Barrelledness in $\ell_\infty(\Omega, X)$ subspaces

J.C. Ferrando a, L.M. Sánchez Ruiz b,*

a Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche (Alicante), Spain
b ETSID-Departamento Matemática Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain

Received 14 April 2004
Available online 10 December 2004
Submitted by C.E. Chidume

Abstract

Given a nonempty set Ω and a normed space X, we prove several barrelledness properties of some subspaces of $\ell_\infty(\Omega, X)$, the linear space of all bounded functions of Ω into X equipped with the supremum norm.

Keywords: Barrelled space; Ultrabornological space; Banach disk

1. Introduction

Throughout this paper Ω will denote a nonempty set, X a normed space and \mathbb{K} the scalar field of real or complex numbers. We shall deal with the linear space $\ell_\infty(\Omega, X)$ over \mathbb{K} of all X-valued bounded functions $f: \Omega \to X$, equipped with the supremum norm, denote by $\ell_\infty(\Omega, X)_{cv}$ the linear subspace of $\ell_\infty(\Omega, X)$ of all those countably valued functions, and by $\ell_\infty(\Omega, X)_{cs}$ the linear subspace of $\ell_\infty(\Omega, X)$ consisting of all functions of countable support. As usual, $\ell_\infty(X)$ shall stand for $\ell_\infty(\mathbb{N}, X)$, that is, the linear space over \mathbb{K} of all bounded sequences in X provided with the supremum norm. Clearly $\ell_\infty(X) = \ell_\infty(X)_{cs} = \ell_\infty(X)_{cv}$ and $\ell_\infty(\Omega, X)_{cv}$ is dense in $\ell_\infty(\Omega, X)$ whenever X is separable.

† The research of this paper has been partially supported by BANCAJA and Generalitat Valenciana.
* Corresponding author.
E-mail addresses: jc.ferrando@umh.es (J.C. Ferrando), lmsr@mat.upv.es (L.M. Sánchez Ruiz).

0022-247X/$ – see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.08.051
Let us recall that a locally convex space E is barrelled [7] if each barrel (i.e., each absorbing closed absolutely convex subset) of E is a neighbourhood of 0; or equivalently, if each linear mapping with closed graph from E into any Banach (i.e., complete normed) or Fréchet (i.e., complete metrizable locally convex) space is continuous [8]. E is ultrabornological [8] if each absolutely convex set in E which absorbs the Banach disks of E (i.e., the closed absolutely convex bounded subsets U of E whose linear span $\text{sp}(U)$ become a Banach space when provided with the norm defined by its Minkowski functional) is a neighbourhood of 0 in E. E is totally barrelled [11] if given an arbitrary sequence of closed absolutely convex subsets covering E, one of them is a neighbourhood of 0. And E is totally barrelled [11] if given a sequence of vector subspaces of E that covers E, one of them is barrelled and its closure is finite codimensional in E. In general (cf. [5,6]),

$$\text{UBL} \Rightarrow \text{totally barrelled} \Rightarrow \text{barrelled}.$$

The following three results are well known.

Theorem 1.1 [1, Theorem 1]. $\ell_\infty(\Omega, X)$ is barrelled whenever X is barrelled and either $|\Omega|$ or $|X|$ is a nonmeasurable cardinal.

Theorem 1.2 [2, Theorem 2]. $\ell_\infty(\Omega, X)_{cv}$ is ultrabornological if and only if X is ultrabornological.

Theorem 1.3 [3, Theorem 2]. $\ell_\infty(\Omega, X)_{cs}$ is UBL if and only if X is UBL.

From Theorem 1.1 it follows that the normed space $\ell_\infty(\Omega, X)_{cs}$ is barrelled if and only if X is barrelled. In particular, $\ell_\infty(X)$ is barrelled if and only if X is barrelled. And from Theorem 1.2 it follows that (i) the space $\ell_\infty(X)$ is ultrabornological if and only if X is ultrabornological, and (ii) assuming that X is separable and each functional on $\ell_\infty(\Omega, X)$ is null whenever it is bounded on every Banach disk and vanishes on $\ell_\infty(\Omega, X)_{cv}$, then $\ell_\infty(\Omega, X)$ is ultrabornological if and only if X is ultrabornological. On the other hand, Theorem 1.3 provides that $\ell_\infty(X)$ is UBL if and only if X is UBL. From the above the following questions do arise.

Problem 1. Does the fact of X being ultrabornological imply that $\ell_\infty(\Omega, X)_{cs}$ is ultrabornological?

Problem 2. Does the fact of X being UBL imply that $\ell_\infty(\Omega, X)_{cv}$ is UBL?

Problem 3. Does the fact of X being ultrabornological and $|\Omega|$ or $|X|$ a nonmeasurable cardinal imply that $\ell_\infty(\Omega, X)$ is ultrabornological?

