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Abstract

We compute the Hochschild, cyclic, and periodic cyclic homology groups of algebras of

families of Laurent complete symbols on manifolds with corners. We show in particular that

the spectral sequence associated with Hochschild homology degenerates at E2 and converges

to Hochschild homology. As a byproduct, we identify the space of residue traces on fibrations

by manifolds with corners. In the process, we prove some structural results about algebras of

complete symbols on manifolds with corners.

r 2003 Elsevier Inc. All rights reserved.

0. Introduction

Some of the main tools in the applications of non-commutative geometry to index
theory and other areas of mathematics are the Hochschild and periodic cyclic
homology groups. Hochschild homology, for example, can be used to understand
the residue trace introduced by Guillemin and Wodzicki [14,49]. Other higher residue
cocycles appear when studying more complicated singular spaces. See [11] for
example.
In this paper, we study the Hochschild homology of certain algebras of complete

symbols. Recall that an algebra of complete symbols is the quotient of the algebra of
all pseudodifferential operators by the ideal of regularizing (or order �N),
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operators. Previously, results in this direction were obtained in [3,7,19,28,33,39], and
by Wodzicki [50] (unpublished). See also [35].
Our algebras of complete symbols can be obtained as algebras of complete

symbols on differentiable groupoids [20,31,32,38]. For this class of examples, it has
been shown in [3] that the periodic cyclic homology can be computed, without any
further assumption on the groupoid under consideration, in terms of the Laurent
cohomology spaces of the cosphere bundle of the associated Lie algebroid. The
Hochschild homology groups of algebras of complete symbols on differentiable
groupoids, however, cannot be described in general in a simple, uniform way
for all differentiable groupoids. Finding the right language in which to express
these Hochschild homology groups seems to be a problem in itself—clearly an
interesting one.
Let p :M-B be a fibration with the base B smooth (no corners), but whose fibers

(and also M) are allowed to have corners. On M we consider a Z=2Z-graded vector
bundle E-M; to which we associate the algebraALðMjB;EÞ of complete symbols
of smooth families of pseudodifferential operators acting between sections of E

along the fibers of M-B and with at most Laurent singularities at the faces (see
Section 3 for precise definitions). The precise construction of this algebra is done
using groupoids, see Section 3, but the resulting algebra depends only on p :M-B;
and not on the groupoid G used to define it, as long as the groupoid G satisfies
assumptions (15) and (16) of Section 3. In particular, one can take G to be the
groupoid that defines the families b-calculus [27] (this is recalled in Section 6).
In the present paper, we determine the Hochschild, cyclic, and periodic cyclic

homology of the above algebra ALðMjB;EÞ: Let S�
vertðMÞ :¼ ðT�

vertM \0Þ=R�
þ

denote the cosphere bundle of the vertical cotangent bundle to the fibration
p :M-B: To any manifold with corners X ; we functorially associate in Section 2 a

space LðXÞ by replacing each face FCX of codimension k with F � ðS1Þk; the

product of the unit circle with itself k-times. We denote H
q
LðXÞ :¼ HqðLðXÞÞ and

H
q
c;LðXÞ :¼ HcðLðX ÞÞ; for simplicity. We shall call these groups the Laurent

cohomology groups, respectively the compactly supported Laurent cohomology groups
of X : The periodic cyclic homology of the algebra ALðMjB;EÞ of Laurent vertical
complete symbols with coefficients in the Z=2Z-graded vector bundle E is then given
by Theorem 3:

HPjðALðMjB;EÞÞC"kAZ H
jþ2k

c;L ðS�
vertðMÞ � S1Þ; j ¼ 0; 1: ð1Þ

The Hochschild homology groups turn out to be infinite dimensional, in general,
unlike the case of ordinary algebras of pseudodifferential operators (when B is
reduced to a point), see [3] and the references therein. LetF� be the local coefficient

system over B given by the Laurent cohomology groups of the fibers of S�
vertðMÞ �

S1-B and let p be the dimension of the fibers of p :M-B: Then

HHmðALðMjB;EÞÞC"kþh¼m Oh
cðB;F2p�kÞ ð2Þ
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(Theorem 6). This result leads, in particular, to an explicit description of the space of
residue supertraces on our algebras of families of pseudodifferential operators. For
example, whenM is smooth (no corners) and p has connected fibers of dimension at
least 2, we obtain that

HH0ðAðMjB;EÞÞCC�NðBÞ :¼ CN

c ðBÞ0; ð3Þ

that is, that the space of supertraces on AðMjB;EÞ identifies with the space of
distributions on B: (Note that in this case ALðMjB;EÞ ¼ AðMjB;EÞ:) The space
of traces in the general case of fibrations p : M-B whenM has corners is obtained
by replacing B in the above formula by the union of the minimal faces of M

(Theorem 9).
Let us now briefly describe the contents of each section. In Section 1, we quickly

recall the basic definitions of Z=2Z-graded homologies for topologically filtered
algebras and give an appropriate criterion for the convergence of the associated
spectral sequences. Section 2 is devoted to the description of the algebras
ALðMjB;EÞ of complete symbols that we are interested in. In Section 3, we
introduce the assumptions on our groupoids and also prove that the resulting
algebras ALðMjB;EÞ depend only on p :M-B; as long as Assumptions (15) and
(16) are satisfied. Section 4 is devoted to the computation of the Hochschild
homology of our algebras of complete symbols. In the process, we compute several
other homology groups associated to Poisson manifolds. In Section 5, we extend the
main results of the previous sections to the relative case. The last section, Section 6,
treats in detail a few examples. In particular, we obtain an explicit description of the
space of traces on our algebras of complete symbols. Note that in this paper almost
all results are formulated in the Z=2Z-graded case, in view of some possible
applications.
We hope that the results of this paper will find applications to the index theorem

for families [2] or to its generalization to families of fibrations by manifolds with
boundary [5].

1. Topological filtered algebras

Topologically filtered algebras were introduced in [3] to provide a natural
framework for the algebras of complete symbols associated to algebras of
pseudodifferential operators. In this section we review the definition of topologically
filtered algebras and a few other relevant facts. The complexes computing the various
homologies of these algebras have to be defined appropriately. In view of the
applications that we have in mind, we have found it necessary to extend our setting
to include that of Z=2Z-graded algebras. For basic facts about pseudodifferential
operators, see one of the many nice monographs available [34,42], or [43].
We begin by recalling the definitions of Hochschild and cyclic homology groups

of a topological algebra A: A good reference is Connes’ book [10]. See also [16,22].
See [17] for the homology of Z=2Z-graded algebras. These definitions have to be
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(slightly) modified when the multiplication of our algebra is only separately
continuous. We thus discuss also the changes necessary to handle the class of
algebras that we are interested in, that of ‘‘topologically filtered algebras,’’ and then
we prove some results on the homology of these algebras.
First we consider the case of a topological algebraA: Here ‘‘topological algebra’’

has the usual meaning, that is, A is a real or complex algebra, which is at the same
time a locally convex space such that the multiplication A�A-A is jointly

continuous when A�A is endowed with the product topology. Denote by c## the

projective tensor product and HnðAÞ :¼ A
b##nþ1; the completion of A#nþ1 in the

topology of the projective tensor product. Also, we denote as usual by @aAZ=2Z the
degree of an element in the Z=2Z-graded algebra and by b0 and b the Hochschild
differentials:

b0ða0#a1#?#anÞ ¼
Xn�1
i¼0

ð�1Þi
a0#?#aiaiþ1#?#an;

bða0#a1#?#anÞ ¼ b0ða0#a1#?#anÞ þ ð�1Þnþm
ana0#?#an�1; ð4Þ

where m ¼ @anð@a0 þ?þ @an�1Þ:
The Hochschild homology groups of the algebraA; denoted HH�ðAÞ; are then the

homology groups of the complex ðHnðAÞ; bÞ: By contrast, the complex ðHnðAÞ; b0Þ
is often acyclic (for example whenA has a unit). A topological algebraA for which
ðHnðAÞ; b0Þ is acyclic is called H-unital (or, better, topologically H-unital), following
Wodzicki [49].
We now define cyclic homology. Assume first that A is unital. We shall use the

notation of [9]. See also [16].

sða0#a1#?#anÞ ¼ 1#a0#a1#?#an;

tða0#a1#?#anÞ ¼ ð�1Þnþm
an#a0#?#an�1;

B0ða0#a1#?#anÞ ¼ s
Xn

k¼0
tkða0#a1#?#anÞ; and B ¼ ð1� tÞB0; ð5Þ

where m ¼ @anð@a0 þ?þ @an�1Þ; as above. Then ½b;B�þ :¼ bB þ Bb ¼ B2 ¼ b2 ¼ 0;
and hence, if we define

CðAÞn ¼ "kX0Hn�2kðAÞ; ð6Þ

ðCðAÞ; b þ BÞ; is a complex, called the cyclic complex of A; whose homology is by
definition the cyclic homology of A; as introduced in [9] and [45]. The cyclic
homology groups of the algebraA are denoted HCnðAÞ: For an algebraA possibly
without unit, one considers the algebra with an adjoined unitAþ and then the cyclic

homology ofA is, by definition, the kernel of the map HCnðAþÞ-HCnðCÞ induced
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by the augmentation morphism Aþ-C: It is know that the two definitions are
equivalent if A has a unit.
Consideration of the natural periodicity morphism CnðAÞ-Cn�2ðAÞ easily shows

that cyclic and Hochschild homology are related by a long exact sequence

?-HHnðAÞ!I HCnðAÞ!S HCn�2ðAÞ!B HHn�1ðAÞ!I ?; ð7Þ

with the maps I ; B; and S explicitly determined. The map S is also called the
periodicity operator. See [9,23]. This exact sequence exists whether or not A is
endowed with a topology.
Recall that an algebraA with a given topology, is a topologically filtered algebra if

there exists an increasing multi-filtration Fm
n ACA;

Fm
n ACFm0

n0 A; if npn0; lpl0; and mpm0;

by closed, complemented subspaces, satisfying the following properties:

(1) A ¼
S

n;m F m
n A;

(2) the union An :¼
S

m F m
n A is a closed subspace such that

Fm
n A ¼ An-

[
j

F m
j A

 !
;

(3) multiplication maps F m
n A#F m0

n0 A to F mþm0

nþn0 A;

(4) the maps

Fm
n A=F m

n�jA#Fm0

n0 A=Fm0

n0�jA-Fmþm0

nþn0 A=F mþm0

nþn0�jA

induced by multiplication are continuous;
(5) the quotient Fm

n A=Fm
n�jA is a nuclear Frechet space in the induced topology;

(6) the natural map

F m
n A- lim

’
F m

n =F m
n�jA; j-N

is a homeomorphism; and
(7) the topology on A is the strict inductive limit of the subspaces Fn

nA; as n-N

(recall that F n
nA is assumed to be closed in Fnþ1

nþ1A).

