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In isolated rat heart muscle cells, addition of L-alanine (1.5 mmol/l) or of L-valine (3 mmol/l) resulted in either a ca 1.5- or 1.3-fold increase in 
glucose transport, resp. half-maximal stimulation was observed in the presence of L-alanine, but not of L-valine, within a physiological plasmatic 
range of concentrations. D-Alanine (1.5 mmol/1) was ineffective and the stimulating effect of L-alanine could be prevented by an excess of L-serine 
(15-30 mmol/1). L-Alanine produced an increase in 3-O-methyl-D-glucose transport Vmax (from 44.6 to 81.5 pmol's-~.mg protein-l) without affect- 
ing the Km (12.2 in control vs 12.8 mmol/l in alanine-treated cells). Pyruvate (1.5 mmol/1) inhibited glucose transport by 20% and prevented the 
stimulating action of L-alanine (1.5 mmol/1). These results suggest that the effect of L-alanine in cardiac myocytes occurs through the interaction 

with an intracellular site and that both alanine and pyruvate may play a role in the regulation of glucose transport in these cells. 
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1. INTRODUCTION 2. MATERIALS AND METHODS 

Alanine represents a major gluconeogenic precursor 
for the liver. Numerous lines of evidence indicate that 
this amino acid is specifically released by skeletal [1-4] 
and heart muscle [5] in the fasted state, especially under 
conditions of augmented glucose utilization in these 
tissues [2,6]. We recently found that alanine is, in part, 
responsible for the stimulating effect of partially 
purified samples from a yeast extract on glucose 
transport in isolated cardiac myocytes [7,8]. This obser- 
vation supports the idea that the relevance of alanine in 
carbohydrate metabolism may not be restricted to its 
release from cardiac and skeletal muscles and subse- 
quent captation by the liver in the fasted state, but may 
also involve a direct effect of this amino acid on a 
peripheral tissue under certain conditions. In this con- 
text, it is of interest to note that alanine is taken up (and 
not released) by skeletal muscle in fed rats [3]. 
Moreover, the exercise-induced release of alanine is 
prevented by an increased glucose availability in 
humans [6]. It was further shown that alanine is a readi- 
ly oxidizable substrate in peripheral tissues [9,10]. The 
aim of the present study was to characterize the 
stimulating action of alanine on glucose transport in 
isolated cardiomyocytes. Further, we examined the 
possible involvement of intracellular pyruvate in this ef- 
fect. The data presented here suggest that, in car- 
diomyocytes, the uptake of glucose may be regulated by 
products of intermediary metabolism, like alanine and 
pyruvate. 
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2.1. Chemicals 
3-O-methyl-D-Glucose, phloretin and cytochalasin B were purchas- 

ed from Serva (Heidelberg, FRG); all amino acids and pyruvate were 
obtained from Merck (Darmstadt, FRG); 3-O-[3H]methyl-D-glucose 
and 2-deoxy-D-[~H]glucose were from Amersham (Braunschweig, 
FRG). Silicon oil (Abil AV 200) was from Franken Chemie (Wedel- 
stein, FRG); liquid scintillation fluid (Quickszint 212) was obtained 
from Zinsser (Frankfurt, FRG). Concentrated stock solutions of 
phloretin and cytochalasin B (in dimethylsulfoxide) were prepared as 
appropriate aliquots, stored at - 20°C, and diluted just prior to addi- 
tion to the isolated cardiomyocytes. Final concentrations of 
dimethylsulfoxide were typically 0.02-0.1 °70 in the transport assays 
and did not affect basal transport activity. 
All other chemicals and buffers were freshly prepared immediately 
before use. 

2.2. Isolation of  calcium-resistant cardiomyocytes 
Calcium-resistant, rod-shaped cardiomyocytes from adult female 

Sprague-Dawley rats (180-220 g fed ad libitum) were obtained by a 
modification [11] of a method previously described [12]. These cells 
were characterized by a very low basal (i.e. non-stimulated) glucose 
uptake rate, that was increased 8- to 20-fold increase by insulin (10 
nM) [11]. Prior to the experiments, the isolated myocytes were washed 
3 times with assay medium (6 mM KCI, 1 mM Na2HPO4, 0.2 mM 
NaH2PO4, 1.4 mM MgSO4, 128 mM NaCI, 10 mM Hepes, 1 mM 
CaC12, 2°70 bovine serum albumine, fatty acid free, pH 7.4, 37°C, 
equilibrated with oxygen) and resuspended in the same medium at 2-5 
mg cell protein per ml. 

