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Abstract
In this paper, some fixed point theorems for monotone operators in partially ordered
complete metric spaces are proved. Especially, a sufficient and necessary condition
for the existence of a fixed point for a class of monotone operators is presented. The
main results of this paper are generalizations of the recent results in the literature.
Also, the main results can be applied to solve the nonlinear elliptic problems and the
delayed hematopoiesis models.
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1 Introduction
In the last decades, the fixed point theorems for the contraction mappings have been im-
proved and generalized in different directions. During the extensive applications to the
nonlinear integral equations, there were many researchers to investigate the existence of
a fixed point for contraction-type mappings in partially ordered metric spaces. In ,
Bhaskar and Lakshmikantham [] introduced the notion of coupled fixed point and proved
some coupled fixed point theorems for mixed monotone mappings. Later, Lakshmikan-
tham and Ciric presented a coincidence point theorem for a mapping with g-monotone
property in []. Also, the concepts of tripled fixed point and quadruple fixed point were
introduced by the authors in [] and [], respectively. Meanwhile, they proved the corre-
sponding fixed point theorems. More details on the direction of the coupled fixed point
theory and its applications can be found in the literature (see, e.g., [–]).
In this manuscript, we give a common method to deal with the existence of a coupled

fixed point and the coincidence point for a class of mixed monotone mappings in a par-
tially ordered complete metric space. Indeed, we establish some fixed point theorems for
the monotone operators in the partially ordered complete metric space. Especially, we
present the sufficient and necessary condition for the existence of a fixed point for a class
of monotone operators. Our results improve and generalize the main results in the litera-
ture [–, ].
In the rest of this section, we recall some basic definitions.
Let (X,≤) be a partially ordered set, a subset E ⊂ X is said to be a totally ordered subset

if either x ≤ y or y ≤ x holds for all x, y ∈ E. We say the elements x and y are compa-
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rable if either x ≤ y or y ≤ x holds. It is said that a triple (X,≤,d) is a partially ordered
complete metric space if (X,≤) is a partially ordered set and (X,d) is a complete metric
space. Let � denote all the functions φ : [, +∞)→ [, +∞) which satisfy that φ(r) < r and
limt→r+ φ(t) < r for all r > . We should mention that Agarwal et al. [] considered the
non-decreasing functions φ : [, +∞) → [, +∞) satisfying limn→∞ φn(r) =  for all r > 
and established some fixed point theorems.

Definition . (Bhaskar andLakshmikantham []) Let (X,≤) be a partially ordered set and
F : X → X. The mapping F is said to have the mixed monotone property if F is mono-
tone non-decreasing in its first argument and is monotone non-increasing in its second
argument, that is, for any x, y ∈ X,

x,x ∈ X, x ≤ x ⇒ F(x, y) ≤ F(x, y) and

y, y ∈ X, y ≤ y ⇒ F(x, y) ≤ F(x, y).

Definition . (Bhaskar and Lakshmikantham []) An element (x, y) ∈ X is said to be a
coupled fixed point of the mapping F : X → X if F(x, y) = x and F(y,x) = y.

2 Fixed points theorems for monotone operators
Theorem . Let (X,�,ρ) be a partially ordered complete metric space and let G : X → X
be a monotone non-decreasing operator with respect to the order � on X. Assume that

(i) there is a ϕ ∈ � such that

ρ
(
G(x̃),G(ỹ)

) ≤ ϕ
(
ρ(x̃, ỹ)

)
for each x̃, ỹ ∈ X with x̃ � ỹ; ()

(ii) there exists an x̃ ∈ X such that x̃ �G(x̃);
(iii) either (a) G is a continuous operator, or (b) if a non-decreasing monotone sequence

x̃n in X tends to x̄, then x̃n � x̄ for all n.
Then the operator G has a fixed point in X .

Proof Definite a sequence {x̃n} in X by

x̃n =G(x̃n–) for n = , , . . . . ()

Considering the operator F̃ is non-decreasing monotone for the order � and x̃ � G(x̃),
we have

x̃ � x̃ � x̃ � · · · � x̃n � · · · .