(The above definition is a simplified version of the original definition in [3].)
For topologically filtered algebras, the multiplication is not necessarily jointly

continuous, and the definition of the Hochschild and cyclic homologies using the
projective tensor product of the algebra A with itself, as above, is not very useful.
For this reason, we change the definition of the space HmðAÞ as follows.
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Consider

F 0
p ¼ lim

m-N

X
k0þ?þkq¼p

c##q
j¼0 F m

kj
A; ð8Þ

(projective tensor products) which defines an increasing sequence of subspaces

(i.e. filtration) of A
b##qþ1: We use this filtration to define HqðAÞ as a completion.

Namely,

FpHqðAÞ :¼ lim
’

F 0
p=F 0

p�j and HqðAÞ :¼
[

p

FpHqðAÞ ð9Þ

where j-N in the projective limit. The operator B extends to a well defined map
B :HqðAÞ-Hqþ1ðAÞ; which allows us to define the cyclic complex and the cyclic
homology of the algebra A as the homology of the complex ðC�ðAÞ; b þ BÞ; with
CqðAÞ :¼ "Hq�2kðAÞ; as for topological algebras.
For any topologically filtered algebra, we denote

GrðAÞ :¼ "n An=An�1

the graded algebra associated toA; whereAn is the union
S

m;n F m
n A; as before. Its

topology is that of an inductive limit of Frechet spaces:

GrðAÞC lim
N;m-N

"N
n¼�N F m

n A=Fm
n�1A;

which makes sense by ð2Þ in the definition of the topologically filtered algebra A:
For the algebras like GrðAÞ; we need yet a third way of topologizing its iterated

tensor products. For our purposes, the correct definition is then

HqðGrðAÞÞC lim
N;m-N

"N
n¼�N Fm

n A=F m
n�1A

� 	b##qþ1
:

The Hochschild homology of GrðAÞ is the homology of the complex
ðH�ðGrðAÞÞ; bÞ: The operator B again extends to a map
B :HqðGrðAÞÞ-Hqþ1ðGrðAÞÞ and we can define the cyclic homology of GrðAÞ
as above. The operators S;B and I associated to HqðGrðAÞÞ are the graded
operators associated with the corresponding operators (also denoted S;B and I)
on HqðAÞ:
The Hochschild and cyclic complexes of the algebra GrðAÞ decompose naturally

as direct sums of complexes indexed by pAZ: For example,HqðGrðAÞÞ is the direct
sum of the subspaces HqðGrðAÞÞp; where

HqðGrðAÞÞp ¼ lim
m;N-N

"kj
c##q

j¼0 F m
kj
A=Fm

kj�1A

 �

;

where k0 þ k1 þ?þ kq ¼ p and �NpkjpN:
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The corresponding subcomplexes of the cyclic complex are defined similarly. We
denote by HH�ðGrðAÞÞp and HC�ðGrðAÞÞp the homologies of the corresponding

complexes (Hochschild and, respectively, cyclic).
The following two results are well-known consequences of standard results in

homological algebra (for topologically filtered algebras they were proved in [3]).

Lemma 1. Let A be a topologically filtered algebra. Then the natural filtrations

on the Hochschild and cyclic complexes of A define spectral sequences EHr
k;h and ECr

k;h

such that

EH1k;hCHHkþhðGrðAÞÞk and EC1k;hCHCkþhðGrðAÞÞk:

Moreover, the periodicity morphism S induces a morphism S0 : ECr
k;h-EC

r
k;h�2 of

spectral sequences. For r ¼ 1; the morphism S0 is the graded map associated to the

periodicity operator S : HCnðGrðAÞÞ-HCn�2ðGrðAÞÞ and the natural filtration of

the groups HCnðGrðAÞÞ:

Proof. The filtration FpHqðAÞ of the complex computing the Hochschild homology
of A gives rise to a spectral sequence ðErÞrX1 with

E1k;h ¼ HkþhðFkHðAÞ=Fk�1HðAÞÞ;

by standard homological algebra. By the definition of the Hochschild complex of
GrðAÞ; we have:

HkþhðFkH�ðAÞ=Fk�1H�ðAÞÞCHHkþhðGrðAÞÞk:

This completes the proof for Hochschild homology. The proof for cyclic homology is
similar. &

In our considerations below, we shall need the following classical result, which was
proved for topologically filtered algebras in [3]. Due to the importance of this result
in what follows and for the convenience of the reader, we include a proof of it.

Theorem 1. Fix an integer N and aX1: Let A be a topologically filtered algebra such

that EHa
k;hðAÞ ¼ 0; for all koN and all h: Then the spectral sequence EHr

k;h ¼
EHr

k;hðAÞ defined in Lemma 1 converges to HHkþhðAÞ: More precisely, we have

HHjðAÞC"N

k¼N EH
N

k; j�k:

A similar result holds for the cyclic homology spectral sequence.

Proof. We have

HqðAÞ ¼ lim
’

HqðAÞ=FpHqðAÞ: ð10Þ
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This enables to write, for every fixed q; the well-known associated lim1 exact
sequence (see [3, Lemma 6], for example)

0- lim
’

1 Hqþ1ðHðAÞ=FpHðAÞÞ-HqðHðAÞÞ- lim
’
HqðHðAÞ=FpHðAÞÞ-0:

Let Er
k;hð pÞ be the spectral sequence associated to the homology of the filtered

complex ðHðAÞ=FpHðAÞ; bÞ: Then Er
k;hð pÞ converges because it is a translation

of a first quadrant spectral sequence. Therefore, the homology groups
HqðHðAÞ=FpHðAÞÞ are endowed with a filtration Ftð pÞ (¼ the image of the
homology of the complex FtHðAÞ=FpHðAÞ) so that

Ftð pÞ=Ft�1ð pÞCEN

t;q�tð pÞ: ð11Þ

Moreover, we have the following non-natural isomorphism

HqðHðAÞ=FpHðAÞÞC"tþs¼q EN

t;s ð pÞ: ð12Þ

Furthermore, the spectral sequence Er
k;hð pÞ satisfies:

Er
k;hð pÞ ¼

0 if kpp and

EHr
k;h if k4p þ r:

(
ð13Þ

Consider now the projective system

An :¼ HqðHðAÞ=FN�naHðAÞÞ; Bn :¼ FN�naþaðN � naÞ; and Cn :¼ An=Bn:

Then the ker–coker lemma [1] for the short exact sequence

0-PBn+PAn-PCn-0

gives rise to the following well-known exact sequence:

0- lim
’

Bn- lim
’

An- lim
’

Cn- lim
’

1 Bn- lim
’

1 An- lim
’

1 Cn-0:

(See [3, Lemma 7], for example).
By conditions (11) and (13), the natural map Anþ1-An restricts to the zero map

Bnþ1-Bn and it induces an isomorphism Cnþ1-Cn; for nX2: Therefore we get:

lim
’

1 An ¼ 0 and lim
’

An ¼ Cn0 ; 8n0X2:

And hence, finally,

HHqðAÞCCn0 ¼ "lXN EN

l;q�lC"lAZEH
N

l;q�l : &
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The above isomorphism is not natural, in general, but comes from a filtration
FkHHqðAÞ of HHqðAÞ whose subquotients FkHHqðAÞ=Fk�1HHqðAÞ identify
naturally with EHN

k;q�k; see [25,26].

It is useful to mention here that the composite map

HHqðAÞ!I HCqðAÞ!B HHqþ1ðAÞ

preserves the filtrations and hence it induces natural maps

ðB 3 IÞðrÞ : EHr
k;hðAÞ-EHr

k;hþ1ðAÞ:

For r ¼ 1; this map is the composition of the corresponding morphisms

HHqðGrðAÞÞ-HCqðGrðAÞÞ-HHqþ1ðGrðAÞÞ

for the graded algebra of A:

2. Algebras of complete symbols

We now introduce the algebras of complete symbols that we study in this paper.
We shall follow the standard notation for groupoids and Lie algebroids, using the

conventions of [20]. In particular, if G is a differentiable groupoid with space of units
M; then d; r :G-M denote the domain and range maps, respectively, so that the
composition gg0 of two elements g; g0AG is defined if, and only if, dðgÞ ¼ rðg0Þ:
We shall also follow [3] for some specific constructions involving manifolds with

corners, some of which are recalled below. As in that paper, we are interested in
certain specific groupoid algebras associated to manifolds with corners. If G is a
differentiable groupoid with space of units M and E-M is a Z=2Z-graded vector
bundle, then we shall denote by

CNðG;EÞ ¼
[

mAZ

CmðG;EÞ

the algebra of pseudodifferential operators on G acting on sections of the vector
bundle r�E: We also define

C�NðG;EÞ :¼
\

mAZ

CmðG;EÞ

(see [20] or [38] for definitions). These two algebras are naturally Z=2Z-graded.
We shall denote by OðMÞ the space of smooth functions on the interior ofM that

have only Laurent singularities at the boundary faces. If every hyperface H ofM has

a defining function xH ; then OðMÞ is the ring generated by CNðMÞ and x�1
H : Let then

AðG;EÞ :¼ CNðG;EÞ=C�NðG;EÞ and ALðG;EÞ ¼ OðMÞAðG;EÞ:
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The Z=2Z-grading on E then provides us with a natural Z=2Z-grading on the
algebras AðG;EÞ and ALðG;EÞ too.

Proposition 1. Assume that G and M are as above and that M is s-compact. Then the

quotients AðG;EÞ and ALðG;EÞ are topologically filtered algebras.