2.3. Determination of  2-deoxy-D-glucose uptake 
1 ml of washed cell suspension was incubated with 0.5 ml of assay 

medium (basal) or of an appropriate dilution of the amino acid to be 
assayed (or pyruvate), in flat-bottomed 20 ml-vials, at 37°C in a shak- 
ing water bath (180 strokes/min, 5 cm/stroke), for 30 rain. The 
transport assay was then started by adding 70 #1 2-deoxy-D- 
[3H]glucose (DOG; 3 #Ci/ml; final sugar concentration: 1.4-2 #M). 
The samples were incubated in the presence of DOG for an additional 
30 min. Subsequently, sugar uptake was stopped by adding 100 ~1 6.8 
mM phloretin (400 #M final concentration); the samples were quickly 
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vortexed, 400 #l-aliquots immediately taken and placed on top of 2 
ml-centrifuge vials containing 1 ml silicon oil (density 1.03 g/ml) and 
12 #1 of 35% perchloric acid (on the bottom). These aliquots were 
then centrifuged at 10 000 × g for 1 min to separate the cells from the 
less dense incubation medium. The supernatants were removed, the 
tubes cut off and the bottoms (containing the cell pellets) were 
counted in a liquid scintillation counter. Specific, i.e. glucose-carrier- 
mediated DOG uptake was estimated by subtraction of uptake rates 
monitored in the presence of 400 #M phloretin from values measured 
in the absence of this inhibitor. 

2.4. Kinetics of 3-O-methyl-D-glucose (3-OMG) uptake 
175 itl washed cardiomyocytes were incubated in the absence (con- 

trol) or the presence of alanine (1.5 mM) in a total volume of 275 #1 
in flat-bottomed, 4 ml-tubes, for 30 rain at 37°C in a shaking water 
bath (see above). At the end of this preincubation, 50 #1 of a prewarm- 
ed (37°C) solution containing 1.1 #Ci 3-O-[3H]methyl-D-glucose and 
an appropriate amount of unlabelled 3-O-methyl-D-glucose were add- 
ed. The samples were immediately swirled 3-5 times (in about 3 s) and 
shaken for the rest of the assay time (90 s for basal, and 45 s for 
alanine-stimulated cells) in the water bath (37°C). The assay was ter- 
minated by rapidly adding 100 #1 2.6 mM phloretin (600 t*M final con- 
centration) and vortexing the samples 3 times. The cells (of a 300/~l- 
aliquot) were then separated from the incubation mixture as described 
above (DOG-assay). The extent of cell-bound radioactivity at zero 
time was measured in samples pretreated with the specific glucose 
transport inhibitor cytochalasin B (20 #M), in which the assay was 
stopped immediately upon 3-OMG-addition. The carrier-mediated, 
initial transport velocities were calculated by subtracting the uptake 
rates measured in the presence of cytochalasin B (0-420 s) from the 
values obtained in the absence of inhibitor. 

3. RESULTS 

3.1. Effects o f  L-alanine and L-valine on glucose 
transport 

As previously reported [8], L-a lanine  and  L-val ine in- 
crease the rate of  2-deoxy-D-glucose (DOG) uptake  in 
calcium-resis tant  isolated rat cardiomyocytes  1.5- or 
1.3-fold, resp. (Table I). The concen t ra t ion-dependence  
of  these effects is shown in Fig. 1. Ha l f -max imal  
s t imula t ion  was observed at approximate ly  0.2 mmol/1  

Table I 

Effect of L-alanine, D-alanine and L-valine on basal 2-deoxy-D- 
glucose transport and influence of an excess of L-serine on L-alanine- 

induced transport stimulation 

Addition 2-deoxy-D-glucose transport 
rate (%0 of basal) 

None (basal) 100 + 10 
L-alanine (1.5 mM) 151 + 9 
D-alanine (1.5 mM) 92 ___ 11 
L-serine (15 mM) 92 + 7 
L-serine (15 mM) + L-alanine 119 _+ 7 
L-serine (30 mM) 109 _+ 7 
L-serine (30 mM) + L-alanine 102 ___ 15 
L-valine (3 mM) 130 + 12 
L-valine (3 mM) + L-alanine 137 + 13 

DOG transport was measured in cardiomyocytes previously exposed 
(30 min, 37°C) to one or two amino acids, as indicated. For samples 
with both L-serine and L-alanine, the ceils were incubated for 2 min 
with L-serine prior to L-alanine addition. Values represent relative 
uptake (as compared to 100%0 in basal cells). Data are means from 2 
to 3 independent experiments _+ SD (each experiment was done in 
triplicate). 
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Fig. I. Concentration dependence of the effect of L-alanine and L- 
valine on 2-deoxy-D-glucose transport. Data are expressed as percen- 
tage of the maximal effect induced by the corresponding amino acid 
in each experiment; L-alanine ([]) and L-valine (,). Data are means 
(_+SE) from at least 2 separate experiments (each experiment in 

triplicate). 

