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0. INTRODUCTION

Let � be a simple, finite-dimensional Lie superalgebra over �. These
have been classified by V. Kac. Unless � is a Lie algebra or a Lie superal-
gebra of type osp�1� 2n�, the category of finite-dimensional representations
of � is not semisimple; vid. [10]. This leads to a classification problem.
For example, in [5], the representation theory of sl�m�n� is worked out by
showing it is wild when m�n ≥ 2, and by giving an explicit description of
the indecomposable finite-dimensional representations of sl�1� n�.

When � is of type W �n�, the irreducible finite-dimensional �-modules
are classified in [1]; in this paper, we investigate finite-dimensional inde-
composable modules. We show that the category of finite-dimensional rep-
resentations of � is wild (i.e., classifying objects is as hard as classifying
pairs of matrices; vid. Sect. 3) if � is of type W �n�, if n ≥ 3. More pre-
cisely, the category of finite-dimensional representations decomposes into
blocks parameterized by ��/�� × �2, and we show that each block is of
wild type. This is done by explicitly exhibiting enough extensions between
simple modules.

Second, we find the decomposition of the category of finite-dimensional
representations into blocks. As an application, using an idea of Maria
Gorelik, we prove that the center of the universal enveloping algebra of
� is trivial.

1 The author was partially supported by TMR Grant ERB-FMRX-CT97-0100 during the
summer of 2000.
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When n = 2, there is a special isomorphism W �2� ∼= sl�1� 2�, in which
case the representation theory is not wild, and the indecomposable repre-
sentations are fully described in [5].

The results in this paper are also related to results of Nakano [9] in
the finite-characteristic case, for which he shows that the restricted univer-
sal enveloping algebra has a single block, and determines the structure of
projective modules.

1. PRELIMINARIES

All vector spaces and algebras we consider will be over the ground
field �. If V = V0̄ ⊕ V1̄ is a �2-graded vector space, we write dim V =
dim V0̄ + ε dim V1̄ ∈ ��ε�/�ε2 − 1�. We denote by � the parity-change func-
tor, so ��V �k = Vk+1̄ if k ∈ �2.

For a Lie superalgebra �, denote by U��� its universal enveloping alge-
bra. We are interested in the category of graded finite-dimensional repre-
sentations of Lie superalgebras, with even intertwiners.

Let us define the finite-dimensional Lie superalgebra W �n�, where n ≥ 2
is an integer. Let

∧�ξ� = ∧�ξ1� � � � � ξn� be the Grassmann algebra on n
generators ξ1� � � � � ξn; it is a 2n-dimensional associative algebra, and we
give it a �-grading (and a compatible �2-grading) by setting deg ξi = 1 for
1 ≤ i ≤ n. We set W �n� = Der

∧�ξ�, the set of (super)derivations of
∧�ξ�.

It is a simple Lie superalgebra of dimension �1 + ε�n2n−1. It inherits a
�-grading W �n� = ⊕n−1

k=−1 Wk from
∧�ξ�, where Wk consists of derivations

that increase the degree of a homogeneous element by k.
Denote by ∂/∂ξi the derivation of

∧�ξ� determined by ξj �→ δij . If
X ∈ W �n�, then X = ∑n

i=1 X�ξi��∂/∂ξi�, so W �n� = �∑n
i=1 Pi�ξ��∂/∂ξi� �

Pi�ξ� ∈ ∧�ξ�}. We define the Euler vector field to be Z = ∑n
i=1 ξi�∂/∂ξi�.

Note that Wk = �X ∈ W �n� � �Z�X� = kX�.
The component W0 is isomorphic to gl�n�; it acts as endomorphisms of

the space span�ξ1� � � � � ξn� of linear functions. Let us describe the struc-
ture of W �n� as a gl�n�-module: denote by std the standard representa-
tion of gl�n�; then there is an isomorphism W �n� ∼= ∧�std� ⊗ std∗, where
Wk

∼= ∧k+1�std� ⊗ std∗.
In addition to the isomorphism gl�n� ∼= W0, we will fix an isomorphism

sl�1� n� ∼= W−1 ⊕ W0 ⊕ span�ξiZ � i = 1� � � � � n�, which is compatible with
the usual �-grading on sl�1� n�.

