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The genome of influenza A viruses consists of eight segments of single-stranded, negative-sense RNA
that are encapsidated as individual rod-shaped ribonucleoprotein complexes (RNPs). Each RNP con-
tains a viral RNA, a viral polymerase and multiple copies of the viral nucleoprotein (NP). Influenza A
virus RNPs play important roles during virus infection by directing viral RNA replication and
transcription, intracellular transport of the viral RNA, gene reassortment as well as viral genome
packaging into progeny particles. As a unique genomic entity, the influenza A virus RNP has been
extensively studied since the 1960s. Recently, exciting progress has been made in studying the
RNP structure and its assembly, leading to a better understanding of the structural basis of various
RNP functions.

� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

Influenza A viruses, the causative agents of both epidemic and
pandemic flu, are enveloped, single-stranded, negative-sense RNA
viruses [1]. The genome of the influenza A virus is segmented into
eight RNA molecules, each folded into a rod-shaped, double-helical
ribonucleoprotein complex (RNP). Each RNP contains a viral RNA, a
heterotrimeric viral polymerase (consisting of PA, PB1, and PB2)
and multiple copies of the viral-encoded nucleoprotein (NP) that
bind viral RNA in a stoichiometric manner [2–5].

As shown in Fig. 1, the RNPs of the influenza A virus play a
crucial role during the virus infection cycle. Influenza A virus rep-
lication takes place in the cell nucleus. During infection, influenza
A virus enters the host cell by clathrin-mediated endocytosis, and
after viral membrane fusion occurs in the endosome, releases viral
RNPs into the cytosol. Viral RNPs enter the host nucleus by active
transport. In the nucleus, the RNPs from the infecting virus serve
as active templates for the synthesis of viral mRNA as well as
anti-genomic, complementary RNAs (cRNA). The cRNAs are
replication intermediates that direct the synthesis of nascent virion
RNAs (vRNAs). Newly translated NP, PB1, PB2 and PA are imported
back to the nucleus. Nascent cRNAs and vRNA are both encapsidat-
ed into RNP structures but viral mRNAs are not. Two other
influenza virus proteins, M1 and NEP, facilitate RNP nuclear export.
In the cytosol, influenza virus RNPs are transported to the cytoplas-
mic membrane where they are selectively packaged into budding
virions.

As a complex genomic entity with unique structure and
function, the influenza A virus RNP has been a subject of extensive
study since the 1960s. It is clear that the structure of the RNP di-
rectly impacts our understanding of influenza virus biology,
including RNA replication and transcription; intracellular traffick-
ing of the viral genome; selective packaging of the vRNPs; and gene
reassortment, etc. Recently the influenza virus field has witnessed
exciting progresses from studies of the RNP, and a coherent model
for RNP structure and assembly is now emerging, as discussed
below.

2. Overall structure and properties of the RNP

RNPs purified from virions have been examined by electron
microscopy (EM) in great detail [2,6]. Back in the 60s and 70s, it
was found that isolated RNPs were rod-shaped structures that were
about 10 nm in width. Statistically, purified RNPs could be catego-
rized into three length groups: 90–110 nm, 60–90 nm, and 30–
50 nm. Considering that RNPs have a uniform diameter, the length
of an RNP likely correlates with the size of its associating vRNA. The
rod-shaped RNPs are structurally flexible and appeared to adopt a
right-handed, double-helical structure in negative-staining EM
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Fig. 1. The influenza A virus life cycle. The RNPs are represented by helical hairpins, with the polymerase subunits (red, brown, and green) and NP (cyan) shown in different
colors. In the nucleus, the viral transcription and replication processes are depicted according to model proposed by Jorba et al. [62]. The figure is modified from Das et al. [43].
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[2]. Immuno-EM indicated that the viral polymerase complex was
bound at one end of the helical rod [7]. Interestingly, RNPs were
able to maintain an intact structure even in the absence of vRNA,
suggesting that NP plays a major role in the overall structural orga-
nization and stabilization of the RNP [5].