If there exists n such that x̃n = x̃n+, then x̃n = G(x̃n ) and x̃n is a fixed point of G.
Then the result of Theorem . trivially holds.
Suppose now that x̃n 	= x̃n+ for all n. Let an = ρ(x̃n+, x̃n), noting that the sequence {x̃n}

is a non-decreasing sequence in X, we conclude that

an+ = ρ(x̃n+, x̃n+) = ρ
(
G(x̃n+),G(x̃n)

)
≤ ϕ

(
ρ(x̃n+, x̃n)

)
= ϕ(an) < an for n = , , . . . .

http://www.fixedpointtheoryandapplications.com/content/2013/1/134


Wu and Liu Fixed Point Theory and Applications 2013, 2013:134 Page 3 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/134

Thus we obtain that

 < an+ ≤ ϕ(an+) < an+ ≤ ϕ(an) < an.

This implies that both sequences {an} and {ϕ(an)} are convergent. Set limn→∞ an = a. If
a > , noting limt→r+ ϕ(t) < r for all r > , we have

a = lim
n→∞an+ ≤ lim

n→∞ϕ(an) = lim
r→a+

ϕ(r) < a.

This is a contradiction. Thus limn→∞ ρ(x̃n+, x̃n) = limn→∞ an = .
Now, we shall prove that {x̃n} is a Cauchy sequence in X. In fact, by ϕ ∈ �, we can

choose a positive sequence {εm} with limm→∞ εm =  and ε∗
m = sup≤t≤εm ϕ(t) < εm. For

a fixed m, there exists a large enough positive number N satisfying aN ≤ εm – ε∗
m. Let

x̃ ∈ � := {x̃ ∈ X : ρ(x̃, x̃N )≤ εm, x̃N � x̃}, then by the triangle inequality

ρ
(
G(x̃), x̃N

) ≤ ρ
(
G(x̃),G(x̃N )

)
+ ρ

(
G(x̃N ), x̃N

)
≤ ϕ

(
ρ(x̃, x̃N )

)
+ aN < ε∗

m + aN

≤ ε∗
m + εm – ε∗

m = εm.

Also, x̃N � G(x̃N ) � G(x̃). This means that the set � is invariant for the operator G.
Clearly, x̃N ∈ �. Thus x̃N+p ∈ � for all p ∈ Z+. So, the sequence {x̃n} is a Cauchy se-
quence in X. Since (X,ρ) is a complete metric space, there exists a point x̄ ∈ X such
that limn→∞ x̃n = x̄.
Suppose that G is a continuous operator. Then, by definition of {x̃n}, we have

x̄ = lim
n→∞ x̃n = lim

n→∞G(x̃n–) =G(x̄).

Let us assume that the assumption (b) holds, then x̃n � x̄ for all n ∈ Z+. Thus from the
assumption (i), we have

ρ
(
x̄,G(x̄)

) ≤ ρ
(
x̄,G(x̃n)

)
+ ρ

(
G(x̃n),G(x̄)

)
≤ ρ(x̄, x̃n+) + ϕ

(
ρ(x̃n, x̄)

) →  as n→ ∞.

So, ρ(x̄,G(x̄)) = . The proof of Theorem . is complete. �

Let F : X → X be a mapping having the mixed monotone property on X and define the
operator G : X → X by

G(x̃) =
(
F(x, y),F(y,x)

)
for all x̃ = (x, y) ∈ X.

It is easy to see that the coupled fixed points of F is the fixed points of G in X. Also, for
t̃ = (x, y), s̃ = (u, v) ∈ X, we introduce a partial order � in X given by

t̃ � s̃ ⇔ x ≤ u and v ≤ y.

http://www.fixedpointtheoryandapplications.com/content/2013/1/134
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Thus, if F has the mixed monotone property on X, then the operator G is non-decreasing
monotone for the order �. For t̃ = (x, y), s̃ = (u, v) ∈ X, let ρ(t̃, s̃) := d(x,u) + d(y, v), then
(X,ρ) is a complete metric space provided (X,d) is a complete metric space. Then, as a
consequence of Theorem ., we achieve the following corollary.