We fix the Cartan subalgebra � ⊆ gl�n� with basis �ξi�∂/∂ξi��; it is also
a Cartan subsuperalgebra of W �n�. Weights will be written with respect to
the basis �ε1� � � � � εn� of �∗ dual to �ξi�∂/∂ξi��; thus �∗ ∼= �n.

We fix the Borel subalgebra �0 ⊆ gl�n�, which has positive roots
�εi − εj � 1 ≤ i < j ≤ n�. The corresponding set of highest weights of
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finite-dimensional irreducible representations of gl�n� (modulo parity if we
consider graded representations) is

�+ = ��λ1� � � � � λn� � ∀ 1 ≤ i < j ≤ n λi − λj ∈ �≥0��
Since n is fixed, from now on we will denote W �n�, sl�1� n�, and gl�n� by

W , sl, and gl, respectively. We will use the notation W≥k = ⊕
j≥k Wj and

W≤k = ⊕
j≤k Wj .

Remark. Lie superalgebra cohomology is �2-graded. However, we con-
sider only even maps as intertwiners in the category of �-modules. For
example, if � is any Lie superalgebra and M and N are �-modules, then
Hom��M�N� = H0���Hom��M�N��, but the space of even intertwiners
M → N is �Hom��M�N��0̄. Similarly, only the even part of the space
Ext1��M�N� = H1���Hom��M�N�� should be interpreted as short exact
sequences of �-modules.

2. KAC MODULES

The irreducible finite-dimensional representations of W are determined
explicitly in [1]. Let L�λ� denote the simple, finite-dimensional gl-module
with highest weight λ and even highest-weight vector.

Definition. The Kac module K�λ� is the induced representation

K�λ� = indW
W≥0

L�λ� = U�W � ⊗U�W≥0� L�λ�
of W , where W≥1 acts trivially on L�λ�.

The module K�λ� is finite-dimensional, indecomposable, and has highest
weight λ with respect to the Borel subalgebra �0 ⊕ W≥1 of W . It therefore
has a unique simple quotient, which we will denote by S�λ�. Conversely,
to an irreducible finite-dimensional W -module V , associate the gl-module
V W≥1 of W≥1-invariant vectors.

For a generic weight λ, the representation K�λ� is irreducible. If K�λ�
is not irreducible, then it has length 2. Every simple finite-dimensional
W -module is isomorphic to S�λ� or to �S�λ� for a unique λ ∈ �+.

The situation for sl is parallel to that for W . We denote by slK�λ� =
indsl

sl0⊕sl1
L�λ� the Kac modules for sl; note that slK�λ� is the restriction of

K�λ� to sl. We shall need the following facts (see [7, Theorem 1]). There
is a condition called typicality such that

λ is typical ⇐⇒ slK�λ� is irreducible�

Moreover, λ is typical if and only if slK�λ� is projective and injective in the
category of finite-dimensional gl-semisimple sl-modules, and the category
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of finite-dimensional gl-semisimple sl-modules with typical subquotients is
semisimple. The set of atypical weights is contained in a finite union of
hyperplanes. We note that if λ �∈ �n, then the weight λ is typical (so, in
particular, slK�λ� and K�λ� are irreducible if λ �∈ �n).

Finally, we introduce certain W -modules, the big Kac modules

K′�λ� = indW
W−1⊕W0

L�λ� = indW
sl indsl

W−1⊕W0
L�λ��

The K′�λ� are indecomposable modules with highest weight λ with respect
to the Borel subsuperalgebra W−1 ⊕ �0 of W . Correspondingly, there are
sl-modules defined by slK′�λ� = indsl

sl−1⊕sl0
L�λ�.