Over the years various biochemical and biophysical techniques
have been used to probe the structure of the influenza RNP. The 50

and 30 end of each vRNA contain partially complementary se-
quences that are 12–13 nts in length [8,9]. These sequences, which
are highly conserved among the eight viral gene segments, provide
specific binding sites for the influenza heterotrimeric polymerase
complex [10–16]. The influenza A virus RNPs unwind under high/
low salt conditions, giving rise to closed circular structures [9].
Chemical probing experiments indicate that vRNA binds to NP with
its phosphate backbone and that the nucleotide bases are exposed
to solvent [17]. vRNAs associated with RNPs can be displaced by
polyvinylsufate (PVS), a negatively charged polymer [18]. Further-
more, the vRNAs in the influenza virus RNPs were readily digested
by RNase treatment [19], suggesting that very little protection was
provided by the bound NP. These findings indicate that the RNPs of
the influenza A virus adopt a unique structure compared to the
nucleocapsids from the non-segmented, negative-sense RNA
viruses.

3. Structures of the RNP protein components

Due to its inherent structural flexibility, high resolution struc-
tural analysis of intact RNPs is challenging. Nevertheless, X-ray
structures of some of the RNP protein components have become
available in recent years: NP and a number of protein fragments
derived from the viral polymerase complex. The influenza A virus
NP is a multifunctional protein that has been shown to interact
with a number of viral (e.g. PB1, PB2, M1, etc.) and host proteins
(e.g. RAF-2p48/UAP56 and Tat-SF1, etc.) [20]. One of the NP’s pri-
mary functions is to coat viral RNA to facilitate its folding into a
double-helical RNP structure. To date, crystal structures of three
influenza virus NPs are available [21–23], all forming ring struc-
tures in the absence of RNA. Although their oligomers vary in size,
all three NP proteins assume the overall shape of a crescent with a
head and a body domain (Fig. 2a). In between the two domains is a
deep groove enriched for basic amino acid residues and thus may
function as the RNA-binding site. It has been shown the mutation
of several arginine residues from the two flexible loops within the
groove resulted in dramatic reduction of the RNA binding affinity
of influenza A virus NP [22]. Oligomerization of the NP is mediated
by an extended tail-loop structure (i.e. aa402–428 in the influenza
A virus NP) located at the back of each NP molecule [21,22]. Loss of
NP oligomerization due to amino acid substitutions in the tail loop
resulted in NP mutants unable to support viral gene expression in
mini-genome assays [24]. Drug compounds that promote aberrant
NP aggregation can effectively inhibit influenza A virus replication
in cell cultures, suggesting that NP is a valid target for anti-influ-
enza therapy [25,26].

The influenza virus polymerase is a heterotrimeric complex
consisting of PA, PB1 and PB2, with multiple enzymatic and ligand
binding activities that allow the synthesis of capped, poly-adeny-
lated mRNAs during transcription as well as full-length genomic/
anti-genomic RNAs during replication [1]. The known X-ray struc-
tures of the influenza A virus polymerase include: the 25 kD N-ter-
minal PA domain which displays the endonuclease activity needed
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Fig. 2. The influenza A virus RNP structure. (a) Crystal structure of the influenza A virus NP. The three subunits of the NP trimer are colored differently [21]. (b) Cryo-EM
reconstruction of the mini-RNP [48,50]. The NP crystal structure from (a) is fitted into the electron density. The arrow points to adjoining densities that are presumably made
of vRNA and the NP oligomerization tail loop. (c) Cryo-EM reconstruction of a double-helical RNP by Arranz et al. [54]. The viral polymerase complex is located at the bottom
end of the RNP and is shown in green and orange. The two opposite-running NP-RNA strands are colored differently in blue and pink. The NP-RNA turning loop on the top end
of the RNP is highlighted in dark green. (d) Helical stem of the RNP from (c) fitted with NP crystal structure and modeled with RNA (in yellow). (e) Cryo-EM reconstruction of a
RNP by Moeller et al. [55]. On the right is a model showing the RNP organization. The viral polymerase is highlighted in red. (f) Central filament region from (e) fitted with NP
crystal structure protomers. Arrows indicate RNA polarity. (b), (c-d) and (e-f) are taken/modified with permission from Coloma et al., Arranz et al., and Moeller et al.,
respectively [50,54,55].
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for cap-snatching [27,28], the 55 kD C-terminal PA domain that
mediates the PA-PB1 interaction [29,30], the PB2 aa318–483 do-
main that binds to the 50 pre-mRNA cap [31], the PB2 aa538–676
domain involved in host adaptation [32], and the PB2 C-terminal
NLS-domain (aa686–757) that binds cellular importin [33]. PB1,
the largest subunit of the polymerase, hosts the polymerase cata-
lytic active site [34–36] as well as specific binding sites for the con-
served 50 and 30-vRNA termini [37]. To date, the only known
structures of PB1 are the N-terminal fragment (aa1–25) [38,39]
which interacts with PA and the C-terminal fragment which forms
a three helical bundle (aa678–757) interacting with the N-termi-
nus of PB2 [40]. The details of these structures can be found in re-
views elsewhere [41–43].