Proof. Let M ¼
S

Km be an exhaustion of M with compact sets (that is,
KmCintðKmþ1Þ). Also, let x1;y; xk be defining functions of the hyperfaces of M

and f ¼ x1yxk:We define F m
n ALðG;EÞ to be generated by f �mþðP þC�NðG;EÞÞ;

mþ ¼ maxf0;mg; where PACnðG;EÞ is such that its distribution kernel is contained
in Km � Km:
The proof then is exactly the same as the one for E ¼ C in [3]. &

Let AðGÞ be the Lie algebroid of G (see [20]) and let S�ðGÞ be the sphere bundle
of A�ðGÞ; that is, the set of unit vectors in the dual of the Lie algebroid of G;
and denote H½q�

c ¼ "kAZH
qþ2k
c (singular cohomology with compact support and

coefficients in C).

Theorem 2. Assume that the base M is s-compact, then the periodic cyclic homology of

the algebra AðG;EÞ is given by

HPqðAðG;EÞÞCH½q�
c ðS�ðGÞ � S1Þ: ð14Þ

Proof. An argument similar to that of Lemma 5 in Section 4 shows that the
Hochschild homology is unchanged by introducing the extra vector bundle E and the
Z=2Z-grading. Standard homological algebra arguments then show that the same is
true for cyclic and periodic cyclic homology. The result follows then from the case
E ¼ C that was proved in [3]. &

To state the result for the algebraALðG;EÞ; we need first to recall a construction
from [3] that will be used several times in what follows.
Let P be a manifold with corners. We shall assume that P has embedded faces, for

simplicity. Then LðPÞ is a space naturally associated to P and defined as follows.

Consider for each face F of P the space F � ðS1Þk; where k is the codimension of the
face. We establish a one-to-one correspondence between the canonical k copies of

the unit circle in ðS1Þk and the faces F 0 of P containing F ; of dimension one higher

than that of F : We then identify the points of the disjoint union
S

F � ðS1Þk as

follows. If FCF 0 and F 0 corresponds to the variable yiAS1 we identify

ðx; y1;y; yi�1; 1; yiþ1;y; ykÞAF � ðS1Þk to the point ðx; y1;y; yi�1; yiþ1;y; ykÞ
AF 0 � ðS1Þk�1 (same x). The resulting quotient space is by definition LðPÞ: This
construction extends to the case when the faces are not necessarily embedded by
localization.
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By construction, there exists a continuous map pL :LðPÞ-P: Let Je ¼
S1,½1; 1þ eÞCC; for some e40; with S1 identified with the subset fjzj ¼ 1g of
the complex plane. Then the spaceLðPÞ is locally modeled by Jk

e � Rn�k; above each
point of P belonging to an open face of codimension k:
Suppose now that P-B is a fibration by manifolds with corners with B smooth.

Let Q be the typical fiber of the fibration P-B: Then we obtain by the above
construction, a fibration LðPÞ-B; with typical fiber the locally compact space
LðQÞ:
In [3], the periodic cyclic homology of several algebras of complete symbols was

computed. These results include our algebrasALðG;EÞ; when E is trivial. The result
is the same in general.

Theorem 3. For j ¼ 0; 1; we have

HPjðALðG;EÞÞCH½ j�
c ðLðS�ðGÞÞ � S1Þ:

Proof. When E is trivial one-dimensional, this result was proved in [3]. The general
case is proved in the same way, using the same argument as in the proof of Lemma 5,
which shows that the Hochschild homology of the algebras ALðG;EÞ does not
depend on the bundle E; thanks to the Morita invariance of Hochschild
homology. &

Assume now that p :M-B be a fibration of smooth manifolds (no corners) and
G ¼ M �B M :¼ fðm1;m2Þ; pðm1Þ ¼ pðm2Þg be the fibered product groupoid. More
precisely, the structural maps of G are defined by dðm1;m2Þ ¼ m2; rðm1;m2Þ ¼ m2;
and ðm1;m2Þðm2;m3Þ ¼ ðm1;m3Þ: Then the algebra CNðG;EÞ identify with the
algebra of smooth families of pseudodifferential operators along the fibers of
p : M-B that have compactly supported Schwartz kernel. Also, note that
AðG;EÞCALðG;EÞ; because there are no corners (or boundaries). We shall denote
by AðMjB;EÞ ¼ AðG;EÞ the algebra associated to this groupoid.

Corollary 1. For any fibration p :M-B of smooth manifolds (without boundary), we

obtain

HPjðAðMjB;EÞÞCH½ j�
c ðS�

vertðMÞ � S1Þ; j ¼ 0; 1:

This leads to a complete determination of the periodic cyclic homology of the
algebras AðG;EÞ :¼ CNðG;EÞ=C�NðG;EÞ and ALðG;EÞ :¼ OðMÞAðG;EÞ: The
result is moreover easily expressed in a uniform manner for all differentiable
groupoids G: The Hochschild homology of these algebras seems to be more difficult
to compute. Finding the groups HH�ðALðG;EÞÞ; in general, seems to depend on
finding the right language in which to express the result. Needless to say, finding the
right language to express the groups HH�ðALðG;EÞÞ and then determining them is
a worthy problem.
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We shall determine the groups HH�ðALðG;EÞÞ for a class of groupoids that,
roughly speaking, consists of families of groupoids of the kind considered in [3]. We
now proceed to describe this class in detail.

3. Families of manifolds with corners

To describe the class of differentiable groupoids G for which we shall determine
the groups HH�ðALðG;EÞÞ; we first describe the assumptions on the space of units
of G: We shall denote the space of units of G by M; where M is a differentiable
manifold, possibly with corners, as before. We shall assume that there exists a
smooth manifold (without corners) B and a map p :M-B that makes M a
differentiable fiber bundle over B with fiber F :We regard this fiber bundle as a being
the fiber bundle associated to a principal bundle with structure group DiffeoðFÞ; the
group of diffeomorphisms of F that map faces to faces. From now on and
throughout the paper, we shall denote n ¼ dimðMÞ; q ¼ dimðBÞ: Also, we shall
denote by p the dimension of the fibers of p :M-B; so, in particular, n ¼ p þ q:

Assumptions. Fix M as above. We shall now describe our three assumptions on the
groupoid G:
Our first assumption on G is that for any arrow gAG; the domain and range of g

are in the same fiber of p :M-B; that is,

pðdðgÞÞ ¼ pðrðgÞÞ; 8gAG: ð15Þ

The intuitive meaning of this condition is that the natural action of CNðG;EÞ on
CN

c ðMÞ via the vector representation [18,38] is given by families of operators acting
on the fibers of p:
Let TvertM be the vertical tangent bundle to the fibration p :M-B: Denote as

above by OðMÞ the space of smooth functions on the interior M0 of M that have
only Laurent (or rational) type singularities at the faces of M: Let us denote by
R :AðGÞ-TM the anchor map of the Lie algebroid of G:
Our second assumption on G is that the map RG :GðAðGÞÞ-GðTvertMÞ defined by R

induces an isomorphism

OðMÞ#CNðMÞGðAðGÞÞCOðMÞ#CNðMÞGðTvertMÞ; ð16Þ

of vector spaces. Clearly the above map preserves the Lie bracket, so we get an
isomorphism of Lie algebras also.
Our next assumption on G is a local triviality condition on the algebraALðG;EÞ:

To state this assumption, we need to introduce some notation. For any open set

VCB; we denote by GV the reduction of G to p�1ðVÞ: Our previous assumptions on
G give that GV ¼ ðp 3 dÞ�1ðVÞ: Similarly, for every point bAB; we denote by Gb the

reduction of G to p�1ðbÞ: Again, our assumptions give us that Gb ¼ ðp 3 dÞ�1ðbÞ ¼
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ðp 3 rÞ�1ðbÞ: Let us observe that

Oðp�1ðVÞÞ#ðCNðV � Gb;EÞ=C�NðV � Gb;EÞÞ

has a natural filtration and a natural completion to a topologically filtered algebra,
denoted

Oðp�1ðVÞÞ#tf ðCNðV � Gb;EÞ=C�NðV � Gb;EÞÞ:

Our third and last assumption on G is the following. For any bAB; we assume the
existence of an open neighborhood VCB of b and a CNðBÞ-linear isomorphism

ALðp�1ðVÞjV ;EjV Þ :¼Oðp�1ðVÞÞðCNðGV ;EÞ=C�NðGV ;EÞÞ

COðp�1ðVÞÞ#tf ðCNðV � Gb;EÞ=C�NðV � Gb;EÞÞ ð17Þ

of topologically filtered algebras, where V � Gb is the product groupoid, with V

consisting of just units and the operations being defined pointwise.
The three assumptions above, Eqs. (15)–(17) are not completely independent, as

we shall see shortly. We do not impose in this section these assumptions on our
groupoid G: Each result below will specify which assumptions are needed. However,
beginning with the next section, we shall use all three assumptions on G:

Lemma 2. Assume that (16) is satisfied. Then the morphism R above induces an

isomorphism

OðMÞ#CNðMÞC
NðA�ðGÞÞCOðMÞ#CNðMÞC

NðT�
vertMÞ

of Poisson algebras.

Proof. Let X ;Y ; and ZAGðAðGÞÞ: Then X ;Y ; and Z define functions (denoted by
the same letter) X ;Y ;Z :A�ðGÞ-R: Assume Z ¼ ½X ;Y �: Then the Poisson bracket
on CNðA�ðGÞÞ is uniquely determined by fX ;Yg ¼ Z: The equation Rð½X ;Y �Þ ¼
½RðXÞ; RðYÞ� shows that the natural map

CNðA�ðGÞÞ-CNðT�
vertMÞ

is a Poisson map. The proof is completed by including OðMÞ-coefficients. &

See [47] for some basic facts about Poisson manifolds.
Let M0 :¼ M \@M be, as above, the interior of M and let TvertM0 be the vertical

tangent bundle to the smooth fibration M0-B: Our second assumption, Eq. (16),
implies, in particular, that the anchor map R restricts to an isomorphism

AðGÞjM0
CTvertM0; ð18Þ

of vector bundles.
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We now discuss the relation between our three assumptions on G: It turns out that
these assumptions do not play equal roles. In fact, the second assumption implies the
third one, and, under some weak assumptions on G (d-connectivity) it also implies
the first assumption. The following considerations are however somewhat
independent from the rest of the paper, and, for the purpose of Hochschild
homology computations, the reader can just ignore some of the results below, but
instead impose all three assumptions on G:
First, let us notice that, in the same spirit as the above lemma, we get an

isomorphism of the algebras of differential operators corresponding to G and toM:
More precisely, let DiffðM;GÞ be the algebra of differential operators on M

generated by CNðMÞ and GðAðGÞÞ: Similarly, let DiffðMÞ be the algebra of
differential operators on M generated by CNðMÞ and GðTMÞ: The Poincaré–
Birkhoff–Witt theorem of [38] shows that the anchor map R then gives rise to a
morphism

RDiff : DiffðM;GÞ-DiffðMÞ: ð19Þ

Proposition 2. Assume that the map RG :GðAðGÞÞ-GðTMÞ defined by R is injective,
then our second assumption on G; Eq. (16), is equivalent to the fact that

RDiff : DiffðM;GÞ-DiffðMÞ induces an isomorphism

OðMÞDiffðM;GÞ-OðMÞDiffðMÞ:

Proof. The space of vector fields on a manifold coincides with the space of first order
differential operators without constant term (i.e. that send the function constant
equal to 1 to 0). Thus, the isomorphism

OðMÞDiffðM;GÞCOðMÞDiffðMÞ

is equivalent to the fact that OðMÞGðAðGÞÞ maps surjectively onto OðMÞGðTMÞ:
Since this map is injective by assumption, the result follows. &

The algebras ALðG;EÞ turn out to depend only on p :M-B:

Theorem 4. The algebras ALðG;EÞ are independent of G; as long as assumptions (15)
and (16) are satisfied.