3. QUIVERS AND REPRESENTATION TYPE

A quiver is a directed graph, which consists of a set of vertices connected
by various arrows (possibly including multiple arrows between two vertices,
loops, etc.). Let A be a unital �-algebra, and denote by � some Abelian
category of modules over A. Denote by Irr� the set of isomorphism classes
of irreducible objects. The Ext-quiver of � is defined to be the quiver whose
set of vertices is Irr� and where the number of arrows from �S1� to �S2�
is equal to dimExt1��S1� S2�. This is a combinatorial invariant of �, whose
structure gives information about the representation type. In particular, we
have the following theorem, proven in [6]:

Proposition 3.1. Let A be an algebra, and let � be a (not necessarily
full) Abelian subcategory of the category of modules over A. Let Q be a finite
subquiver of the Ext-quiver of �. If Q is a connected quiver containing no
path of length 2, then there exists a fully faithful functor from the category of
representations of Q to the category �. In particular, the set of isomorphism
classes of indecomposable representations of Q embeds into the corresponding
set for �.

The representation theory of quivers is well established (see [4] for a
comprehensive overview). In particular, if the underlying graph of a quiver
is not of Dynkin or of affine type, then the representation theory of the
quiver is wild. More precisely, a small �-linear Abelian category � is
defined to be wild if there exists a full exact embedding from the category
of finite-dimensional representations of ��x� y�, the free associative alge-
bra on two generators, into �. This has the consequence that the objects
of � are unclassifiable in any finite sense. For example, if � is wild, then it
is possible to obtain any finite-dimensional algebra as the endomorphisms
of some object.
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4. EXTENSIONS

In this section, we show the existence of certain non-split extensions
between Kac modules. These will be realized as quotients of big Kac mod-
ules.

Lemma 4.1. Suppose that λ �= µ and either λ or µ is typical. Then

Ext1W �K�λ��K�µ�� = H1�W� sl�Hom��K�λ��K�µ����
Proof. If M is a W -module and H1�sl�M� = 0, then E

1� 0
2 = 0 in the

Serre–Hochschild spectral sequence (see [2, Theorem 1.5.1]) corresponding
to the pair �W� sl�, which implies that H1�W �M� = H1�W� sl�M�. Apply this
to the module M = Hom��K�λ��K�µ��. If at least one of the weights λ
or µ is typical, then we have Ext1sl�K�λ��K�µ�� = H1�sl�M� = 0, because
K�λ� is projective or K�µ� is injective.

Note that the following results are vacuous unless n ≥ 3 (which we will
assume, from now on). If n ≥ 3, then the sl-module W /sl is nontrivial, in
which case W/sl ∼= L�ε1 + ε2 − εn� ⊕ W≥2 as a gl-module.

Theorem 4.2. Let λ ∈ �+\�n, and let α be a weight of L�ε1 + ε2 − εn�
such that λ + α ∈ �+. Then

dimExt1W �K�λ��K�λ + α�� = ��W/sl� ⊗ slK�λ� slK�λ + α��
= ��W/sl� ⊗ L�λ� L�λ + α���

Proof. The condition on λ ensures that all the Kac modules involved
are sl-typical, hence simple. Therefore, by Lemma 4.1, we have Ext1W �K�λ�,
K�λ + α�� = H1�W� sl�Hom��K�λ��K�λ + α���. This is equal to the coho-
mology of the complex

Homsl�K�λ��K�λ + α�� → Homsl�W/sl ⊗ K�λ��K�λ + α��
δ→ Homsl

(∧2�W/sl� ⊗ K�λ��K�λ + α�
)

→ · · · �
The first term is zero, so there are no coboundaries, and we claim that
every f ∈ Homsl�W/sl ⊗K�λ��K�λ+α�� gives a cocycle. Indeed, �δf ��x� =
f �dx�, where d ∧2�W/sl� ⊗ K�λ� → �W/sl� ⊗ K�λ�, and we only need
to verify that there are no nonzero sl-module maps

∧2�W/sl� ⊗ K�λ� →
K�λ + α�: define the height of a weight �λ1� � � � � λn� to be

∑n
i=1 λi. Then

the height of any ν such that
∧2�W/sl� ⊗ K�λ� = ⊕

ν K�ν� is greater than
or equal to ht�λ� + 2, while ht�λ + α� = ht�λ� + ht�α� = ht�λ� + 1. This
weight calculation shows that K�λ + α� does not occur among the K�ν�.