The crystal structures of the influenza A virus polymerase do-
mains/fragments allow structure-based design and optimization
of new antiviral compounds. For instance, a recent structural study
showed that several known endonuclease inhibitors, including four
diketo compounds and a green tea catechin, bind to the endonucle-
ase active site of the PA protein [44]. All these inhibitors chelate
the two critical manganese ions in the active site of the enzyme,
although some differences are noted in the overall ligand ordina-
tion of these compounds. Further optimization of such endonucle-
ase inhibitors may lead to potent drugs targeting the cap-snatching
endonuclease activity of influenza virus polymerase. Another
promising approach to inhibit the influenza A virus replication is
to disrupt the assembly of the viral heterotrimeric polymerase
complex. It has been shown that short peptides derived from the
N-termini of PB1 and PB2, which target the PA-PB1 and PB1-PB2
interaction interface respectively, exhibited varying levels of effec-
tiveness in blocking the viral polymerase activity and growth of the
virus [45,46].

4. RNP structure

The first three-dimensional structure of the influenza A virus
RNP that came to light is that of an artificial mini-RNP [47–50]
(Fig. 2b). To circumvent the structural flexibility problem, a mini-
RNP was generated from in vivo amplification by expressing the
three polymerase subunits, NP, and a 248 nt model vRNA contain-
ing the highly conserved terminal sequences [48]. The mini-RNP is
more structurally rigid compared to the native RNPs, thus allowing
cryo-EM reconstruction to �12 Å resolution. Cryo-EM reconstruc-
tion of the mini-RNP shows a closed ring structure consisting of
nine NP molecules, with a copy of the viral polymerase attached
to the outer edge of the otherwise symmetric ring [50]. The viral
polymerase adopts a compact shape and simultaneously interacts
with two adjacent NP molecules [50]. Each NP molecule shows a
two-domain morphology that agrees with previously determined
NP crystal structures [21,22]. vRNA cannot be readily discerned
at this resolution, but it presumably constitutes some of the
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adjoining densities that connect neighboring NP molecules. Due to
the limited resolution, the boundaries between the three polymer-
ase subunits were not obvious. Using engineered fusion tags and
monoclonal antibodies, Area et al. was able to map the rough loca-
tion of PA, PB1, and PB2 in the polymerase complex [49]. It was
found that the polymerase contacts with the two NP monomers
via the PB1 and PB2 subunits [48,50], consistent with previous bio-
chemical studies [51,52]. The RNP-associated polymerase shows
similarities in overall structure compared to the EM reconstruction
of a free polymerase [49,53], but it is also clear that some confor-
mational changes have taken place upon the interaction with NP
and/or the vRNA template.