Proof. Assume E is trivial, for simplicity. Let p0 be the restriction of p to the interior
of M and let CN

propðMjBÞ be the algebra of smooth, properly supported families of
operators acting on the fibers of

p0 :M0 :¼ M \@M-B:
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Recall [18,38] that the vector representation pv :CNðGÞ-EndðCN

c ðM0ÞÞ is defined
uniquely by

ðpvðPÞ f Þ 3 r ¼ Pð f 3 rÞ:

Assumption (15) shows that pv factors through a morphism CNðGÞ-CN

propðMjBÞ:
Assumption (16) then implies that ALðGÞ identifies with a subalgebra of B :¼
CN

propðMjBÞ=C�N

propðMjBÞ:
We now argue that Proposition 2 and asymptotic completeness imply that the

image of OðMÞCNðGÞ in B is independent of G: Indeed, it is enough to check that
the image of OðMÞCmðGÞ-B is independent of G; for any m: Let DAOðMÞ
DiffðM;GÞ be an elliptic differential operator in OðMÞCkðGÞ; for some fixed kX1:
Let Q be a parametrix of D: Then Proposition 2 implies that

OðMÞDiffðM;GÞ½Q� ¼ OðMÞDiffðMÞ½Q�: ð20Þ

Let G1 be another differentiable groupoid satisfying assumptions (15) and (16),
then

OðMÞDiffðM;G1Þ½Q� ¼ OðMÞDiffðM;GÞ½Q�;

by using Eq. (20) twice. Because OðMÞðCmðGÞ=C�NðGÞÞ-B is continuous and
injective and the image of the space of operators of order at most m of
OðMÞDiffðM;GÞ½Q� is dense in OðMÞCmðGÞ=C�NðGÞ; we obtain that the closure

of the range of OðMÞCmðGÞ in B does not depend on G: By looking at the complete
symbols of the images of OðMÞðCmðGÞÞ and OðMÞCmðG1Þ in B and using the
asymptotic completeness of the algebras of pseudodifferential operators
OðMÞðCNðGÞÞ and OðMÞCNðG1Þ; we obtain that the actual range of CmðGÞ in B
is independent of G; as desired. &

In view of the above result, we shall denote ALðMjB;EÞ ¼ ALðG;EÞ; if
G is a groupoid satisfying the first two assumptions, Eqs. (15) and (16), of this
section.

Let us recall that G is d-connected if, and only if, all the sets Gx :¼ d�1ðxÞ are
connected.

Corollary 2. Suppose G is a differentiable groupoid with units M: Then assump-

tion (16) implies assumption (17). If G is also d-connected, then (16) implies also

assumption (15).

Proof. By Theorem 4, it is enough to check (17) for any fixed groupoid G satisfying
(16). In particular, we can choose G to be locally a product, in which case (17) is
trivially satisfied. (For example, we could take G ¼ GM;b; the b-groupoid defined in

Section 6.)
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Let X1;y;Xm be sections of AðGÞ:We shall write RðXjÞ for RGðXjÞ (in our case RG
is an inclusion). Then

pðexpðRðX1ÞÞyexpðRðXmÞÞxÞ ¼ pðxÞ;

for all xAM: The assumption that G be d-connected is equivalent to the assumption
that, for any gAG; there exist X1;y;Xm as above such that

rðgÞ ¼ expðRðX1ÞÞyexpðRðXmÞÞdðgÞ;

see [24]. &

It also follows from the above discussion that it is enough for our computations to
consider a ‘‘typical’’ algebra for each fibration p :M-B: There are several choices of
‘‘typical’’ algebras, in general. One possible choice, the ‘‘b-calculus’’ [27], as well as
the result of our computations for this algebra, will be described in Section 6.

4. Hochschild homology for families

In this section, we compute the Hochschild homology groups of the algebras
ALðMjB;EÞ ¼ ALðG;EÞ introduced in the previous section. Recall that these
algebras are algebras of complete symbols associated with a groupoid G with
units M and a fibration p :M-B by manifolds with corners satisfying the
assumptions of Equations (15) and (16). The results of this section are already
interesting when the manifold M has no boundary. Recall that n ¼ dimðMÞ;
q ¼ dimðBÞ; and n ¼ p þ q:
In addition to helping us eliminate our third assumption on G; Eq. (17), the

introduction of the Laurent-type factors also simplifies the calculations, as in [3,28].
When B is reduced to a point �; this also ensures that the Hochschild homology of
ALðMÞ :¼ ALðMj�Þ is finite dimensional. For example, the dimension of the space
of traces onALðMj�Þ is the number of minimal faces ofM [3]. Moreover, the ‘‘cone
algebras’’ described for example in [40] are more closely related to the algebras
ALðMjB;EÞ than to the algebras AðMjB;EÞ: See also [21,39].
Our computations will use the Poisson structure of A�ðGÞ and, more precisely, the

‘‘homogeneous Laurent–Poisson homology’’ of A�ðGÞ\0; where A�ðGÞ\0 is the dual
of the Lie algebroid of G; with the zero section removed. The homogeneous Laurent–
Poisson homology of A�ðGÞ\0 is defined below and will be identified in terms of the
‘‘homogeneous, vertical Laurent–de Rham cohomology’’ of the fibration
A�ðGÞ\0-B (this cohomology is also defined below). The homogeneous Laurent–
Poisson homology and the homogeneous vertical Laurent–de Rham cohomology are
natural analogues of the Poisson and, respectively, de Rham cohomology, which are
obtained, roughly speaking, by introducing Laurent type singularities at the corners
of M and by considering homogeneous forms (on A�ðGÞ\0; for example). See
[30,48,51] for more on Poisson homology.
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We begin with the definition of the groups H
i; j
c;LðA�ðGÞ\0jBÞl ; the homogeneous,

vertical Laurent–de Rham cohomology of the fibration A�ðGÞ\0-B: Then we shall
discuss Poisson homology and its variant, the homogeneous Laurent–Poisson
homology.
Let X be a manifold with corners and let p0 :X-B be a fiber bundle with B

smooth. Let us call the sections of TvertX vertical vector fields, as it is customary.
Then the sections of the dual T�

vertX are called vertical differential forms. There exists

a natural (i.e. independent of any choices) differential operator

dvert : GðLkT�
vertX Þ-GðLkþ1T�

vertXÞ; ð21Þ

the vertical de Rham differential.
Every vertical vector field on X is also a vector field on X in the usual sense. On

the other hand, a form on X restricts to a vertical form on X : Moreover, every
vertical form on X is the restriction of a form on X ; but we cannot choose that form
in a canonical way. A convenient way to choose extensions of vertical forms is to
consider a splitting of TX into vertical and horizontal parts. We shall hence fix from
now an isomorphism (or splitting)

Y :TXCTvertX"p�0TB: ð22Þ

The splitting Y of Eq. (22) gives rise to an embedding Yk : GðLkT�
vertX Þ-OkðX Þ:

More generally, we get isomorphisms

LkT�XC"iþj¼kLiT�
vertX#p�0L

jT�B:

Let Oi; jðXÞ :¼ GðX ;LiT�
vertX#p�0L

jT�BÞ: Then OkðXÞC"iþj¼k Oi; jðXÞ; and we
also have isomorphisms

Oi;0ðX Þ#CNðBÞO
jðBÞ{o#Z-o4p�0ZAOi; jðXÞ: ð23Þ

The embedding Yk can then be used to define a map dvert :Oi;0ðX Þ-Oiþ1;0ðXÞ
(using the same notation for the differential is unlikely to cause any confusion in our
case). We extend then dvert to a map

dvert :Oi; jðX Þ-Oiþ1; jðXÞ;

by using the isomorphisms of Eq. (23) above and setting

dvertðo4p�0ZÞ ¼ dvertðoÞ4p�0Z

if ZAOi;0ðXÞ and oAO jðBÞ: Clearly d2vert ¼ 0: The extension dvert that we obtain

depends on the splitting Y of Eq. (22). The isomorphism class of the resulting
complex, however, does not depend on Y:

Let us denote by Ok
LðXÞ the space of k-differential forms on the interior of X that

have only rational (or Laurent) singularities near the corners. We shall sometimes
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call forms with these properties Laurent-differential forms. The above definitions

and properties extend to Ok
LðX Þ as follows. Let Oi; j

L ðXÞ :¼ OðXÞGðX ;LiT�
vertX#

p�0L
jT�BÞ: Then

Ok
LðXÞC"iþj¼kO

i; j
L ðXÞ;

and, as before, we obtain a differential

dvert :O
i; j
L ðX Þ-Oiþ1; j

L ðXÞ:

We shall denote by

H
i; j
L ðX Þ ¼ kerðdvertÞ=dvertO

i�1; j
L ðXÞ

the homology of the above complex. Similarly, if compactly supported forms are

considered, we obtain a complex whose homology we denote by H
i; j
c;LðXÞ:

Define the horizontal differential dhor :O
i; j
L ðXÞ-Oi; jþ1

L ðXÞ as the component of
bidegree ð0; 1Þ of d: Then @ :¼ d � dvert � dhor is known to be a differential and to
have bidegree ð�1; 2Þ: See for instance [44].
The equality d2 ¼ 0 is equivalent to the following relations:

dvertdhor þ dhordvert ¼ 0; d2hor þ @dvert þ dvert@ ¼ 0; @2 ¼ 0;

d2vert ¼ 0; and @dhor þ dhor@ ¼ 0:

The vertical Laurent–de Rham cohomology can be computed in a fairly explicit way.