Since all the Kac modules are typical, we can calculate the decomposition
of �W/sl� ⊗ slK�λ� into a direct sum of Kac modules as the decomposition
of �W/sl� ⊗ L�λ� into a direct sum of gl-modules.
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Remark. Let µ� ν ∈ �+ be typical weights. The computation of Ext1W
as in the proof of Theorem 4.2 shows that if ht�ν� > ht�µ�, then
Ext1W �K�ν��K�µ�� = 0. On the other hand, this fact may be proved directly
using a simple highest-weight calculation: suppose that ht�ν� > ht�µ� and
that Ext1W �K�ν��K�µ�� �= 0, and let 0 → K�µ� → E → K�ν� → 0 be
a non-split short exact sequence. Take a highest-weight vector v ∈ K�ν�,
which lifts to some vector v′ ∈ E of weight ν. Since K�ν� is not a direct sum-
mand, the highest-weight vector v′ generates all of E. Hence E would be a
quotient of the (irreducible!) Kac module indW

W≥0
L�ν�, which is impossible.

We also remark again that the extensions of K�λ� by K�λ + α� described
in Theorem 4.2 are quotients of the big Kac module K′ = indW

sl K�λ� ∼=
K′�λ − 2ρ1�, where ρ1 = 1

2
∑n

i=1 εi; this may be seen directly from the
structure of K′. We have W = W−1 ⊕ W0 ⊕ �S1 ⊕ T1� ⊕ W≥2, where S1 =
Ker�div�W1

� ∼= L�ε1 + ε2 − εn� and T1 = sl ∩ W1 = span�ξiZ � 1 ≤ i ≤ n�.
Using these notations, as an sl-module, we have

K′ ∼= Sym�S1 ⊕ W≥2� ⊗ K�λ� ∼= K�λ� ⊕ ⊕
µ

K�µ� ⊕ N�

where L�λ� ⊗ S1 = ⊕
µ L�µ�, and N is a direct sum of Kac modules of

highest weights of height greater than ht�λ� + 1. By the fact in the previous
paragraph, we have Ext1W �K�µ��K�λ�� = 0, hence

⊕
µ K�µ� ⊆ RadK′,

and Ext1W �N�K�µ�� = 0, so, in fact,
⊕

µ K�µ� ⊆ RadK′/Rad2 K′.
Note that in general, even for generic highest weights, there do exist

non-split extensions of K�λ� by K�µ� with ht�µ� − ht�λ� ≥ 2. For exam-
ple, consider the case n = 3; then W/sl = S1 ⊕ W2, with S1

∼= L�1� 1�−1�
and W2

∼= L�1� 1� 0� as gl(3)-modules. A calculation involving gl(3)-modules
then shows that

∧2�W/sl� ∼= L�2� 1�−1� ⊕ L�2� 1� 0� ⊕ L�2� 2�−1� ⊕ L�2� 1� 1��
Now set λ = �a� a� a� with a ∈ � \ �. Then

W/sl ⊗ L�λ� ∼= L�λ + �1� 1�−1�� ⊕ L�λ + �1� 1� 0���
Since L�1� 1� 0� does not appear as a component of

∧2�W/sl�, the argu-
ment used in the proof of Theorem 4.2 shows that Ext1W �K�λ��K�λ +
�1� 1� 0��� ∼= �.