In an exciting development, cryo-EM reconstructions of authen-
tic RNPs were reported by two research groups late last year
(Fig. 2c–f) [54,55]. The RNP reconstruction reported by Moeller
et al. used RNPs generated by in vitro expression of the four RNP
proteins (i.e. PA, PB1, PB2 and NP) via transient transfection of a
human cell line in the presence of their respective vRNA segments
[55]. At �20 Å resolution, the final model confirms that the RNP
adopts a double helical structure with two anti-parallel strand
leading to and away from the polymerase that is located at one
end of the RNP (Fig. 2c, d). The double-helical stem region shows
a rise between two neighboring NP of 32.6 Å with 4.9 NP molecules
per turn. The other cryo-reconstruction of the influenza A virus
RNP was reported by Arranz et al., using native RNPs purified from
virions [54]. The structure also shows a double-helical stem with
major and minor grooves (Fig. 2e, f). The rise step between adja-
cent NPs is 28.4 Å with a rotational angle of 60� and six NPs per
turn on each strand. In both RNP structures, the putative RNA bind-
ing groove of the NP scaffold is exposed on the outer surface of the
RNP. Assuming that the positively charged groove of NP serves as
the RNA binding site, a vRNA was built into the final model. By fol-
lowing a convoluted path,�120–150 nucleotides of RNA are placed
in each helical turn.

To help better understand the structural arrangement of the
influenza A virus RNP, it is useful to draw an analogy with the dou-
ble-helical DNA duplex. Similar to the DNA duplex, the RNP pos-
sesses two types of surface grooves: a major groove that is well
separated, and a minor groove that is maintained by interactions
between NP molecules associated with opposing RNA strands.
While cohesion between the two anti-parallel strands in a DNA du-
plex is maintained by base pairing, the interaction between the
two opposing arms of an RNP hairpin is solely mediated by the
NP. Interactions between adjacent NP molecules on the same
RNA strand are facilitated by the extended tail loop. The double-
helical RNP is �15 nm wide and �65 nm long for the second small-
est gene segment (�1000 nts long) of the influenza A virus [54].

It is also important to note that the two models by Moeller et al.
and Arranz et al. exhibit significant variations in helical parameters
and NP orientations. Using crystal structure docking, Arranz et al.
proposes that the NP molecules from opposing strands contact
each other through their body domains at a region near the disor-
dered N-terminus of the NP structure. Moeller et al., however, sug-
gests that the RNP helix is stabilized by the NP-RNA strand
interacting with the opposing strand near the NP head domains.
The most likely cause of the model difference is likely due to the
different handedness of the two reconstructions, with Arranz
et al. showing a left-handed helix and Moeller et al. showing a
right-handed helix (Fig. 2d, f). It is expected that the modest reso-
lution, rotational freedom of the NP molecules, and the source of
RNP samples (viral particles vs. cells) may also contribute to some
inter-model variations as well. It is worth mentioning that Ye et al.
recently reported a NP dimer crystal structure with a dimer
interface that does not involve the tail loop [24]. Mutational
analysis indicated that the dimer interface is biologically relevant,
suggesting a possible role in RNP assembly. Comparing the NP
dimer structure with the RNP reconstructions may help to inter-
pret interactions made between the two opposing NP-RNA strands.

The two cryoEM reconstructions of the RNP also offer a new
look at the viral polymerase. Both Arranz et al. and Moeller et al.
located the viral polymerase at the open end of the RNP hairpin,
simultaneously interacting with both the 50 and 30-ends of the
vRNA [54,55]. The closed end of the RNP hairpin contains a small
loop formed by a curved array of three to eight NP molecules. It
was proposed by Moeller et al. that the PA C-terminal domain is
structurally flexible and may help to feed the vRNA template into
the polymerase active site, based on structural homology between
the PA C-terminal domain and the N-terminal domain of the reovi-
rus RNA polymerase [38,55,56]. Arranz et al. observed that the
RNP-associated polymerase samples two alternative conforma-
tions, but higher resolution structural information is needed to ad-
dress the biological relevance of this distribution and the possible
implications.

5. RNP replication and transcription

The polymerase complex of the influenza A virus is the core
machinery for viral RNA replication and transcription [1,57]. Viral
RNA replication is primer independent, but transcription initiation
requires short, 10–13 nts long, capped RNA fragments snatched
from host pre-mRNAs. The termination process for viral RNA repli-
cation and transcription is also different. Viral RNA transcription
prematurely terminates at a polyU tract �25 nts away from the
end of the viral template, a which point the polymerase engages
in repetitive copying of the polyU sequence for the synthesis of a
polyA tail. In contrast, during replication the viral polymerase is
able to read through the polyU, resulting in a faithful copy of the
entire template.