Corollary . Let (X,≤,d) be a partially ordered completemetric space and let F : X → X
be a mapping having the mixed monotone property on X. Assume that

(i) there is a ϕ ∈ � such that G : X → X satisfying

ρ
(
G(x̃),G(ỹ)

) ≤ ϕ
(
ρ(x̃, ỹ)

)
for each x̃, ỹ ∈ X with x̃ � ỹ;

(ii) there exists an x̃ ∈ X such that x̃ � G(x̃);
(iii) one of (a) and (b) holds:

(a) G is a continuous operator;
(b) if a non-decreasing monotone sequence x̃n in X tends to x̄, then x̃n � x̄ for all n.

Then the operator G has a fixed point in X, that is, there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x).

Let D = {x̃ ∈ X : x̃ and G(x̃) are comparable}, then we have the following theorem.

Theorem. Let (X,≤,d) be a partially ordered completemetric space and let F : X → X
be a mapping having the mixed monotone property on X. Assume that (i) in Theorem .
and one of following conditions holds:
(a) G is a continuous operator;
(b) if a monotone sequence x̃n in X tends to x̄, then x̃n and x̄ are comparable for all n.

Then the operator G has a fixed point in X if and only if D 	= φ. Furthermore, if D is a
totally ordered nonempty subset, then the operator G has a unique fixed point in X.

Proof It is easy to see that all the fixed points of G fall in the set D. Thus if the operator G
has a fixed point in X, then D 	= φ.
We suppose D 	= φ. If the condition (a) holds and x̃ ∈ D, then there are two cases: x̃ �

G(x̃) orG(x̃) � x̃. For the first case, following Theorem ., we claim that the operatorG
has a fixed point in X. For the other case: G(x̃)� x̃, noting the symmetry of the metric,
we see that the formula () holds for ỹ� x̃. Thus

ρ
(
G(x̃),G(ỹ)

) ≤ ϕ
(
ρ(x̃, ỹ)

)
for each x̃, ỹ ∈ X satisfying x̃ is comparable with ỹ.

Constructing the same sequence {x̃n} in X by x̃n =G(x̃n–), for n = , , . . . , we have

· · · � x̃n � · · · � x̃ � x̃ � x̃.

For amini-revise to the proof of Theorem. and resetting� := {x̃ ∈ X : ρ(x̃, x̃N ) ≤ εm, x̃ �
x̃N }, we conclude that the sequence {x̃n} tends to a fixed point of G.
Nowwe assume the condition (b) holds. Similar to the case (a), we see that themonotone

sequence {x̃n} is a Cauchy sequence and denote x̄ as the limit point. Thus x̄ is comparable

http://www.fixedpointtheoryandapplications.com/content/2013/1/134
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with x̃n for all n ∈ Z+. Then we have

ρ
(
x̄,G(x̄)

) ≤ ρ
(
x̄,G(x̃n)

)
+ ρ

(
G(x̃n),G(x̄)

)
≤ ρ(x̄, x̃n+) + ϕ

(
ρ(x̃n, x̄)

) →  as n→ ∞.

Thus the operator G has a fixed point x̄ in X.
Next, we suppose thatD is a totally ordered nonempty subset. It is sufficient to prove the

uniqueness of a fixed point ofG. Let x̃ and ỹ be two fixed points ofG, then x̃ is comparable
with ỹ, G(x̃) = x̃ and G(ỹ) = ỹ. Following the assumption (i), we have

ρ(x̃, ỹ) = ρ
(
G(x̃),G(ỹ)

) ≤ ϕ
(
ρ(x̃, ỹ)

)
< ρ(x̃, ỹ).