Corollary 4.3. Let λ ∈ �+ be any weight, and let α be as in the
statement of Theorem 4.2. Then dimExt1W �K�λ��K�λ + α�� ≥ ��W/sl� ⊗
L�λ� L�λ + α��.
Proof. Consider the cohomology H1�W �Hom�K�λ + tρ1��K�λ + α +

tρ1��� as t ∈ � varies. The complex computing this cohomology is finite-
dimensional, and shifting the weights by t does not change the dimen-
sion of the components. We can therefore view it as a complex with fixed
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terms with a differential that depends polynomially on t. By Theorem 4.2,
dimH1 = ��W/sl� ⊗ K�λ� K�λ + α�� for generic values of t. By semiconti-
nuity, dimH1 can only increase at special values.

Note that if ht�α� = 1, then ��W/sl� ⊗ L�λ� L�λ + α�� = �L�ε1 + ε2 −
εn� ⊗ L�λ� L�λ + α��.

5. BLOCKS AND WILDNESS

A block of an Abelian category � is defined to be an indecomposable
full Abelian subcategory that is a direct summand.

We shall need several simple facts about blocks. Given a subset - ⊆ Irr�,
we denote by ��-� the full subcategory of � consisting of objects all of
whose simple subquotients are in -. If all objects of � have finite length,
then it is easy to check that � decomposes into a direct sum of blocks,
and that - ⊆ Irr� is the set of vertices of a connected component of the
Ext-quiver of � if and only if - = Irr� for some block �. All irreducible
subquotients of an indecomposable object belong to the same block, and, if
there exists a non-split extension 0 → N → E → M → 0 where M and N
are indecomposable, then all simple subquotients of E belong to the same
block (in fact, there exists a non-split extension of some simple subquotient
of M by some simple subquotient of N).

We need the following facts about weight modules over Lie superalge-
bras. Here � is a Lie superalgebra and � is a fixed Cartan subsuperalge-
bra; we assume for simplicity that � = �0̄. For a �-module M , we denote
M�α� = �v ∈ M � ∀H ∈ � ∃n ∈ �+ �H − α�H��nv = 0�. The module M is
called a generalized weight module if M = ⊕

α M
�α� (for instance, this is

true whenever M is finite-dimensional).

Lemma 5.1. Let � be a Lie superalgebra (with a fixed Cartan subsuperal-
gebra �), and let M be a generalized weight module. Then M = ⊕

t∈�∗/Q M�t�
as a �-module, where Q is the root lattice and M�t� = ⊕�M�λ� � λ ∈ t� ⊆ M .

Proof. Let M be a generalized weight module. We have the following
simple fact: if λ�µ ∈ �∗, then U����λ�M�µ� ⊆ M�λ+µ�. An immediate conse-
quence is that the M�t�, defined above, are submodules.

Lemma 5.2. Let � be as in the previous lemma, and assume that there
exists a linear function p Q → �2 such that, for every α ∈ Q and 0 �= Xα ∈
��α�, the element Xα is homogeneous of parity p�α�. (N.b.: this should not
be confused with the notation p V0̄ $ V1̄ → �2 for a super-vector-space V .)
Let �t be the category of �-modules which are generalized weight modules
with support contained in t = λ + Q. Then there exists a decomposition �t =
�′

t ⊕ �′′
t , such that M ∈ Ob�′

t if and only if �M ∈ Ob�′′
t .
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Proof. Let us define, for any M ∈ Ob��t�, an even map σ = σM ∈
End��M� such that σ2

M = IdM . This will give a decomposition M = M ′ ⊕
M ′′, where M ′ = Ker�σM − IdM� and M ′′ = Ker�σM + IdM�. We will verify
the parity condition.

Define a shifted function p t → �2 by fixing arbitrarily ε ∈ �2 and setting
p�λ + α� = ε + p�α� for α ∈ Q. Consider the linear map σ  M → M ,
uniquely defined by requiring that, if v ∈ M

�µ�
p�v�, then σ�v� = �−1�p�µ�−p�v�v.

Note that, if Xα ∈ ��α�, then Xαv ∈ M
�µ+α�
p�v�+p�α�, so σ�Xαv� = �−1�p�µ�−p�v�×

Xαv = Xασ�v�. Therefore, σ commutes with the action of �, and M breaks
up into a direct sum of two submodules, as claimed.