The new RNP structures provide insights into our understand-
ing of influenza virus transcription and replication [54,55]. As the
RNP structure is predominantly maintained by NP and the bound
RNA is fully solvent exposed, the viral polymerase moving along
the RNA template during viral RNA synthesis should result in little
or only local disruption in the double-helical hairpin structure.
During infection, viral mRNAs were detected immediately, but
cRNAs were detectable only after viral protein synthesis started
[58]. Viral RNA replication requires soluble NPs for the elongation
of nascent RNA chains, as a polymerase-RNA complex can only
synthesize small-sized RNAs if NP is not present [59–61]. Several
models, including the template modification model, the polymer-
ase modification model and the stabilization model, have been pro-
posed to explain NP’s role in replication and how the transcription
and replication activities of the viral polymerase appear to occur
during different phases of virus infection [41]. These models, which
are not necessarily mutually exclusive, entail NP binding to viral
polymerase, viral template RNA and product RNA, respectively.

Recently, it has been demonstrated that the polymerase mole-
cules catalyze transcription and replication are of different origins
[62]. By performing an in vivo complementation assay using mu-
tated polymerase defective in either replication or transcription,
Jorba et al. proposed a model in which the transcription takes place
in cis – via the same polymerase that is part of the RNP; whereas
the replication occurs in trans – with exogenous polymerases syn-
thesizing the RNA and mediating the assembly of progeny RNP
[62]. According to the model, viral replication starts with the bind-
ing of a second polymerase to the polymerase on the template, and
this binding would allow the second polymerase to access the 30-
end of the template RNA to initiate RNA synthesis. As the new
RNA is synthesized, a third polymerase, or a second exogenous
polymerase, binds to and protects the 50-end of the new RNA,
and possibly recruits NPs for the new RNP assembly. However,
contradictory evidence by Vreede et al. showed that cRNA can
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accumulate in the beginning of infection if NP and a catalytically-
inactive polymerase are provided to protect the RNA from degrada-
tion, suggesting that replication can also occur in cis [63]. There-
fore, more evidence is needed to elucidate the mechanism for
influenza viruses to replicate their genome.

6. RNP assembly in vivo

Newly synthesized NPs are imported back into the host cell nu-
cleus to promote viral RNA replication and RNP assembly [60,64].
As NP binds RNA non-specifically and has a strong tendency to
self-polymerize, it is important to keep NP in a soluble, encapsida-
tion-competent state prior to RNP assembly. Unlike non-seg-
mented, negative-sense RNA viruses, the influenza A virus does
not encode viral proteins that are known to interact with NP and
prevent its self-oligomerization. It has been proposed that phos-
phorylation may play an important role in regulating the self-poly-
merization and RNA binding activities of the influenza A virus NP
[65–67]. Additionally, a number of host factors have been found
to be important for influenza virus replication and RNP assembly
[68–72]. For example, RAF-2p48/UAP56 and Tat-SF1 assist the for-
mation of the vRNA-NP complex, possibly by functioning as chap-
erones to suppress the non-specific aggregation of NP [69,72].
Interestingly, Ye et al. recently reported that the self-oligomeriza-
tion activity of NP is weak in the absence of RNA, but the interac-
tion is kinetically stable once NP oligomerizes [24]. Therefore, it is
possible that NPs remains monomeric until they encounter v/c
RNAs in the cell nucleus.

RNP assembly in host cells requires only four viral proteins: NP,
PA, PB1 and PB2. As shown by Moeller et al., in vivo amplification
of vRNAs with only these four proteins co-expressed in transfected
cells produced rod-shaped RNPs with a regular helical symmetry
[55]. Therefore, although M1 and NEP are needed for RNP export
from the nucleus (see below), they do not play major roles in either
the assembly or structural maintenance of the RNP. This feature is
again different from some of the non-segmented, negative-strand
RNA viruses (i.e. rhabdoviruses), in which the matrix protein plays
a major role in organizing the helical nucleocapsids by simulta-
neously interacting with N proteins from two adjacent helical
turns [73].