Indeed, letFk be the local coefficient system determined by the Laurent cohomology

groups of the fibers of X-B: Thus Fk is a canonically flat vector bundle over B

whose fiber at bAB is

FkðbÞ ¼ Hk
c;Lðp�10 ðbÞÞ :¼ Hk

c;Lðp�10 ðbÞjbÞ: ð24Þ

Let Ok
c ðBÞ be the space of compactly supported k-forms on B:

Proposition 3. Using the above notation, we have that

Hk;h
c;LðX jBÞCOh

cðBÞ#CNðBÞGðFkÞ ¼: Oh
cðB;FkÞ; ð25Þ

the space of compactly supported h-forms on B with values in Fk: In particular, the

vertical Laurent–de Rham cohomology groups Hk;h
c;LðX jBÞ are independent of the

splitting TXCTvertX"p�0TB used to define them, see Eq. (22).

In addition, the action induced by the horizontal de Rham differential dhor on

Hk;h
c;LðX jBÞ is isomorphic under (25) to the de Rham differential on B with coefficients

in the locally constant sheaf Fk:
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Proof. The above formula is checked right away when p :X-B is a trivial fiber
bundle (i.e. X ¼ B � F ) by using the Künneth formula for the tensor product of
complexes of nuclear vector spaces, [15]. Moreover, an automorphism of the trivial
fiber bundle X ¼ B � F does not affect the isomorphism of the proposition. A
partition of unity argument then completes the proof. &

Let A�ðGÞ\0 be obtained from the vector bundle A�ðGÞ; as before, by removing the
zero section. We are interested in the above constructions when X ¼ A�ðGÞ\0 and
p0 :A�ðGÞ\0-B is obtained from the composition of the maps A�ðGÞ-M and
p :M-B: More precisely, for us, the relevant cohomology groups are the
cohomology groups obtained by considering homogeneous forms. Let then

Oi; j
rc;LðA�ðGÞ\0Þl be the space of l-homogeneous forms in

Oi; j
L ðA�ðGÞ\0Þ ¼ OðMÞGðA�ðGÞ\0;LiT�

vertðA�ðGÞ\0Þ#p�0L
jT�BÞ

whose support project onto a compact subset of M: Here the homogeneity is
considered with respect to the natural action of R�

þ on A�ðGÞ\0 by dilations. We
denote then by

H
i; j
c;LðA�ðGÞ\0jBÞl

the homology of the complex Oi; j
rc;LðA�ðGÞ\0Þl with respect to the vertical de Rham

differential dvert: We shall call these groups the homogeneous, vertical Laurent–de

Rham cohomology groups of A�ðGÞ:
Similar constructions and definitions are obtained with T�

vertM in place of A�ðGÞ:
Our second assumption on the groupoid G; Eq. (16), gives that the two
cohomologies are isomorphic.

Lemma 3. The anchor map R :AðGÞ-TvertM induces a natural isomorphism

H
i; j
c;LðA�ðGÞ\0jBÞlCH

i; j
c;LðT�

vertM\0jBÞl :

These groups vanish if la0 and, for l ¼ 0; we have

H
i; j
c;LðA�ðGÞ\0jBÞ0CH

i; j
c;LðT�

vertM\0jBÞ0

CHi; j
c;LðS�

vertðMÞ � S1jBÞCHi; j
c;LðS�ðGÞ � S1jBÞ:

Proof. The map R induces an isomorphism of the corresponding complexes, by
Eq. (16) and the definition of the spaces Oi; j

rc;LðA�ðGÞ\0Þl : The vanishing of the

groups H
i; j
c;LðT�

vert\0jBÞl for la0 follows from the homotopy invariance of de Rham
cohomology. The computation of the 0-homogeneous cohomology spaces is
elementary, see for instance [3,7,28]. &
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We can thus replace A�ðGÞ with T�
vertM for the rest of our computations of the

homogeneous, vertical Laurent–de Rham cohomology groups of A�ðGÞ:
The homogeneous, vertical Laurent–de Rham cohomology can be computed using

a method similar to the one we used to determine the non-homogeneous homology.

Indeed, letFk be the local coefficient system determined by the Laurent cohomology

groups of the fibers of p0 : S�
vertðMÞ � S1-B: Thus Fk is a canonically flat vector

bundle over B whose fiber at bAB is

FkðbÞ ¼ Hk
c;Lðp�10 ðbÞÞ ¼ Hk

c ðLðp�10 ðbÞÞÞ: ð26Þ

Proposition 4. Using the above notation, we have that

Hk;h
c;LðA�ðGÞ\0jBÞ0COh

cðBÞ#CNðBÞGðFkÞ ¼: Oh
cðB;FkÞ ð27Þ

(recall that for la0; the groups Hk;h
c;LðA�ðGÞ\0jBÞl vanish). The horizontal de Rham

differential dhor induces a differential on Hk;h
c;LðX jBÞ which is isomorphic under (27) to

the de Rham differential on B with coefficients in the locally constant sheaf Fk:

Proof. The proof is completely similar to that of Proposition 3 and Lemma 3. &

Let us now introduce the Poisson homology groups that we are interested in. The
following considerations apply to any regular Poisson structure. Recall that the
Poisson structure on A�ðGÞ is defined by a two tensor

GACNðA�ðGÞ;L2TA�ðGÞÞ

so that ff ; gg ¼ iGðdf4dgÞ: Clearly, the tensor G must satisfy some non-trivial
conditions for the map f ; g to satisfy the Jacobi identity. These conditions turn out
to be equivalent to ½G;G�SN ¼ 0; where ½ ; �SN is the Schouten–Nijenhuis bracket [46].

The formula for the Poisson bracket is determined in terms of the Lie algebra
structure on the space of sections of AðGÞ: (This was recalled in Lemma 2.)
Let iG :OkðA�ðGÞÞ-Ok�2ðA�ðGÞÞ be the contraction with the tensor G: It satisfies

iG :Oi; jðA�ðGÞÞ-Oi�2; jðA�ðGÞÞ Then we obtain as in [5] a differential

d :¼ iG 3 d � d 3 iG :OkðA�ðGÞÞ-Ok�1ðA�ðGÞÞ: ð28Þ

Explicitly, for any ð f0;y; fkÞACNðA�ðGÞÞkþ1; the differential d is given by the
formula

dð f0df1df2ydfkÞ ¼
X
1pjpk

ð�1Þ jþ1ff0; fjgdf1ycdfjdfjydfk

þ
X

1piojpk

ð�1Þiþj
f0dffi; fjgdf1ycdfidfiy

cdfjdfjydfk: ð29Þ
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Let G be a differentiable groupoid, as above, satisfying Assumptions (15) and (16),
we can then use the splitting Y of Eq. (22). One then shows that d decomposes into
the sum of two bihomogeneous differentials [46]

d ¼ dvert þ a;

where dvert :¼ iG 3 dvert � dvert 3 iG is the vertical Poisson differential. The vertical
Poisson differential has bidegree ð�1; 0Þ: The extra term a has bidegree ð�2;þ1Þ and
is in fact given by [4]:

a ¼ iG 3 dhor � dhor 3 iG:

In particular, the commutator ½iG; d� is trivial. It is straightforward to see that the
restriction of dvert to vertical differential forms is given by the following local
expression

dvertð f0dvert f1dvert f2ydvert fkÞ

¼
X
1pjpk

ð�1Þ jþ1f f0; fjgdvert f1y ddvert fjdvert fjydvert fk

þ
X

1piojpk

ð�1Þiþj
f0dvertffi; fjgdvert f1y ddvert fidvert fiy

ddvert fjdvert fjydvert fk: ð30Þ

The above formula determines dvert on O j;0ðA�ðGÞÞ: To determine dvert in general,
we can use the following lemma.

Lemma 4. Let aAOiðA�ðGÞÞ; let bAO jðBÞ; and let p0 :A�ðGÞ-B be the composite

projection. Then

dða4p�0ðbÞÞ ¼ dðaÞ4p�0ðbÞ and dvertða4p�0ðbÞÞ ¼ dvertðaÞ4p�0ðbÞ:

Proof. It is enough to check the first equation when b ¼ g or b ¼ dg; for some
smooth function g on B: Our claim then follows from the fact that ff ; g 3 p0g ¼ 0; for
any smooth function f on M and from the explicit formula for d; Eq. (29).
The equation for dvert :¼ iG 3 dvert � dvert 3 iG follows from the equation for d by

checking bidegrees. &

The formula of Eq. (29) is valid also when M has corners and it is easy to check
that the differential d is homogeneous of degree �1 with respect to the action of R�

þ
on A�ðGÞ\0: Let OkðA�ðGÞ\0Þl be the space of k-forms on A�ðGÞ\0 that are
homogeneous of order l: We hence obtain a differential

d :OkðA�ðGÞ\0Þl-Ok�1ðA�ðGÞ\0Þl�1:
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Let Ok
rcðA�ðGÞ\0Þl be the subspace of O

kðA�ðGÞ\0Þl consisting of forms whose

support projects onto a compact subset of M; as before. Because d preserves the
support, it maps the space Ok

rcðA�ðGÞ\0Þl to Ok�1
rc ðA�ðGÞ\0Þl�1:

The same result holds with dvert and we have:

dvert :Ok
rc;LðA�ðGÞ\0Þl-Ok�1

rc;LðA�ðGÞ\0Þl�1:

We obtain in this way a direct sum of complexes ðPkÞkAZ

Pk : 0-Pk
2pþq !

d
Pk
2pþq�1!

d
y!d Pk

�k-0; ð31Þ

where Pk
l ¼ Okþl

rc;LðA�ðGÞ\0Þl :

We shall denote the homology groups of the above complex by

Hd
L;kþlðA�ðGÞ\0jBÞl :¼

kerðd :Pk
l -Pk

l�1Þ
dðPk

lþ1Þ
:

In the same way we define the vertical homogeneous Laurent–Poisson homology

groups using dvert instead of d and denote them by

Hdvert
L;kþlðA

�ðGÞ\0jBÞl :¼
kerðdvert : Pk

l -Pk
l�1Þ

dvertðPk
lþ1Þ

:

Furthermore, we define for any ði; jÞ

P
i; j
l :¼ Oiþl; j

rc;L ðT�
vertM \0Þl :

From the results of Section 3, we deduce that

Pk
l C"iþj¼k P

i; j
l :

Note that with respect to the splitting (22), we have:

dvert :P
i; j
l -P

i; j
l�1;

and the vertical Laurent Poisson homology can be computed by fixing ði; jÞ and
restricting to each Pi; j :¼ "lP

i; j
l : However, the extra term a does not preserve Pi; j ;

and sends Pi; j to Pi�1; jþ1:
The relevance for us of Poisson homology, in general, and of homogeneous

Laurent–Poisson homology, in particular, is that they are related to the Hochschild
homology groups of the algebras ALðMjB;EÞ :¼ OðMÞðCNðG;EÞ=C�NðG;EÞÞ
introduced in the previous section, where E is a Z=2Z-graded vector bundle. The
following lemma makes this connection precise.
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Lemma 5. The algebra ALðMjB;EÞ is topologically H-unital. The EH2 term of the

spectral sequence associated to ALðMjB;EÞ by Lemma 1 is given by

EH2k;hCH
d
L;kþhðA�ðGÞ\0jBÞk:

Proof. When E is a trivial one-dimensional vector bundle and G is an arbitrary
groupoid, the above proposition was proved in [3, Proposition 7].
The extension to a non-trivial vector bundle and the Z=2Z-graded case is obtained

as a consequence of Künneth formula as follows.
Let us recall that the trace Tr :MNðCÞ-C defines a morphism of complexes from

the Hochschild complex of MNðAÞ to the Hochschild complex of A:

Tr�ðm0#b0#?#mk#bkÞ :¼ Trðm0m1ymkÞb0#b1#?#bk; ð32Þ

where mjAMNðCÞ and bjAA; so that mj#bjAMNðCÞ#ACMNðAÞ:
Let us assume first that E is trivial of rank N (i.e. E ¼ CN) with trivial grading.

Then

ALðMjB;EÞ ¼ MNðALðMjB;CÞÞ:

The result then follows from the invariance of Hochschild homology under Morita
equivalence and a comparison of the canonical Hochschild homology spectral
sequences associated to ALðMjB;EÞ and ALðMjB;CÞ using the above morphism
of Hochschild complexes (defined by the trace).
Assume now that E is trivially graded, but not necessarily trivial, as a vector

bundle. Then the graded algebra of ALðMjB;EÞ is the algebra generated by the
homogeneous sections of the lift of EndðEÞ to A�ðGÞ\0:We claim that the statement
that we need to prove is local in the following sense. All these Hochschild homology
groups are the spaces of global sections of certain sheaves and the morphisms
between them are induced by morphisms of sheaves. It is known then that a
morphism of sheaves that is locally an isomorphism is also globally an isomorphism.
We use now this argument and the fact that E is locally trivial. We obtain that all
these algebras will have the same Hochschild homology as that of the algebra
corresponding to a trivial line bundle, with the isomorphism again induced by the
trace. The spectral sequence of Lemma 1 then tells us that the Hochschild homology
of the algebra ALðMjB;EÞ is independent of E:
In general, let E ¼ Eþ"E� be the decomposition of E into the direct sum of the

þ1 and, respectively, �1 eigenvalue of the grading automorphism. As above, we
observe that the statement of the lemma is again local, so we can assume that
E ¼ Eþ"E� is such that both Eþ and E� are trivial bundles. Denote by N the rank
of E: ThenALðMjB;EÞCMNðALðMjBÞÞ; as before, except that now the grading is
not necessarily trivial, but is induced by conjugation with a matrix in MNðCÞ: Our
lemma then follows from the following general fact.
Let A be a (topologically filtered) algebra A and N an integer. Assume that the

grading automorphism of the algebra MNðAÞ is given by conjugation with a matrix
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in MNðCÞ: Then

HH�ðMNðAÞÞCHH�ðAÞ:

This follows, for example, from the Künneth formula in (Z=2Z-graded) Hochschild
homology (see [17]). &

As with the homogeneous, vertical de Rham homology, we can replace A�ðGÞ in
Hd

L;kðA�ðGÞ\0jBÞl with T�
vertM; the vertical cotangent bundle to p :M-B:

Lemma 6. The anchor map R :AðGÞ-TvertM induces an isomorphism

Hd
L;kðA�ðGÞ\0jBÞlCH

d
L;kðT�

vertM\0jBÞl :

Proof. This follows from Lemma 2 and the explicit formula for the Poisson bracket,
Eq. (29). &

We now proceed as usual and construct a chain map �vert from the complex that
defines vertical Poisson homology to the complex that defines de Rham cohomology.
The chain map �vert is, in a certain sense, a vertical symplectic �-operator. It corresponds
to the canonical symplectic forms on the cotangent spaces of the fibers of p :M-B:

Denote by Mb :¼ p�1ðbÞ; bAB; and by ob the symplectic form on T�Mb: There exists
then a 2-form o on T�

vertM :¼
S

bAB T�Mb that restricts on each fiber T�Mb to the form

ob: This form is certainly not unique. There will be, however, a unique form

oAO2;0L ðT�
vertMÞ with this property, because restriction defines an isomorphism from

O2;0L ðT�
vertMÞ to the space OðMÞGðL2ðT�

vertðT�
vertMÞÞÞ: We shall call this form o the

vertical symplectic form of T�
vertM: It depends on the splitting of Eq. (22).

The vertical symplectic volume form on T�
vertM is defined by analogy to be

volvertðMÞ :¼ o p=p!: Next, we define �vert : Ok;0
L ðT�

vertMÞ-O2p�k;0
L ðT�

vertMÞ by the
equation

b4ð�vertaÞ ¼ ðb; aÞo � volvertðMÞ; 8a; bAOk;0
L ðT�

vertMÞ;

where ð; Þo is the bilinear form induced by the symplectic form. Then we obtain that
�vertðOk;0

L ðT�
vertMÞlÞ ¼ O2p�k;0

L ðT�
vertMÞlþp�k: Finally, to define

�vert :Oi; j
L ðT�

vertMÞ-O2p�i; j
L ðT�

vertMÞ

in general, it is enough to define �verta when a ¼ Z4p�0b; with ZAOi;0
LðMÞ and

bAO jðBÞ; where p0 : T�
vertM-B is the induced projection. We set then

�vertðaÞ ¼ �vertðZ4p�0bÞ :¼ �vertðZÞ4p�0b: ð33Þ

Similarly, we obtain again that �vertðOi; j
L ðT�

vertMÞlÞ ¼ O2p�i; j
L ðT�

vertMÞlþp�i:
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The usual properties of the symplectic �-operator in relation to de Rham and
Poisson homology extend to �vert:

Proposition 5. Let �vert be the operator defined above. Then

(1) �2vert ¼ id;
(2) ð�1Þiþ1

dvert 3 �vert ¼ �vert 3 dvert on Oi; jðT�
vertMÞ:

We can extend the range of both formulas to include homogeneous forms or forms with

Laurent type singularities.

Proof. Both formulas are well known when B is reduced to a point [6]. Using a
version with parameters of this particular case, we obtain that the two formulas are

correct on Oi;0ðT�
vertMÞ:

For the general case, let aAOi;0ðT�
vertMÞ be of the form a ¼ Z4p�0b; where

ZAOi;0
LðMÞ and bAO j

c ðBÞ; and p0 : T�
vertM-B is the induced projection. Then, using

Eq. (33), we obtain

�2vertðaÞ ¼ �2vertðZÞ4p�0b ¼ a: ð34Þ

Similarly, using the definition of dvert; Lemma 4, and Eq. (33), we obtain

ð�1Þiþ1
dvert 3 �vert ðaÞ ¼ ð�1Þiþ1

dvert 3 �vert ðZÞ4p�0b

¼ �vert 3 dvertðZÞ4p�0b ¼ �vert 3 dvertðaÞ:

This is enough to complete the proof. &

We are ready now to determine the homogeneous, Laurent–Poisson homology
groups of A�ðGÞ: Recall that p denotes the dimension of the fibers ofM-B and q is
the dimension of the manifold B: We set for any fixed kAZ;

K j;l :¼ P
k�j; j
l�j ;

so that

dvert :K j;l-K j;l�1 and a :K j;l-K jþ1;l :

To compute the homogeneous Laurent d-homology of A�ðGÞ\0; we use that the
complex splits into subcomplexes ðPk; dÞ: Thus we can fix the integer kAZ and define

a filtration of the above bicomplex K j;l by

Fh :¼ "lAZ; jphK j;l :

Proposition 6. The spaces Hd
L;kþlðA�ðGÞ\0jBÞl and Hdvert

L;kþlðA�ðGÞ\0jBÞl are iso-

morphic.
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Proof. Recall that we have

d ¼ dvert þ a and dvert 3 aþ a 3 dvert ¼ 0:

We then use for any fixed k the decomposition PkC"iþj¼kP
i; j into a finite double

complex and the decreasing filtration Fh defined above. This yields a spectral
sequence ðErÞrX1 which converges to the d-homology by classical homological
arguments. The E1 term of this spectral sequence is given by

E1u;v ¼ H
2p�v�kþu;u
L ðT�

vertM\0jBÞp�kþu:

But again by a homotopy argument, the homogeneous vertical de Rham

cohomology space H
2p�v�kþu;u
L ðT�

vertM\0jBÞp�kþu is trivial unless u ¼ k � p: There-

fore, we get:

E1u;v ¼ 0 if va� k � p:

Hence for any rX1; we see that dr ¼ 0 and the spectral sequence collapses at E1: The
proof is thus complete. &

Theorem 5. The homogeneous, Laurent–Poisson homology groups of A�ðGÞ are

given by

Hd
L;kðA�ðGÞ\0jBÞlCH

p�l;k�l�p
c;L ðT�

vertM \0jBÞ0:

Proof. The vertical symplectic Hodge operator �vert yields isomorphisms

�vert :"iþj¼kO
i; j
L ðT�

vertM \0Þl-"iþj¼kO
2p�i; j
L ðT�

vertM\0Þlþp�i

which intertwine the dvert and dvert differentials (up to a sign). Proposition 6 shows
then that

Hd
L;kðA�ðGÞ\0jBÞlC"iþj¼kH

2p�i; j
c;L ðT�

vertM \0jBÞlþp�i:

But for l þ p � ia0; the cohomology spaces H2p�i; jðT�
vertM \0jBÞlþp�i are trivial by

the homotopy invariance of de Rham cohomology. Hence the only non-trivial
term is:

H
p�l;k�l�p

c;L ðT�
vertM \0jBÞ0;

and this completes the proof. &

We can now apply the results of Section 1 together with Theorem 5.
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Proposition 7. The EH2-term of the spectral sequence associated in Lemma 1 to the

Hochschild homology of the algebra ALðMjB;EÞ is given by:

EH2k;hCH
p�k;h�p

c;L ðS�
vertðMÞ � S1jBÞ;

where S�
vertðMÞ is the sphere bundle of the vertical cotangent bundle T�

vertM:

Proof. Denote by d the Poisson differential on the vertically symplectic fibration
T�
vertM-B: Lemma 5, Proposition 6 and Theorem 5 give by straightforward
computation:

EH2k;hCH
p�k;h�p

c;L ðT�
vertM\0jBÞ0:

Now, a classical argument shows that [28]:

H
p�k;h�p

c;L ðT�
vertM\0jBÞ0CH

p�k;h�p
c;L ðS�

vertðMÞ � S1jBÞ;

which completes the proof. &

In the following lemma, we shall denote by #tf the completion of the tensor

product of two algebras in the unique natural way that makes the completed tensor
product a topologically filtered algebra. See also Eq. (17) where #tf was used

before.

Lemma 7. Assume that the fibration p :M-B and the bundle of algebras

ALðMjB;EÞ are trivial; that is, assume that M ¼ B � F and ALðMjB;EÞC
ALðF ;EÞ#tf C

N

c ðBÞ as topologically filtered algebras. Then the spectral sequence

associated (in Lemma 1) to the Hochschild homology of the algebra ALðMjB;EÞ
collapses at EH2 and converges. Moreover, we have

HHkðALðMjB;EÞÞC"iþj¼kH
2p�i
c;L ðS�ðFÞ � S1Þ#O j

c ðBÞ:

Proof. We know from [3] that HHjðALðF ;EÞÞCH2p�j
c ðLðS�ðFÞÞ � S1Þ: The usual

shuffle map g [25] induces a morphism of complexes

g :HðCN

c ðBÞÞ#HðALðF ;EÞÞ-HðCN

c ðBÞ#tf ALðF ;EÞÞ;

which preserves the filtrations. The Künneth formula for Hochschild cohomology

shows that this morphism induces an isomorphism on the E1-term of the
corresponding spectral sequences. Thus g induces an isomorphism on all
Er-terms. This shows that the spectral sequence associated to ALðMjB;EÞ ¼
CN

c ðBÞ#tf ALðF ;EÞ degenerates at E2 ¼ EH2:
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Theorem 1 and an application of the usual Künneth formula then give that

HHkðALðMjB;EÞÞC"iþj¼kHHiðCN

c ðBÞÞ#HHjðALðF ;EÞÞ

C"iþj¼kOi
cðBÞ#H

2p�j
c;L ðS�ðFÞ � S1Þ: & ð35Þ

We now extend the above lemma to more general groupoids.

Lemma 8. The spectral sequence EHr associated to the Hochschild homology of

ALðMjB;EÞ by Lemma 1 degenerates at EH2 and converges to its Hochschild homology.

Proof. Denote A ¼ ALðMjB;EÞ in this proof, for simplicity. The differential b of
the Hochschild complex of A is CNðBÞ-linear, if fACNðBÞ acts on a0#?#an by
f ða0#?#anÞ :¼ ð fa0Þ#?#an: The filtrations of the Hochschild complex are
also preserved by the multiplication operators with functions fACNðBÞ: This shows
that the spectral sequence associated to the Hochschild homology of ALðMjB;EÞ
by Lemma 1 consists of CNðBÞ-modules.
Denote E2k;hðAÞ ¼ EH2k;h in this lemma, to stress the dependence of our spectral

sequence on the algebra A: To prove that E2k;hðAÞ ¼ 0 or that dr ¼ 0 for this
spectral sequence, it is enough to check that f E2k;hðAÞ ¼ 0 (or fdr ¼ 0) for any f in a

trivializing open subset V of M (that is, a subset satisfying the conditions of our
third assumption on the algebra A ¼ ALðMjB;EÞ; Eq. (17)), more precisely,
satisfying that

AV :¼Oðp�1ðVÞÞðCNðGV ;EÞ=C�NðGV ;EÞÞ

COðp�1ðVÞÞ#tf ðCNðV � Gb;EÞ=C�NðV � Gb;EÞÞ ð36Þ

is a CNðBÞ-linear isomorphism. Then f E2k;hðAÞ ¼ f E2k;hðAV Þ: By Lemma 7,
Er

k;hðAV Þ ¼ 0 if ko� p; and hence Er
k;hðAV Þ ¼ 0 if ko� p: (Recall that p is the

dimension of the fibers of M-B:) Similarly, fdr ¼ 0 if rX2:
This proves that the spectral sequence in Hochschild homology associated to the

algebra ALðMjB;EÞ by Lemma 1 degenerates at EH2: It also proves that the
assumptions of Theorem 1 are satisfied, so the spectral sequence EHr

k;h converges to

Hochschild homology. &

Now we can state and prove the main theorem of this section. Let G be a
differentiable groupoid whose space of units is a manifold with corners M which is

the total space of a fibration p :M-B; as before. Denote byF j the local coefficient
system defined by

F jðbÞ :¼ HH2p�jðALðp�1ðbÞÞÞCH j
c;Lðp�10 ðbÞÞCH j

c ðLðp�10 ðbÞÞÞ ð37Þ

with p0 : S�
vertðMÞ � S1-B the natural projection.
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Theorem 6. Assume that B is smooth (without corners) and that G satisfies the

assumptions (15) and (16). Let ALðMjB;EÞ be the algebra of Laurent type complete

symbols on G with coefficients in the Z=2Z-graded vector bundle E: Then

HHmðALðMjB;EÞÞC"kþh¼mOh
cðB;F2p�kÞ; ð38Þ

where F j are the sheaves defined in Eq. (37).

Proof. We apply Lemma 8 and deduce that:

HHmðALðMjB;EÞÞC"iþj¼mEH
2
i; j:

The computation of EH2 was carried out in Proposition 7 and the result is:

EH2i; jCH
p�i; j�p

c;L ðS�
vertðMÞ � S1jBÞ:

On the other hand, Proposition 3 applied to X ¼ S�
vertðMÞ � S1 gives:

H
p�i; j�p

c;L ðS�
vertðMÞ � S1jBÞCO j�p

c ðB;F p�iÞ:

Therefore we get

HHmðALðMjB;EÞÞC"iþj¼mO j�p
c ðB;F p�iÞ:

The conclusion follows by setting i ¼ k and j ¼ h: &

Remark 1. The above proposition has to be modified only slightly if B is also a
manifold with corners. For example, when B is compact, the result remains true if we

replace O j
c ðBÞ with OðBÞO jðBÞ:

5. The relative case

Let again G be a groupoid with corners satisfying the assumptions (15) and (16)
with respect to the fibration p :M-B of the manifold with corners M over the
smooth manifold B: Let X be a union of faces ofM:We shall denote byIX the ideal
of smooth functions on M that vanish to infinite order on X :
We shall consider in this section the algebra of Laurent complete symbols on G

which vanish to infinite order over X and which represent pseudodifferential
operators acting on sections of the Z=2Z-graded vector bundle E: This algebra is
denoted by ALðMjB;X jB;EÞ: Thus we have:

ALðMjB;X jB;EÞ :¼ OðMÞIXAðMjB;EÞ:
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Note that if X ¼ |; then we recover the algebras ALðMjB;EÞ studied in the
previous sections. The proof of Proposition 3 in [3] extends to show that the algebras
ALðMjB;X jB;EÞ are topologically filtered algebras.
For any fibrations Y-M-B; we denote by pY the projection Y-M and by pY

the composite projection Y-B:When Y is a manifold with corners, we shall denote
by pL the projection LðYÞ-M which is the composite map of LðY Þ-Y and
Y-M: This last notation is intended to simplify the statements of this section.
(Recall that the spaces LðMÞ were introduced before Theorem 3.)
Let again S�

vertðMÞ be the quotient bundle of T�
vertM \0 by the radial action of R�

þ:

In [3], the computations of periodic cyclic homology recover the case of our algebra
ALðMjB;X jB;EÞ: The result is as follows:

Theorem 7. [3] For q ¼ 0; 1; we have:

HPqðALðMjB;X jB;EÞÞCH½q�
c ðLðS�

vertMÞ � S1\p�1
L ðX ÞÞ:

Proof. Again by a Morita equivalence argument we can forget the bundle E: We
apply Proposition 5 in [3] and obtain for our groupoid G:

HPqðALðMjB;X jBÞÞCH½q�
c ðLðS�ðGÞÞ � S1\p�1

L ðXÞÞ:

As before,

H½q�
c ðLðS�ðGÞÞ � S1\p�1

L ðX ÞÞCH½q�
c;LððA�ðGÞ\0Þ\p�1

A�ðGÞ\0ðX ÞÞ0:

From Assumption (16), we thus deduce as in Lemma 6 that:

H
½q�
c;LððA�ðGÞ\0Þ\p�1

A�G\0ðXÞÞ0CH
½q�
c;LððT�

vertM \0Þ\p�1
T�
vertM \0ðXÞÞ0:

The space H
½q�
c;LððT�

vertM \0Þ\p�1
T�
vertM \0ðX ÞÞ0 is again isomorphic to the space

H½q�
c ðLðS�

vertMÞ � S1\p�1
L ðX ÞÞ; and this completes the proof. &

Let us state now the corresponding results for Hochschild homology. Let Fl
X be

the coefficient system over B given for any bAB by the relative cohomology space

Fl
X ðbÞ :¼Hl

LðS�ðp�1ðbÞÞ � S1; p�1
S�
vertM�S1ðX ÞÞ

:¼HlðLðS�ðp�1ðbÞÞÞ � S1; p�1
L ðp�1ðbÞÞÞ:

Theorem 8. The Hochschild homology spaces of the algebra ALðMjB;X jB;EÞ are

given by:

HHmðALðMjB;X jB;EÞÞC"kþh¼mOh
cðB;F

2p�k
X Þ:
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Proof. We can again assume that the graded vector bundle E is trivial, one-
dimensional. The proof of this theorem is similar to the proof of Theorem 6,
replacing cohomology by relative cohomology and using excision. More precisely,
the natural filtration of the topologically filtered algebra ALðMjB;X jBÞ by the
order of the symbols gives rise to a spectral sequence for Hochschild homology given

by Lemma 1. This spectral sequence was studied in [3] where the E2-term was
identified with the homogeneous Laurent–Poisson relative homology of the Poisson
manifold A�ðGÞ\0: Indeed, we have [3, Proposition 7]:

EH2k;hCH
d
L;kþhððA�ðGÞ\0Þ\p�1

A�ðGÞ\0ðXÞÞk:

Now using the immediate extension of Lemma 6 to the relative case, we obtain:

Hd
L;kþhððA�ðGÞ\0Þ\p�1

A�ðGÞ\0ðX ÞÞkCH
d
L;kþhððT�

vertM \0Þ\p�1
T�
vertM \0ðXÞÞk:

The vertical symplectic Hodge operator �vert preserves the forms vanishing above X ;
therefore we deduce using the proof of Proposition 7 that:

EH2k;hCH
p�k;h�p

c;L ððS�
vertðMÞ � S1ÞjB; p�1

L ðX ÞjBÞ:

The arguments ensuring the degeneracy of the spectral sequence at the second level
in the proof of Lemma 8 again obviously extend to the relative case. In addition, we
can apply Theorem 1 to deduce the convergence of the spectral sequence to
Hochschild homology. Hence we finally obtain:

HHmðALðMjB;X jB;EÞÞC"kþh¼mEH
2
k;h

C"kþh¼mH
p�k;h�p

c;L ððS�
vertðMÞ � S1ÞjB; p�1

L ðXÞjBÞ:

To end the proof we simply observe that Proposition 3 extends straightforward to
the relative case. &

6. Examples and applications

We begin by providing a construction of a groupoid G satisfying the assumptions
(15) and (16), for any fibration p :M-B; where B is a smooth manifold (no corners)
and M is a manifold, possibly with corners. For each fibration p as above we shall
construct a canonical groupoid GM;b; the ‘‘b-groupoid,’’ satisfying the assumptions
(15) and (16).
Our examples are obtained by first defining the Lie algebroid of G; and then by

integrating it. (See [12,36] for general results on the integration of Lie algebroids.)
LetVbðMjBÞ be the space of vertical vector fields onM that are tangent to all faces
ofM: ThenVbðMjBÞ is a Lie algebra with respect to the Lie bracket of vector fields
and is also a projective CNðMÞ-module. By the Serre–Swan theorem [17] there exists
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a vector bundle Ab-M such that

VbðMjBÞCGðAbÞ;

naturally. (See [29].)
The procedure in [36] then provides us with groupoids GM;b whose Lie algebroid

are isomorphic to Ab: The minimal groupoid with this property is obtained as
follows. For each face F of M; consider the interior of that face, F0 :¼ F \@F :

Assume F has codimension k: Define then G0
F to be the groupoid associated to an

equivalence relation: two units are connected by an arrow if, and only if, they are
equivalent. The equivalence relation that we consider is that x; yAF0 are equivalent
if, and only if, they belong to the same connected component of a set of the form

p�1ðbÞ-F0: Let

GM;b ¼
[

G0
F � Rk; ð36Þ

the union being a disjoint union, and with the induced groupoid structure. Then it
can be checked directly that the charts provided in [36] define a smooth structure on
G such that AðGM;bÞCAb: This structure must then be unique [36]. See also [8,12,31].
Let F be the locally constant sheaf (or coefficient system) that associates to bAB

the complex vector space with basis the minimal faces of p�1ðbÞ: (All faces of a
manifold with corners are connected, by definition.)

Theorem 9. Let p :M-B be as above. Then

HH0ðALðMjB;EÞÞCCN

c ðB;FÞ;

the space of compactly supported sections of the sheaf F: The space of traces of

ALðMjB;EÞ identifies with the dual of this space:

HH0ðALðMjB;EÞÞCC�NðB;FÞ ¼: CN

c ðB;FÞ0:

Proof. This follows from Theorem 6. &

In the particular case when M is smooth, our construction simplifies and we
obtain GM;b ¼ M �B M: Then the algebra CNðGÞ consists of differentiable families
of pseudodifferential operators along the fibers of M-B: Similarly, let us consider
CNðMjB;EÞ; the algebra of smooth families of pseudodifferential operators along
the fibers with coefficients in the Z=2Z-graded vector bundle E; introduced in [1]. Let
AðMjB;EÞ :¼ CNðMjB;EÞ=C�NðMjB;EÞ be the algebra of vertical complete
symbols. Then AðMjB;EÞ ¼ ALðMjB;EÞ; and we obtain

Corollary 3. Assume G ¼ M �B M; with M smooth (without corners) and let

AðMjB;EÞ ¼ ALðMjB;EÞ be the algebra of families of complete symbols along

the fibers of p :M-B; as above. Also, let F j be the locally constant sheaf given by the
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cohomology of the fibers of S�
vertðMÞ � S1-B: Then we have:

HHmðAðMjB;EÞÞC"kþh¼mOh
cðB;F2p�kÞ:

In particular, for m ¼ 0 and provided that the fibers of M-B are connected and
have dimension X2; this isomorphism becomes

HH0ðAðMjB;EÞÞCCN

c ðBÞ:

Therefore, the space of traces is given by

HH0ðAðMjB;EÞÞCC�NðBÞ :¼ CN

c ðBÞ0; ð37Þ

the space of distributions on the base manifold B:
Let o be as before the vertical symplectic form on T�

vertM-B: The isomorphism
of Eq. (37) can be made more explicit as follows. Let R be the radial vector field on
the fibers of T�

vertM-B and a ¼ iRðo p=p!Þ the corresponding Liouville form on the
fibers of S�

vertðMÞ-B: Let STr be the graded trace on the endomorphisms of the
fibers of E; that is STrðAÞ ¼ Trðg 3 AÞ; where g is the involution defining the grading.
Also, let p� be the fiberwise integration on the fibers of S�

vertM: Then, for any
a ¼

P
jpm aj; we set

tmðaÞ :¼ /m; p� STrða�pÞaS: ð38Þ

This formula defines a super (or graded) trace onAðMjB;EÞ such that m-tm is the
isomorphism described in Corollary 3, for m ¼ 0:
Fix a quantization function

q :
[

SsðT�
vertM;EndðEÞÞ-

[
CsðMjB;EÞ; ð39Þ

where SsðT�
vertM; EndðEÞÞ denotes classical vertical symbols of order s: The

function q is thus assumed to be continuous and to satisfy ssðqðaÞÞ ¼ a if a is a
symbol of order s: Let r be a positive symbol on T�

vertM; such that rðxÞ ¼ jxj; for
jxjX1: We consider a family DðzÞ such that

DðzÞ ¼ qðrzÞB1ðzÞ þ RðzÞ; ð40Þ

where B1 is a holomorphic function on C with values inC0ðMjB;EÞ; B1ð0Þ ¼ 1; RðzÞ
is a holomorphic function on C with values in C�NðMjB;EÞ and satisfying Rð0Þ ¼
0: Then Dð0Þ ¼ 1:

Proposition 8. Let m be a distribution on B and AACmðMjB;EÞ and DðzÞ be as above.

Then the function

z-FAðzÞ :¼ /m; STrbðADðzÞÞS
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is well defined for ReðzÞo� m � p; where p is the dimension of the fibers of p :M-B:
The function FA extends to a meromorphic function on C; with at most simple poles at

the integers. For z ¼ 0; the residue of this function is up to constant tmðAÞ:

Proof. This is proved as in the classical case when DðzÞ is given by the complex
powers of a positive elliptic operator (see [13,41]). One can follow the approach from
[37], for example. &

We remark that we used above only a weak result from [36] on the integration of
Lie algebroids (namely Theorem 2). Let us use this opportunity however to mention
that there is a missing assumption in the general gluing theorem of [36] (i.e. Theorem
3 of that paper). Here is the corrected version.

Theorem 10. Let A be a Lie algebroid on a manifold with corners M: Suppose that M

has an A-invariant stratification M ¼
S

S such that, for each stratum S; the

restriction AS is integrable and let GS be d-simply connected differential groupoids such

that AðGSÞCAS: Then A is integrable if, and only if, the exponential map

Exp :A-G ¼
S
GS is injective on an open neighborhood of the zero section of A

for some (equivalently, for any) connection on A: Moreover, if these conditions are

satisfied, then the disjoint union G ¼
S
GS is naturally a differentiable groupoid such

that AðGÞCA:

The above condition on the injectivity of the map Exp is seen to be necessary in
view of the work of Crainic and Fernandes [12], and also from some earlier results of
Weinstein. The map Exp introduced in [36] seems to be essential for both the results
of that paper and for the results of [12]. The second author would like to thank
M. Crainic for pointing out a possible problem with the original statement of the
above theorem.
Let us mention for completeness the result for the computation of the cyclic

homology of the algebras ALðMjB;EÞ: Note first that

HCjðALðMjB;EÞÞCHPjðALðMjB;EÞÞ for jX2p þ 2;

from the Connes SBI-exact sequence that related Hochschild and cyclic homology,
because the Hochschild homology of ALðMjB;EÞ vanishes above this rank.

Proposition 9. The spectral sequence ECr
k;h associated to the cyclic homology

complex of ALðMjB;EÞ has E1-term given by EC1k;h ¼ Okþh
rc;LðS�

vertMÞ; if ka0;
and by

EC10;h ¼ OhðS�
vertM � S1Þ=dOh�1ðS�

vertM � S1Þ""j40H
h�2jðS�

vertM � S1Þ:

The d1 differential is induced by the Poisson differential and the spectral sequence

converges to the cyclic homology of the algebra ALðMjB;EÞ:
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