We have not been able to solve Problem 3. However we shall prove in Theorem 2.3 bellow that the space $\ell_\infty(\Omega, X)_{cs}$ is ultrabornological if and only if X is ultrabornological, hence solving Problem 1 in the positive. In our Theorem 3.2 we show that if X is UBL then $\ell_\infty(\Omega, X)_{cv}$ is the locally convex hull of a family of UBL subspaces, which is “close” to
becoming a positive solution of Problem 2. Finally in Section 4 we demonstrate that the linear subspace of $\ell_\infty(\Omega, X)$ consisting of all those functions with totally bounded range is barrelled if and only if X is barrelled, and that if X is UBL then the linear subspace of $\ell_\infty(\Omega, X)$ of all those functions which are uniform limits of sequences of functions with finite-dimensional ranges is UBL whenever it is totally barrelled.

2. On the ultrabornological property in $\ell_\infty(\Omega, X)_{cs}$

Given a nonempty subset Γ of Ω, $\ell_\infty(\Gamma, X)_{cs}$ will stand for the subspace of $\ell_\infty(\Omega, X)_{cs}$ of all those functions (countably) supported in Γ. As usual, given a normed space Y, BY will denote its unit ball.

Lemma 2.1. Let V be an absolutely convex set in $\ell_\infty(X)$. If V absorbs the Banach disks of $\ell_\infty(X)$, then there is $m \in \mathbb{N}$ such that $mV \supseteq B_{\ell_\infty(\mathbb{N}\setminus\{1, \ldots, m\}, X)}$.

Proof. Assume that the lemma is not true. Then for each $n \in \mathbb{N}$ there is some $x_n \in \ell_\infty(\mathbb{N}\setminus\{1, \ldots, n\}, X) \setminus nV$ with $\|x_n\| \leq 1$. Since for each $\xi = (\xi_n) \in \ell_1$, $\sum_{n=1}^\infty \xi_n x_n$ converges to some $x_\xi \in \ell_\infty(\hat{X})$ and

$$x_\xi(j) = \sum_{i=1}^\infty \xi_i x_i(j) = \sum_{i=1}^{j-1} \xi_i x_i(j) \in X$$

for each $j \in \mathbb{N}$, then $x_\xi \in \ell_\infty(X)$ and we consider $\varphi : \ell_1 \to \ell_\infty(X)$ defined by $\varphi(\xi) = x_\xi$. Hence $D := \varphi(B_{\ell_1})$ is a Banach disk in $\ell_\infty(X)$ and, by hypothesis, there exists $k \in \mathbb{N}$ such that $D \subseteq kV$. Therefore $x_k \in kV$, a contradiction.

Lemma 2.2. $\ell_\infty(X)$ is ultrabornological if and only if X is ultrabornological.

Proof. If $\ell_\infty(X)$ is ultrabornological, it is clear that X is ultrabornological. Conversely, assume that X is ultrabornological and let V be an absolutely convex set in $\ell_\infty(X)$ which absorbs the Banach disks of $\ell_\infty(X)$. According to Lemma 2.1 there exists $m \in \mathbb{N}$ such that $mV \supseteq B_{\ell_\infty(\mathbb{N}\setminus\{1, \ldots, m\}, X)}$. Since

$$\ell_\infty(X) = \ell_\infty([1, \ldots, m], X) \oplus \ell_\infty(\mathbb{N}\setminus\{1, \ldots, m\}, X),$$

it suffices to show that V absorbs the closed unit ball of $\ell_\infty([1, \ldots, m], X)$. But the latter is true for $\ell_\infty([1, \ldots, m], X) \simeq X^m$ is ultrabornological and therefore V absorbs the Banach disks of $\ell_\infty([1, \ldots, m], X)$.