with a lanine  and  0 .6-0 .7  m m o l / l  with valine. In-  
terestingly,  a lan ine  is effective in a range of  concentra-  
t ions  (0.05-1 mmol/1)  that  corresponds to values 
measured  in p lasma samples of  rats [3,9,13], dogs [14] 
a nd  h u m a n s  [1,2,5,15]. In  contrast ,  the valine concen-  
t ra t ions  necessary to elicit a significant  s t imula t ion  of 
glucose t ranspor t  (0.3-1.5 m m o l / l )  lie above the 
physiological  values in rats [16] and  humans  [2,5,15]. 

Fur ther ,  the effects of  a lanine  and  valine are no t  ad- 
ditive (Table I). No signif icant  changes in basal glucose 
t r anspor t  could be detected in the presence of the other 
b ranched-cha in  a mi no  acids L-leucine or L-isoleucine 
(0 .5-10 mmol/1)  (not  shown).  

3.2. Effects o f  D-alanine on basal glucose transport 
and o f  L-serine on L-alanine-induced stimulation 

We next addressed the quest ion as to whether L- 
a lan ine  has to be taken  up by the cardiomyocytes  to in- 
duce its s t imulat ing effect on  glucose t ranspor t  in these 
cells. The isomer D-a lanine ,  that  does no t  penetrate  in- 
tact  cells (owing to the stereospecificity of  amino  acid 
t r anspor t  systems), had no detectable inf luence on  
D O G  t ranspor t  at a concen t ra t ion  (1.5 m m o l / 1 )  at 

which the na tu ra l  L- isomer  is maximal ly  effective 
(Table  I). As L-serine and  L-a lanine  enter m a m m a l i a n  
cells via a c o m m o n  amino  acid t ranspor t  system (the so- 
called ASC-system; [17]), an  excess of  one of  these 
a m i n o  acids should inhibi t  the uptake  of  the other one. 
As shown in Table  I, a large excess of  L-serine (15-30 
m m o l / l )  suppressed the effect of  1.5 m m o l / l  L-alanine.  

3.3. Kinetics o f  3-O-methyl-D-glucose transport in 
alanine-stimulated cardiomyocytes 

To fur ther  characterize the act ion of  a lanine  on 
glucose t ranspor t ,  we determined the kinetic parameters  
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Fig. 2. Hanes plot of 3-O-methyl-D-glucose transport kinetics in basal 
and alanine-stimulated cells. The cytochalasin-B-sensitive, initial rate 
of 3-O-methyl-D-glucose uptake was determined at the concentra- 
tions indicated, in the absence (basal, B) or in the presence of 1.5 mM 
L-alanine (m). Each point represents the mean of at least 2 separate 

experiments (n = 7 in each experiment). 

of  the uptake of  the non-metabolizable glucose analog 
3-O-methyl-D-glucose (3OMG) in basal (i.e. non- 
stimulated) and alanine-stimulated cardiomyocytes.  
Vmax and Km values were calculated by linear regression 
of  data  (initial 3OMG uptake) t ransformed in a Hanes 
plot (Fig. 2). Alanine (1.5 mmol / l )  raised the maximal 
t ransport  velocity f rom 44.6 (basal) to 81.5 pmol 
30MG. s - 1. mg pro te in -  1, without significantly affec- 
ting the gm (12.18 in basal vs 12.84 mmol/1 in alanine- 
treated cells). 

3.4. Effect of  pyruvate on basal and alanine-stimulated 
glucose transport 

In order to investigate the possible involvement of  in- 
tracellular pyruvate in the stimulation observed upon 
alanine addition, we tested the effect of  pyruvate (1.5 
mmol / l )  (that is readily taken up by cardiac tissue; [18]) 
added alone or in combinat ion with alanine (1.5 
mmol / l ) ,  on the uptake of  2-deoxy-D-glucose. The data 
presented in Table II clearly show that pyruvate not on- 

Table II 

Effect of pyruvate on basal and alanine-stimulated 2-deoxy-D-glucose 
transport 

Addition 2-deoxy-D-glucose transport 
rate (07o of basal) 

None (basal) 100 + 11 
L-alanine (1.5 mM) 140 + 7 (**) 
Pyruvate (1.5 mM) 81 _+ 9 (*) 
Pyruvate + alanine 79 + 8 (*) 

DOG transport was measured in cardiomyocytes previously exposed 
(30 rain, 37°C) to the agents, as indicated. Data represent relative 
transport, as compared to 100°70 basal. Values are means from 2 in- 
dependent experiments. (*) Values are significantly different from 
basal at the 0.507o level; (**) at the 0.1070 level (calculated with Stu- 
dent's t-test). 

ly significantly inhibits basal DOG transport  but also 
prevents the stimulating effect of  alanine. Further,  
alanine did not produce a detectable change in the total 
intracellular pyruvate content (not shown). 