Finally, since �M has the same generalized weight spaces as M , but the
parity of elements is reversed, it is clear that σ�M = −σM , which verifies
the last claim.

Now, let � denote the category of all finite-dimensional representations
of W . All objects of � are generalized weight modules. The set Irr� is
in bijection with �+ × �2; representatives of isomorphism classes are the
modules S�λ� and �S�λ�, which were defined in Section 2. Note that if λ ∈
�+, then λ ∈ 2λ1ρ1 + Q, so the highest weights of simple finite-dimensional
W -modules belong to cosets parameterized by �/�.

For each coset t = λ + Q ∈ �/Q, let us fix a choice of p t → �2 as
in the proof of Lemma 5.2, starting from p�α� = ht�α� for α ∈ Q. Given
�x� d� ∈ �/� × �2, let us define

-�x� d� = ��p�λ�+dS�λ� ∈ Irr� � λ ∈ 2xρ1 + Q��
Lemmas 5.1 and 5.2 together imply

Proposition 5.3.

� = ⊕
�x�d�∈�/�×�2

��-�x� d���

The categories ��-�x� 0̄�� and ��-�x� 1̄�� are equivalent via parity-reversal.

Theorem 5.4. The decomposition

� = ⊕
�x� d�∈��/��×�2

��-�x� d��

is the block decomposition of �; i.e., the categories ��-�x� d�� are indecom-
posable.

Proof. We define a relation � on the set of highest weights, such that
λ�µ implies that S�λ� and �p�µ−λ�S�µ� are in the same �-block. Finally,
we show that if S�λ���p�µ−λ�S�µ� ∈ -�x�p�λ��, i.e., if λ1 ≡ µ1�mod��, then
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we can get from λ to µ with a finite number of intermediate arrows �

or �.
If x �∈ �, then all Kac modules in ��-�x� d�� are simple. In that case, by

Theorem 4.2, there exists a nonsplit extension of S�λ� by �S�λ + α�, where
α = εi + εj − εk, if and only if L�λ + α� occurs in the decomposition of
L�ε1 + ε2 − εn� ⊗L�λ� into a direct sum of gl-modules. We therefore define
the relation λ�µ on �+ so that λ�µ if and only if �L�ε1 + ε2 − εn� ⊗
L�λ� L�µ�� > 0.

Lemma 5.5. (1) If λ + ν ∈ �+ for each weight ν of L�ε1 + ε2 − εn�,
then λ�λ + α;

(2) if α = εi + εj − εk with i, j, and k distinct, and if λ + α ∈ �+,
then λ�λ + α.

Proof. Claim (1) is standard, and let us prove (2) using the Littlewood–
Richardson rule (see [3, pp. 455–456]). First, we have λ + εi + εj − εk ∈ �+

if and only if, starting from the Young diagram for λ, we obtain another
Young diagram when we add one box to every row except rows i and j,
to which we add two boxes, and row k, to which we add zero boxes. To
apply the Littlewood–Richardson rule, we need to show that this expansion
is “µ-strict” for µ = �2� 1� � � � � 1� 0�. Assume that i < j; then we can fill in
the numbers by putting a 1 in the leftmost box added to row i, a 2 in the
leftmost box added to row j, and numbering the remaining boxes in order,
starting from the top.

End of the proof of Theorem 5�4. Note that all weights ν of L�ε1 + ε2 −
εn� are of the form ν = εi + εj − εk, with i �= j, so, if µ = ∑

i µiεi ∈ �+

is some weight with µi − µi+1 ≥ 2 for 1 ≤ i < n, then µ + ν ∈ �+ for any
such ν.