It is likely that NP initiates viral RNA replication via interaction
with the polymerase (possibly PB1 or PB2), during which process
the RNA-binding ability of NP is not required [51,52,74]. Therefore,
the NP-polymerase interaction should facilitate the initial recruit-
ment of NPs to newly synthesized vRNAs. Further vRNA encapsida-
tion is likely stimulated by cooperative NP-RNA interactions [66].
Tarus et al. reported that in vitro NP oligomerization is a slow pro-
cess that depends on the RNA length, with the oligomerization rate
increasing drastically as the RNA length increases [75]. On average,
each NP is associated with �22–28 nts of RNA in the RNPs [47,48].
The viral polymerase is significant in maintaining the supercoiled
RNP structure, since single-stranded RNA was observed when the
polymerase was removed from the RNP [9].

It is unclear when the polymerase-NP-RNA complex collapses
into the supercoiled, double helical RNP structure during replica-
tion. The fact that mini-RNPs consisting of nine NP molecules only
form circularly shaped rings suggests that the condensation of NP-
RNA polymers into double-helical structures does not occur until
nascent RNPs reach certain sizes. Moeller et al. reported the obser-
vation of ‘‘branched’’ RNPs and suggested that the branches are
made of partially replicated, nascent RNPs budding from the full-
length RNP templates [55]. Using immuno-labeling, they showed
that a second copy of the polymerase is located at the branching
site in some RNPs. The observation of a second polymerase mole-
cule is consistent with the notion that template RNPs are replicated
in trans by free polymerase complexes and not by the polymerase
molecule bound to the parental RNP [62]. Although ‘‘budding’’
RNPs sounds like an attractive interpretation for these branched
RNP structures, whether they are truly replication intermediates
or perhaps misfolded RNPs still awaits further verification. One po-
tential concern is that the length of the budding RNPs does not
seem to correlate with the location of the RNP branches [55].

7. RNP assembly in vitro

In the late 1980s, it was reported that in vitro transcribed
vRNAs, when mixed with NP and polymerase purified from infec-
tious particles, could be replicated in vitro to produce full-length
RNA copies [76,77]. Palese and colleagues showed that when these
in vitro encapsidated vRNAs were introduced into permissive cells
coinfected with a helper virus, they could be amplified, expressed,
and packaged into progeny virions, thus leading to the develop-
ment of the first-generation influenza A virus reverse genetics
[13,78]. For influenza viruses and other negative-stranded RNA
viruses, free vRNAs or cRNAs are not infectious. The observation
that those reconstituted RNPs were replicated in vitro and ampli-
fied in vivo indicates that some RNP-like structures might have
formed. Additionally, attempts to assemble RNP in vitro by mixing
RNA and recombinant NP have also been reported [66,79]. How-
ever, these artificial RNPs may be a poor model to study native
RNP as they do not seem to have the typical rod-shaped morphol-
ogy [66,79]. It would be interesting to find out whether the addi-
tion of both recombinant polymerase and NP to in vitro
transcribed vRNA would produce RNPs that closely resemble those
from infectious particles.