4. DISCUSSION 

The role of  alanine, released by skeletal [1-4] and 
heart [5] muscles in the fasted (but not in the fed state; 
[3]), as an essential precursor for hepatic 
gluconeogenesis is well-established [19]. Our observa- 
tion that this amino acid stimulates glucose t ransport  in 
cardiac myocytes (a step that is likely to be limiting for 
glucose metabolism) possibly reflects a new regulatory 
mechanism in carbohydrate  metabolism of  a peripheral 
tissue. 

The fact that alanine is effective at concentrations 
that  correspond to the physiological range in the plasma 
of  mammals  (Fig. 1 and [1-3,5,13-15] supports the idea 
that  the effect we now observed may be of  physiological 
relevance. Interestingly, it was recently reported that 
alanine inhibits the uptake and oxidation of  glucose in 
isolated brown adipocytes [20]. This and our finding in- 
dicate that alanine may exert tissue-specific effects. 

The action of  valine was less pronounced than that of  
alanine (Table I). Moreover,  valine only produced an 
increase in glucose transport  at concentrations that 
markedly exceed the plasma values measured in rats 
[16] and humans [2,5,15]. The finding that alanine and 
valine do not act additively (Table I), along with the 
fact that branched-chain amino acids are the major  
source of  nitrogen for pyruvate transamination 
[4,21-24] suggest that the effect of  valine may be secon- 
dary to alanine formation in myocytes. However,  the 
other branched-chain amino acids leucine and 
isoleucine failed to induce a significant stimulation of  
glucose t ransport  in cardiomyocytes (unpublished 
observation).  Thus, the metabolic basis of  the valine ef- 
fect remains to be clarified. 

The results presented in Table I further demonstrate 
that alanine has to be taken up by the cardiomyocytes 
to elicit its effect. However,  the alanine-induced 
stimulation is unlikely to involve the sodium influx con- 
comitant  to the alanine uptake, since serine, that is 
taken up via the same sodium-dependent amino acid 
carrier as alanine [17], had no effect on glucose 
t ransport  (Table I). 

The fact that alanine alters the Vmax, but not the gm, 
of  glucose transport  (Fig. 2) makes a direct interaction 
of  this amino acid with glucose carriers unlikely, since 
a higher maximal transport  velocity must involve either 
a larger number  of  functional carriers in the plasma 
membrane  or a higher intrinsic activity of  these carriers. 
Assuming that a high alanine uptake rate may also lead 
to an increase in the intracellular pyruvate concentra- 
tion, we directly assayed the effect of  pyruvate addition 
on glucose transport .  Surprisingly, this metabolite 
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significantly inhibited the uptake of glucose and com- 
pletely suppressed the stimulating action of alanine 
(Table II). Furthermore, no change in the total in- 
tracellular pyruvate concentration could be detected 
upon alanine addition (not shown). These findings are 
compatible with two types of explanations. The first 
possibility is that alanine and pyruvate modulate 
glucose transport independently, the former being 
stimulatory and the latter inhibitory. However, the ad- 
vantage of this dual regulation is not easily conceivable 
since concentration changes of one of these metabolites 
should readily affect the concentration of the other one, 
owing to the high alanine aminotransferase (EC 
2.6.1.2.) activity present in muscle tissue [25]. 

Alternatively, alanine and pyruvate may modulate 
some kind of metabolic signal via a common pathway, 
but in an antagonistic manner. They may, for instance, 
influence the flux through the cytosolic malate 
dehydrogenase (EC 1.1.1.37.) via transamination reac- 
tions involving the alanine aminotransferase and the 
aspartate aminotransferase (EC 2.6.1.1.) [4]. Thus, 
alanine would raise and pyruvate would lower the 
cytosolic NADH/NAD ratio. In adipocytes, alanine 
was indeed shown to increase the cellular glutamate and 
aspartate and decreases the malate and a-ketoglutarate 
levels [26]. Changes in the cytosolic redox potential 
may, in turn, represent a signal for glucose transport 
regulation. 

Further investigations will be required to examine 
these different possibilities. Nevertheless, our present 
results suggest that, in cardiac muscle cells, some form 
of metabolic coupling may exist between pyruvate and 
alanine, on one hand, and glucose transport, on the 
other hand. 
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