,

from the Connes SBI-exact sequence that related Hochschild and cyclic homology,
because the Hochschild homology of .o » (M|B; E) vanishes above this rank.

Proposition 9. The spectral sequence ECy , associated to the cyclic homology
complex of o/ (M|B;E) has E'-term given by EC}Qh :Qf:f’j(SienM), if k#0,
and by

ECy, = Q"(S;

vert

M x SN /dQ" (St M x S @ @ oH" ¥ (Si M x Sh).

vert vert

The d, differential is induced by the Poisson differential and the spectral sequence
converges to the cyclic homology of the algebra </ w(M|B; E).
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