Thus ρ(x̃, ỹ) = , that is, x̃ = ỹ. The proof of Theorem . is complete. �

Following Theorem ., we have the next two corollaries.

Corollary . ([], Theorem .) Let (X,≤) be a partially ordered set and suppose there is
a metric d on X such that (X,d) is a complete metric space. Let F : X → X be a continuous
mapping having the mixed monotone property on X . Assume that there exists a k ∈ [, )
with

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
for each x≤ u and v≤ y.

If there exist (x, y) ∈ X such that x ≤ F(x, y) and F(y,x) ≤ y, then there exist (x, y) ∈
X such that

x = F(x, y) and y = F(y,x).

Proof Taking ϕ(r) = kr for r ≥ , t̃ = (x, y), s̃ = (u, v), if t̃ � s̃ then

ρ
(
G(t̃),G(s̃)

)
= d

(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

)
≤ k

[
d(x,u) + d(y, v)

]
= ϕ

(
ρ(s̃, t̃)

)
.

Thus Corollary . is an immediate consequence of Theorem .. �

Corollary . ([], Theorem .) Let (X,≤) be a partially ordered set and suppose there is
ametric d on X such that (X,d) is a complete metric space.Assume that X has the following
property:

(i) if a non-decreasing sequence xn → x, then xn ≤ x for all n;
(ii) if a non-increasing sequence yn → y, then y≤ yn for all n.

Let F : X → X be amapping having themixedmonotone property on X.Assume that there
exists a k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
for each x≤ u and v≤ y.

http://www.fixedpointtheoryandapplications.com/content/2013/1/134
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If there exist (x, y) ∈ X such that x ≤ F(x, y) and F(y,x) ≤ y, then there exist (x, y) ∈
X such that

x = F(x, y) and y = F(y,x).

Proof It follows from Theorem . immediately. �

Let (X,‖ · ‖) be a real Banach space and let K be a cone. The relation x ≤ y holds if and
only if y – x ∈ K . Denote K+ = K \ {θ} and Kf = {x ∈ K+ : λf ≤ x ≤ μf for some positive
real numbers λ and μ} for a given f ∈ K+. Let M(x, y) = inf{λ : x ≤ λy} and d(x, y) =
log(max{M(x, y),M(y,x)}) for x, y ∈ Kf . Then d defines a metric on Kf which is known
as the Thompson metric []. More details about the Thompson metric can be found in
the references [–]
At this stage, we state our main results in the real Banach space.

Theorem . Let (X,‖ · ‖) be a real Banach space, let K ⊂ X a cone and f ∈ K+. Suppose
that Ai : Kf × Kf → Kf are two mixed monotone maps satisfying Ai(tx, t–y) ≥ tiAi(x, y)
and Ai(f , f ) ∈ Kf for t ∈ (, ), i = ,p with  < p < . Let A = A +Ap and assume that there
exists a point (x, y) ∈ Kf ×Kf such that

x ≤ A(x, y) ≤ A(y,x)≤ y.

Then A has a unique fixed point in Kf , that is, there exists a unique point x ∈ Kf such that
A(x,x) = x.

In order to prove this result, we need some technique lemmas.

Lemma . ([], Lemma .) Under the assumptions of Theorem ., there exists δx,y ∈
(p, ) such that

A
(
tx, t–y

) ≥ tδx,yA(x, y) for all t ∈ (, ) and x, y ∈ Kf ,

where

δx,y =
�x,y + p
�x,y + 

and �x,y =M
(
A(x, y),Ap(x, y)

)
.

Lemma . Under the assumptions of Theorem ., then

d
(
A(x, y),A(u, v)

) ≤ δu,vmax
{
d(x,u),d(y, v)

}
.