Next, let � be the closure of � to an equivalence relation on �+. Let
λ ∈ �+ be any weight; we check that λ�λ + εi whenever λ + εi ∈ �+, by
using Lemma 5.5 to check that there exists a diagram

λ�ν�1�
�· · ·� ν�r�

�

λ + εi�ν�1� + εi�· · ·� ν�r� + εi

for some weights ν�1�� � � � � ν�r�, which shall be chosen depending on λ.
Given the weight ν�0� = λ, choose, using Lemma 5.5, claim (2), a

sequence ν�1�� � � � � ν�r� with the property that ν�j�
� ν�j+1� and ν�j� +

εi � ν�j+1� + εi, such that ν�r� is sufficiently dominant, that is, satisfies the
conditions in Lemma 5.5, claim (1). By the remark after Lemma 5.5, it will
suffice to ensure that ν�r�

i − ν
�r�
i+1 ≥ 2. For instance, let ak = 2�n − k − 1� for

1 ≤ k ≤ n − 2, and set ν�j� = ν�j−1� + αj , where αj = ε1 + ε2 − εn−k+1 for
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a1 + · · · + ak−1 < j ≤ a1 + · · · + ak, 1 ≤ k ≤ n − 2. Let r = ∑n−2
k=1 ak + 1 =

n2 − 3n + 3; the final weight chosen will be

ν�r� = ν�r−1� + ε1 − ε2 + ε3

= �λ1 + r�ε1 + �λ2 + r − 2�ε2 + �λ3 − 1�ε3 +
n∑

k=4

�λk − an−k+1�εk�

Then each ν�j� − λ ∈ �+, and the ν�j� satisfy the required properties. This
gives λ� ν�r� and λ + εi � ν�r� + εi; since ν�r� is sufficiently dominant, we
have ν�r�

� ν�r� + εi and hence λ�λ + εi.
Now remove the condition that x /∈ �. Corollary 4.3 still ensures that, if

λ�λ + α, then there exists a non-split extension of K�λ� by �K�λ + α�.
Since K�λ� and K�λ + α� are indecomposable, and both S�λ� and �S�λ +
α� are subquotients of such a non-split extension, it follows that S�λ� and
�S�λ + α� are in the same block.

Finally, it is clear that the closure of � to an equivalence relation on
�+ has equivalence classes which are exactly the cosets �λ + Q� ∩ �+.

Theorem 5.6. Each block ��-�x� d�� is wild.
Proof. Let λ ∈ �+ be a weight such that K�λ� ∈ Ob���-�x� d��, K�λ�

is simple, λ + α ∈ �+ for every weight α of L�ε1 + ε2 − εn�, and all the
K�λ + α� are also simple. For example, any sufficiently dominant weight,
say, λi ≥ λi+1 + 37, with λi ≡ t̄ �mod��, will do. Then, by Corollary 4.3,
there exists a nontrivial extension of K�λ� = S�λ� by �K�λ + α� = �S×
�λ + α�.

Therefore, the Ext-quiver of each block contains a subquiver consisting
of a vertex λ with arrows from it to λ + α for each root α of �W/sl�1. Not
counting multiplicities, there are 3

(
n
3

) + n such roots, namely, εi + εj − εk

with 1 ≤ i� j� k ≤ n and i �= j. Since n ≥ 3, we always have d = 3
(
n
3

)+ n > 5,
and the resulting quiver is already wild (vid. Proposition 3.1):

λ + α1

λ + α2

λ
���

λ + αd

The argument in Theorem 4.3 may probably be refined to calculate all
extensions between two (generic) Kac modules. Moreover, we would like
to find a simple proof of

Conjecture 5.7. All blocks not containing the trivial representation are
equivalent.
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This is supported by the fact that the proof of Theorem 4.2 and Corol-
lary 4.3 shows, at least, that the dimension of Ext1 between two simple
modules does not change when we change the block by shifting weights by
generic multiples of ρ1.

6. THE CENTER OF U�W �n��

We have the generalized triangular decomposition W = W−1 ⊕W0 ⊕W≥1,
and W≤0 is simultaneously a parabolic subsuperalgebra of both sl�1� n� and
W �n�. The sl-module (resp. W -module) parabolically induced from a sim-
ple gl-highest-weight module L�λ� is still denoted by slK′�λ� (respectively,
K′�λ�).