8. Nuclear import and export of RNPs

At the onset of infection, RNPs released from the infecting influ-
enza A virus are actively transported from cytosol into nucleus. It is
not clear whether all eight RNPs are imported to the nucleus as a
large bundle, or if they are separately imported as individual RNPs.
All RNP component proteins contain at least one nuclear localiza-
tion signal (NLS) necessary for nuclear import. Two regions of the
PA protein, residues 124–139, and 186–247, were found to contain
NLSs [80]. For PB1, a NLS was first found between residues 187–
211 [81], but later findings showed that the co-expression of PA
was important for the efficient nuclear import of PB1 [82]. PB2
has a linear NLS with a sequence of 736KRKR739 that was shown
to interact with importin-a in a co-crystal structure [33,83]. Two
NLSs have been identified in the NP sequence. One of these was
a classical bipartite NLS that was found between residue 198 and
216 with a sequence of 198RX13RKTR216 [84]. A non-conventional
NLS (nNLS) with a consensus sequence of 3SQGTKRSYXXM13 was
also identified at the N-terminus of NP [85–87]. Although all com-
ponent proteins of the RNP carry their own NLSs, NP is the major
contributor for RNP import [85,86,88]. By dot blotting and immu-
nogold labeling of vRNPs, Wu et al. showed that the nNLS of the
NP was much more accessible than the classical bipartite NLS,
and that the labeled gold particles showed a regular periodicity
which suggested a regular helical conformation of the RNP [89].
In addition, Cros et al. reported that mutations in the nNLS com-
pletely abolished NP import, and that short peptides mimicking
the nNLS competitively inhibited the nuclear import of the RNP
[90]. These findings are consistent with the crystal structure of
NP [21,22], as the nNLS is solvent exposed, structurally disordered,
and can be easily fitted into the substrate binding pocket of impor-
tin-a.

Because influenza A virus assembly occurs at the host cell mem-
brane, newly synthesized RNPs need to be exported out of the nu-
cleus, thus traveling in the opposite direction compared to their
parental RNPs. No nuclear export signal (NES) has been found in
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Fig. 3. Specific packaging of the influenza A virus RNP. (a) Linkages among the eight RNPs in a virion [110]. A 0.5 nm-think tomogram is shown with the eight RNPs
highlighted in different colors. Short string-like structures can be seen between the RNPs (arrowheads). (b) 3-D model of a multi-segment RNP complex [110]. The four long
RNPs are shown in red, while the four shorter ones are shown in grey. (c) Budding (left, middle) and mature (right) virions [110]. Red curves in the left and middle columns
indicate the membrane region where viral spike proteins are present. Shown below are schematic diagrams of the RNP packaging process, Scale bar, 100 nm. (a–c) are taken
from Noda et al. with permission [110].
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the component proteins of the RNP. For RNP export, two other
influenza proteins, M1 and NEP, are required [91–93]. The C-termi-
nal domain of M1 is responsible for interaction with RNP [94], and
M1-binding to the RNP likely helps to mask the NLSs on the RNP.
Meanwhile, M1 can directly interact with the viral protein NEP
which possesses a NES signal [91]. The RNP-M1-NEP complex is
recognized by the chromosome region maintenance 1 (CRM1) pro-
tein, which mediates the nuclear export of NES-containing protein/
complexes from the nucleus [95]. The nuclear export of RNP also
requires viral activation of the cellular Raf/MEK/ERK (mitogen-acti-
vated protein kinase (MAPK)) signaling cascade that is activated
late in the infection cycle, as block of the cascade resulted in retar-
dation of RNP export and reduced titers of progeny virus [96]. It
has been shown that membrane accumulation of the influenza A
virus hemagglutinin triggers activation of the MAPK cascade and
induces RNP export. This may represent an auto-regulative
mechanism that coordinates the timing of RNP export with virus
budding [97].

9. Specific RNP packaging

Early evidence of selective packaging came from the defective-
interfering influenza RNAs (DI RNAs) [98,99]. DI RNAs were shown
to interfere with the incorporation of some specific gene segments
while sparing others, suggesting that each segment contains a
unique packaging signal. Later, further evidence was provided by
reverse genetics, which revealed that all eight gene segments
possess such packaging signals for efficient virion incorporation
[100–108]. EM studies have also provided strong evidence for
selective packaging (Fig. 3). The observation of the distinctive
‘‘7 + 1’’ pattern of the eight RNPs suggests that specific inter-RNP
interactions maintain such a conformation [109] (Fig. 3a). Recent
evidence by electron tomography showed that the RNPs of the
‘‘7 + 1’’ bundle are actually different, with four longer RNPs and
four shorter RNPs of significantly different lengths, consistent with
the length distribution of the eight influenza RNA segments
[110,111] (Fig. 3b). Electron tomography studies also revealed that
the eight RNPs are aligned at the budding tip and interconnect with
each other to form a supra-molecular assembly (Fig. 3c). With fluo-
rescence in situ hybridization (FISH) analysis at the single-virus
particle level, Chou et al. confirmed that the eight unique RNPs
are incorporated into progeny virions by a selective packaging
mechanism [112]. Co-localization tests demonstrated that most
of the virus particles have incorporated at least one of the eight
RNPs. The exact copy number of each RNP was determined by com-
paring the photo-bleaching profiles of probes against the HA RNA
segment (i.e. the RNA segment encoding the haemagglutinin pro-
tein) of the wild-type and a recombinant virus carrying two copies
of the HA segments. Their results demonstrated that most virus
particles contain only one copy of each of the eight RNP complexes.