Proof Noting that e–d(x,y)y ≤ x≤ ed(x,y)y for all x, y ∈ Kf , we have

A(x, y) ≥ A
(
e–d(x,u)u, ed(y,v)v

)
≥ A

(
e–max{d(x,u),d(y,v)}u, emax{d(x,u),d(y,v)}v

)
≥ e–δu,vmax{d(x,u),d(y,v)}A(u, v).

http://www.fixedpointtheoryandapplications.com/content/2013/1/134
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On the other hand, since A(tx, t–y) ≤ tδx,yA(x, y) for t > , then we have

A(x, y) ≤ A
(
ed(x,u)u, e–d(y,v)v

) ≤ A
(
emax{d(x,u),d(y,v)}u, e–max{d(x,u),d(y,v)}v

)
≤ eδu,vmax{d(x,u),d(y,v)}A(u, v).

Thus d(A(x, y),A(u, v))≤ δu,vmax{d(x,u),d(y, v)}. �

Lemma . Under the assumptions of Theorem ., the successive sequences {xn} and {yn}
are Cauchy sequences, where

xn+ = A(xn, yn), yn+ = A(yn,xn), n = , , . . . .

Proof Since x ≤ A(x, y) ≤ A(y,x) ≤ y, it follows by an induction argument that

x ≤ x ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y ≤ y.

Noting that

A(yn,xn) ≤ A(y,x) ≤ M
(
A(y,x),Ap(x, y)

)
Ap(x, y)

≤ M
(
A(y,x),Ap(x, y)

)
Ap(yn,xn),

we have, for all n,

�yn ,xn =M
(
A(yn,xn),Ap(yn,xn)

) ≤ M
(
A(y,x),Ap(x, y)

)
:= �.

Thus

δyn ,xn =
�yn ,xn + p
�yn ,xn + 

≤ � + p
� + 

:= δ.

Next, we claim that

xn ≥ e–d(x,y)δ
n
yn, n = , , , . . . . ()

In fact, it holds for n = . For arbitrary n, by induction argument, we have

xn+ = A(xn, yn) ≥ A
(
e–d(x,y)δ

n
yn, ed(x,y)δ

n
xn

)
≥ (

e–d(x,y)δ
n

)δyn ,xn A(yn,xn) ≥ e–d(x,y)δ

n+
 yn+.

Thus () holds for all n.
On the other hand, since

A(xn, yn) ≤ A(yn,xn)≤ �yn ,xnAp(yn,xn)

≤ �Ap(yn,xn) ≤ �Ap
(
ed(x,y)δ

n
xn, e–d(x,y)δ

n
yn

)
≤ �epd(x,y)δ

n
Ap(xn, yn) ≤ �epd(x,y)Ap(xn, yn),

http://www.fixedpointtheoryandapplications.com/content/2013/1/134
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we obtain that, for all n,

�xn ,yn =M
(
A(xn, yn),Ap(xn, yn)

) ≤ �epd(x,y) :=�.

Thus

δxn ,yn =
�xn ,yn + p
�xn ,yn + 

≤ � + p
� + 

:= δ.

Then following Lemma ., we have

d(xn+,xn) = d
(
A(xn, yn),A(xn–, yn–)

)
≤ δxn–,yn– max

{
d(xn,xn–),d(yn, yn–)

}
≤ δmax

{
d(xn,xn–),d(yn, yn–)

}
.

Similarly, we have

d(yn+, yn) = d
(
A(yn,xn),A(yn–,xn–)

)
≤ δyn–,xn– max

{
d(yn, yn–),d(xn,xn–)

}
≤ δmax

{
d(xn,xn–),d(yn, yn–)

}
.

Let δ =max{δ, δ}, then δ <  and

max
{
d(xn+,xn),d(yn+, yn)

} ≤ δmax
{
d(xn,xn–),d(yn, yn–)

}
.

Thus, for all n,

max
{
d(xn+,xn),d(yn+, yn)

} ≤ δnmax
{
d(x,x),d(y, y)

}
.

Furthermore, for any k ∈ Z+, we have

max
{
d(xn+k ,xn),d(yn+k , yn)

} ≤ δn

 – δ
max

{
d(x,x),d(y, y)

}
.