Induction by stages gives K′�λ� = U�W � ⊗U�sl� slK′�λ�. It is easy to check
that any simple W -module has a nonzero space of W−1-invariants, so we
can obtain any simple highest-weight module of W (resp. sl) as a quotient
of K′�λ� (resp. slK′�λ�). Let slL�λ� be the unique irreducible quotient of
slK′�λ�.

The following result is proved in [8, Sect. 3]:

Lemma 6.1. Let S ⊆ �∗. Then, if and only if S is Zariski dense in �∗, we
have ⋂

µ∈S
AnnU�sl�

slL�µ� = 0�

Proposition 6.2. For any Zariski dense subset S ⊆ �∗, one has⋂
µ∈S

AnnU�W � K′�µ� = 0�

Proof. Suppose S is Zariski dense. First of all, Ann slK′�µ� ⊆
Ann slL�µ� and, therefore,

⋂
µ AnnU�sl� slK′�µ� = 0 by Lemma 6.1. Next,

we use the fact that K′�λ� is induced from slK′�λ� to push this up to W .
Applying the Poincaré–Birkhoff–Witt Theorem, produce a basis �Xi� of
U�W � over U�sl�, so that, as spaces, K′�µ� ∼= �⊕i �Xi� ⊗�

slK′�µ�. Write
u ∈ AnnU�W � K′�µ� as u = ∑

i XiYi, with the Yi ∈ U�sl�. Applying u to
v ∈ 1 ⊗ slK′�µ� ⊆ K′�µ� gives ∑

i

XiYiv = 0�

and, since the Xi are linearly independent, each Yiv = 0 and, therefore,
Yi ∈ AnnU�sl� slK′�µ�. This shows that AnnU�W � K�µ� ⊆ U�W �AnnU�sl�
slK′�µ� and that⋂

µ

AnnU�W � K
′�µ� ⊆ U�W �⋂

µ

AnnU�sl�
slK′�µ� = 0�
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Proposition 6.3. We have Z�W � = �, where Z�W � denotes the super-
center of U�W �.

This is an immediate corollary of Proposition 6.2 and

Lemma 6.4. If u ∈ Z�W �, then there exists a scalar c ∈ � such that u −
c ∈ ⋂

µ∈- AnnK′�µ�, where - ⊆ �∗ is Zariski dense.

Proof. For any µ ∈ �∗, we have EndW K′�µ� = �; therefore, c acts
by some scalar cµ on K′�µ�. Therefore, if µ ∈ �+, then c also acts by
multiplication by cµ on the finite-dimensional quotient S′�µ� of K′�µ�. Fix
- to be the set of highest weights of irreducible modules in any block of the
category of finite-dimensional representations of W ; Theorem 5.4 implies
that - is a Zariski-dense subset of �∗. Then if µ�µ′ ∈ -, then S′�µ� and
S′�µ′� are in the same block, so cµ = cµ′ .
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[6] Jérôme Germoni, On the classification of admissible representations of the Virasoro
algebra, Lett. Math. Phys. 55 (2001), 169–177.

[7] V. Kac, Representations of classical Lie superalgebras, in “Differential Geometrical
Methods in Mathematical Physics,” II (Proc. Conf., Univ. Bonn, Bonn, 1977), pp. 597–
626. Springer, Berlin, 1978.

[8] Edward S. Letzter and Ian M. Musson, Complete sets of representations of classical Lie
superalgebras, Lett. Math. Phys. 31 (1994), 247–253.

[9] Daniel K. Nakano, Representation theory of Lie algebras of Cartan type, in “The Mon-
ster and Lie Algebras” (Columbus, OH, 1996), pp. 235–252. de Gruyter, Berlin, 1998.

[10] Manfred Scheunert, The Theory of Lie Superalgebras, Springer, Berlin, 1979.


	0.INTRODUCTION
	1.PRELIMINARIES
	2.KAC MODULES
	3.QUIVERS AND REPRESENTATION TYPE
	4.EXTENSIONS
	5.BLOCKS AND WILDNESS
	6.THE CENTER OF U(W(n))
	REFERENCES