The sequence-specific signals for influenza genomic packaging
have been discovered on each of the eight genomic RNAs [108].
The ‘‘signal regions’’ cover the untranslated regions (UTRs) of both
termini as well as the adjacent coding sequences of the open read-
ing frame (ORF). Many approaches have been employed to map the
regions containing the packaging signals. The earliest results were
obtained from experiments on DI RNAs [4,98,113–117], which are
shorter RNAs derived from the wild-type RNAs with certain
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region(s) deleted, while still maintaining the abilities to be repli-
cated and packaged. Examination of these DI RNAs showed that
the UTRs as well as the terminal coding sequences are well pre-
served in the DI RNAs, suggesting a significant role in genomics
packaging. Later, reverse genetics experiments confirmed that all
eight influenza vRNAs have bipartite packaging signals located at
the 50 and 30 termini [100,102–105,118,119]. It was demonstrated
that the UTRs together with the terminal coding regions can signif-
icantly enhance the packaging efficiency than the UTRs alone, sug-
gesting that the coding sequences also contribute to genomic
packaging [100]. In addition, codons at the terminal coding regions
were found to have synonymous variation rates significantly lower
than expected, indicating that the RNA primary sequence is impor-
tant and thus selectively preserved [120]. Indeed, synonymous
nucleotide mutations within the packaging signal regions produce
recombinant viruses with reduced replication efficiencies
[102,106,107,119–122].

The localization of the packaging signals near the 50 and 30 ter-
mini of the vRNAs suggest that these RNA sequences should be
mapped to the double-helical RNPs near the end where the viral
polymerase is located. Using electron tomography 3D-reconstruc-
tions, Fournier et al. show that the eight vRNPs contact each other
at the budding tip of the influenza A virus particles [111]. This con-
tact region is thick enough to accommodate all described packag-
ing signals. They also demonstrated that in vitro all vRNAs are
involved in a single interaction network, with each vRNA segment
interacting with at least one other vRNA partner. Fournier et al.
thus suggests that the RNPs are likely held together by direct
base-pairings between packaging signals. This model raises an
intriguing question as to how the packaging signals are presented
on the surface of the RNPs. Is vRNA completely denatured by tight
wrapping around the NP scaffold, or perhaps some NP-free RNAs
exist in the RNP to allow vRNA-vRNA interactions? If there is no
NP-free RNA in the RNP, is vRNA able to temporarily dissociate
from the NP scaffold during selective RNP packaging? Although
packaging signals are identified in all eight vRNAs, much still needs
to be learned about the molecular details of their interaction.
10. Summary

Although much has been learned about the structure and func-
tion of the influenza A virus RNP in recent years, many long-stand-
ing questions remain unanswered. For instance, does the
polymerase move along the helical structure of RNP during viral
RNA transcription or remain fixed at the terminal end of the RNP
with the RNA template threading into the active site during RNA
synthesis (polymerase moving vs. RNA moving)? How are nascent
RNPs synthesized from the parental RNPs and when do newly syn-
thesized RNPs adopt the double-helical morphology during viral
RNA replication? How does RNP interact with M1 and NEP to
mediate the nuclear export of RNP? Does NP plays any direct roles
in specific RNP recognition? Is RNP-associated RNA completely
denatured or retain secondary structures within the RNP. It is
anticipated that the influenza virus RNP will remain an active area
of research for years to come, and hopefully our improved under-
standing of RNP structure and function will translate to better
methods for influenza prevention and treatment in the near future.
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