This shows that both successive sequences {xn} and {yn} are Cauchy sequences. �

Proof of Theorem . By Lemma ., there are a,b ∈ K such that limn→∞ xn = a and
limn→∞ yn = b. Obviously, xn ≤ a and b ≤ yn for all n ∈ Z+. Thus a,b ∈ Kf . Next, noting
that

d
(
xn+,A(a,b)

)
= d

(
A(xn, yn),A(a,b)

) ≤ δa,bmax
{
d(xn,a),d(yn,b)

}

and

d
(
yn+,A(b,a)

)
= d

(
A(yn,xn),A(b,a)

) ≤ δb,amax
{
d(xn,a),d(yn,b)

}
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/134
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and letting n go to infinity, we get that a = A(a,b) and b = A(b,a). It follows from

d(a,b) = d
(
A(a,b),A(b,a)

) ≤ δb,amax
{
d(b,a),d(a,b)

}
= δb,ad(a,b)

that d(a,b) =  and a = b. The uniqueness is obvious. Thus A has a unique fixed point in
Kf , that is, there exists a unique point a ∈ Kf such that A(a,a) = a. The proof is complete.

�

Remark . Our result in Theorem . improved the corresponding result in [] (The-
orem .) and removed some restriction conditions: the successive sequences have con-
vergent subsequences.

3 Application to the nonlinear elliptic problems
Let � be the open unit ball in Rn, n ≥ , with center at the origin. We consider positive
solutions of the Dirichlet problem

⎧⎨
⎩∇(a(|x|)∇(u)) + b(|x|)(up + c

+uq ) =  in �,

u =  on ∂�.
()

When a(|x|) = b(|x|) = , n≥  and c = , it is well known that () has no positive solution
if p > n+

n– , and that the positive solution of () is unique if p > , see [] and []. Also, in
this case when  < p < , () has a unique positive radial solution [].
In this section, we assume that p ∈ (, ], q ∈ (, ) and c >  are constants, a(r) and b(r)

are positive and continuous for ≤ r ≤ . Our result is as follows.

Theorem . Problem () has a unique positive radial solution if bmax
namin

< , where amin :=
min{a(r) : r ∈ [, ]} and bmax :=max{b(r) : r ∈ [, ]}.

To this end, we should establish a technique lemma.

Lemma . The function u is a positive radial solution of problem () if and only if u is a
positive solution of the integral equation

u(r) =
∫ 


G(r, t)b(t)

[
up(t) +

c
 + uq(t)

]
dt,

where

G(r, t) =

⎧⎨
⎩

∫ 
t


a(s) (

t
s )

n– ds,  ≤ r < t ≤ ,∫ 
r


a(s) (

t
s )

n– ds,  ≤ t ≤ r ≤ .

Proof Assuming solutions to be functions of r, the radial distance from the origin, ()
reduces to

⎧⎨
⎩(a(r)u′(r))′ + n–

r a(r)u′(r) + b(r)[up(r) + c
+uq(r) ] = ,  < r < ,

u() = ,
()
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where u′(r) = d
dr u(r). Then the Green function for problem () is

G(r, t) =

⎧⎨
⎩

∫ 
t


a(s) (

t
s )

n– ds,  ≤ r < t ≤ ,∫ 
r


a(s) (

t
s )

n– ds,  ≤ t ≤ r ≤ ,

which is positive on [, )× [, ). Thus the function u is a positive radial solution of prob-
lem () if and only if u is a positive solution of the integral equation

u(r) =
∫ 


G(r, t)b(t)

[
up(t) +

c
 + uq(t)

]
dt. �

Proof of Theorem . Let K denote the cone of nonnegative functions in C[, ], the rela-
tion x ≤ y holds if and only if x(t) ≤ y(t) for all t ∈ [, ], K+ = K \ {} and f (r) =  – r

for r ∈ [, ], then f ∈ K+ and  ≤ f (r) ≤ fmax = . Denote Kf = {x ∈ K+ : λf ≤ x ≤
μf for some positive numbers λ,μ ∈ R}.
Now we introduce the maps A,Aq : Kf ×Kf → Kf defined by

A(x, y)(r) =
∫ 


G(r, t)b(t)xp(t)dt,

Aq(x, y)(r) =
∫ 


G(r, t)b(t)

c
 + yq(t)

dt.

For g,h ∈ Kf , then there exist λg , λh, μg , μh such that μg f ≤ g ≤ λg f and μhf ≤ h ≤ λhf .
By direct computation, we have

bminμ
p
g

n(n + )amax
f (r) ≤ A(g,h)(r) ≤

∫ 


G(r, t)b(t)λp

g dt ≤ bmaxλ
p
g

namin
f (r),

cbmin

namax( + hqmax)
f (r) ≤ Aq(g,h)(r)≤

∫ 


G(r, t)b(t)

c


dt ≤ cbmax

namin
f (r).

Thus the map Ai is well defined and Ai(f , f ) ∈ Kf for i = ,q. Also, A(f , f ) + Aq(f , f ) ∈ Kf .
Obviously,Ai is amixedmonotonemap inKf andA(tx, t–y) ≥ tA(x, y) andAq(tx, t–y) ≥
tqAq(x, y).
Since bmax

namin
< , we choose a positive number k (large enough) satisfying

bmax

namin

(
k +

c


)
≤ k and

bmin

namax

c
 + k

≤ .

Let A = A +Aq, x(r) = bmin
namax

c
+k ( – r), y(r) = k( – r), then x, y ∈ Kf and

A(x, y)(r) =
∫ 


G(r, t)b(t)

[
xp(t) +

c
 + yq(t)

]
dt

≥ cbmin

 + k

∫ 


G(r, t)dt ≥ cbmin

namax( + k)
(
 – r

)
= x(r)

http://www.fixedpointtheoryandapplications.com/content/2013/1/134


Wu and Liu Fixed Point Theory and Applications 2013, 2013:134 Page 11 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/134

and

A(y,x)(r) =
∫ 


G(r, t)b(t)

[
yp(t) +

c
 + xq(t)

]
dt

≤
∫ 


G(r, t)bmax

[
c


+ kf (t)
]
dt

≤
(

c


+ k
)

bmax

namin
f (r)

≤ kf (r) = y(r).

Thus

x ≤ A(x, y) ≤ A(y,x)≤ y.

Applying Theorem . to the operator A, we conclude that there is a unique point u in
Kf such that u(r) = A(u,u)(r). On the other hand, for all g,h ∈ K+, we have

f (r)
(
gpmax +

c


)
bmax

namin
≥

∫ 


G(r, t)b(t)

[
gp(t) +

c
 + hq(t)

]
dt

≥ cbmin

namax( + hqmax)
f (r).

This means that A(g,h) ∈ Kf . Thus problem () has a unique positive radial solution. �

4 Application to the delayed hematopoiesis models
In this section, we consider the positive periodic solution of the following hematopoiesis
model with delays:

x′(t) = –a(t)x(t) +
n∑
i=

bi(t)
 + xq(t – τi(t))

, ()

where a,bi, τi ∈ C(R,R) are positive T-periodic functions and  ≤ τi(t)≤ t for all t ∈ [,T],
q is a nonnegative constant (i = , , . . . ,n). In the case when q ≥ ,Wu [] proved that ()
had a unique positive T-periodic solution.
Here we assume that q ∈ (, ) and our result is as follows.

Theorem . Problem () has a unique positive T-periodic solution.

Proof Let K denote the cone of nonnegative T-periodic functions in C(R,R), the relation
x ≤ y holds if and only if x(t)≤ y(t) for all t ∈ [,T], K+ = K \ {} and f (r) ≡  for r ∈ [,T].
Denote Kf = {x ∈ K+ : λf ≤ x ≤ μf for some positive numbers λ,μ ∈ R}. It is easy to show
that the function x is a positive T-periodic solution of problem () if and only if x is a
positive solution of the integral equation

x(r) =
eβT

eβT – 

∫ r

r–T
e–β(r–s)

[(
β – a(s)

)
x(s) +

n∑
i=

bi(s)
 + xq(s – τi(s))

]
ds,
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where β > amax is a constant. Define the maps A,Aq : Kf ×Kf → Kf by

A(x, y)(t) =
eβT

eβT – 

∫ t

t–T
e–β(t–s)(β – a(s)

)
x(s)ds,

Aq(x, y)(t) =
eβT

eβT – 

∫ t

t–T
e–β(t–s)

n∑
i=

bi(s)
 + yq(s – τi(s))

ds.

For arbitrary x, y ∈ Kf , there are positive numbers λx, λy, μx, μy such that λx ≤ x(t) ≤ μx

and λy ≤ y(t) ≤ μy for all t ∈ [,T]. Furthermore, we deduce that

A(x, y)(t) =
eβT

eβT – 

∫ t

t–T
e–β(t–s)(β – a(s)

)
x(s)ds

≥ eβT

eβT – 

∫ t

t–T
e–β(t–s) ds(β – amax)λx

=
(
 –

amax

β

)
λx

and

A(x, y)(t)≤
(
 –

amin

β

)
μx.

Similarly, we have


β

n∑
i=

bimin

 +μ
q
y

≤ Aq(x, y)(t)≤ 
β

n∑
i=

bimax

 + λ
q
y

for all t ∈ [,T].

This means A(x, y) ∈ Kf and Aq(x, y) ∈ Kf . Thus A and Aq are well defined and
A(f , f ),Aq(f , f ) ∈ Kf . Also, A(f , f ) +Aq(f , f ) ∈ Kf . Obviously, A and Aq are mixed mono-
tone maps in Kf and A(tx, t–y) ≥ tA(x, y) and Aq(tx, t–y) ≥ tqAq(x, y).
Since β > amax, we can choose a constant k >  satisfying

(
 –

amin

β

)
k +


β

n∑
i=

bimax ≤ k and

β

n∑
i=

bimin

 + kq
< .

Let A = A +Aq, x(t)≡ 
β

∑n
i=

bimin
+kq and y(t) ≡ k for all t ∈ [,T], then we have

A(x, y)(t) =
eβT

eβT – 

∫ t

t–T
e–β(t–s)

[(
β – a(s)

)
x(s) +

n∑
i=

bi(s)
 + yq(s – τi(s))

]
ds

≥ eβT

eβT – 

∫ t

t–T
e–β(t–s)

n∑
i=

bimin

 + kq
ds

=

β

n∑
i=

bimin

 + kq
= x(t)
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and

A(y,x)(t) =
eβT

eβT – 

∫ t

t–T
e–β(t–s)

[(
β – a(s)

)
y(s) +

n∑
i=

bi(s)
 + xq(s – τi(s))

]
ds

≤ eβT

eβT – 

∫ t

t–T
e–β(t–s)

[
(β – amin)k +

n∑
i=

bimax

]
ds

=

β

[
(β – amin)k +

n∑
i=

bimax

]
≤ k = y(t).

Thus

x ≤ A(x, y) ≤ A(y,x)≤ y.

Applying Theorem . to the operator A, we conclude that there is a unique point x in
Kf such that x(t) = A(x,x)(t). On the other hand, for all g,h ∈ K+, we have

f (t)
[∑n

i= bimax

β
+

(
 –

amin

β

)
gmax

]
≥ A(g,h)(t) ≥ 

β

n∑
i=

bimin

 + hqmax
f (t).

This means that A(g,h) ∈ Kf . Thus problem () has a unique positive T-periodic solu-
tion. �

Remark . Using similar ideas, it is possible to extend our results to investigate the ex-
istence and uniqueness of nonlinear singular boundary value problems and fractional dif-
ferential equation boundary value problems, which are mentioned extensively in the liter-
ature [, , ].
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