Theorem 2.3. The space $\ell_\infty(\Omega, X)_{cs}$ is ultrabornological if and only if X is ultrabornological.
Proof. Let \(V \) be an absolutely convex set in \(\ell_\infty(\Omega, X)_{cs} \) which absorbs the Banach disks of \(\ell_\infty(\Omega, X)_{cs} \). Let us show firstly that there exists a countable (perhaps empty) set \(\Delta \) such that \(V \) absorbs the closed unit ball of \(\ell_\infty(\Omega \setminus \Delta, X)_{cs} \). Otherwise take \(f_1 \in \ell_\infty(\Omega, X)_{cs} \) such that \(\|f_1\|_\infty = 1 \) and \(f_1 \notin V \). Since \(\Delta_1 := \text{supp} \ f_1 \) is countable, there must be \(f_2 \in \ell_\infty(\Omega \setminus \Delta_1, X)_{cs} \) such that \(\|f_2\|_\infty = 1 \) and \(f_2 \notin 2V \). Then set \(\Delta_2 := \text{supp} \ f_2 \) and choose \(f_3 \in \ell_\infty(\Omega \setminus (\Delta_1 \cup \Delta_2), X)_{cs} \) such that \(\|f_3\|_\infty = 1 \) and \(f_3 \notin 3V \). Going on we obtain a bounded sequence \(\{f_n\} \) in \(\ell_\infty(\Omega, X)_{cs} \) and a pairwise disjoint sequence \(\{\Delta_n\} \) of countable sets in \(\Omega \) such that \(\Delta_n := \text{supp} \ f_n \) and \(f_n \notin nV \) for each \(n \in \mathbb{N} \). Since the \(f_i \) are disjointly supported, the pointwise limit \(f_\infty(\omega) := \sum_{i=1}^{\infty} \xi_i f_i(\omega) \) belongs to \(X \) for each \(\omega \in \Omega, \xi \in \ell_1 \). This assures that \(\{f_\infty(\cdot) : \xi_i \in \ell_1, \|\xi\|_1 \leq 1\} \) is a Banach disk contained in \(\ell_\infty(\Omega, X)_{cs} \).

And given that \(V \) absorbs the Banach disks of \(\ell_\infty(\Omega, X)_{cs} \), there is some \(k \in \mathbb{N} \) such that \(f_k \notin kV \), a contradiction.

If \(\Delta \) is finite, then \(\ell_\infty(\Delta, X)_{cs} = \ell_\infty(\Delta, X) \) is isomorphic to \(X^\Delta \) and therefore ultrabornological. If \(\Delta \) is (countable) infinite, then \(\ell_\infty(\Delta, X)_{cs} = \ell_\infty(\Delta, X) \) is isomorphic to \(\ell_\infty(X) \) and consequently, by Lemma 2.2, it is ultrabornological. In either case, \(V \) absorbs the closed unit ball of \(\ell_\infty(\Delta, X)_{cs} \), hence \(V \) is a neighbourhood of 0 in \(\ell_\infty(\Omega, X)_{cs} \).

3. Conditions for \(\ell_\infty(\Omega, X)_{cv} \) to be UBL

In the next result \(\Pi(\Omega) \) will stand for the family of all countable partitions of \(\Omega \) and given \(\pi = \{A_n : n \in \mathbb{N}\} \in \Pi(\Omega) \) let us denote by \(\ell_\infty(\pi, X) \) the linear subspace of \(\ell_\infty(\Omega, X)_{cv} \) formed by all those countably valued functions which take a constant value on each set \(A_n \) of \(\pi \). It is plain that

(i) \(\ell_\infty(\pi, X) \) is linearly isometric to \(X^n \) for some \(n \in \mathbb{N} \) or to \(\ell_\infty(X) \) depending on whether \(\pi \) is finite or infinite.

(ii) \(\ell_\infty(\Omega, X)_{cv} = \bigcup \{\ell_\infty(\pi, X) : \pi \in \Pi(\Omega)\} \).

Lemma 3.1. \(\ell_\infty(\Omega, X)_{cv} \) is the locally convex hull of \(\{\ell_\infty(\pi, X) : \pi \in \Pi(\Omega)\} \).

Proof. Assume the statement is false and there is an absolutely convex set \(V \) in \(\ell_\infty(\Omega, X)_{cv} \) which absorbs the bounded sets but \(V \) is not a neighbourhood of 0. Proceeding as in the proof of [4, Theorem 4.3], but using [2, Lemma 1 and Theorem 1] instead of [4, Lemmas 4.1 and 4.2] one can obtain a pairwise disjointly supported bounded sequence \(\{f_n\} \) in \(\ell_\infty(\Omega, X)_{cv} \) such that \(f_n \notin nV \) for each \(n \in \mathbb{N} \). If \(\{x_{n,m} : m \in J_n\} \), with \(J_n \subseteq \mathbb{N} \), is the range of non-null values of \(f_n \), then set \(A_{n,m} := f_n^{-1}(x_{n,m}) \) for each \(m \in J_n \). Since the sequence \(\{f_n\} \) is pairwise disjointly supported, setting \(A_0 = \Omega \setminus \bigcup_{n \in \mathbb{N}} \bigcup_{m \in J_n} A_{n,m} \), then \(\pi := \{A_0, A_{n,m} : m \in J_n, n \in \mathbb{N}\} \in \Pi(\Omega) \) and \(f_n \in \ell_\infty(\pi, X) \) for each \(n \in \mathbb{N} \). Finally, the fact that \(V \) absorbs the closed unit ball of \(\ell_\infty(\pi, X) \) and the sequence \(\{f_n\} \) is bounded imply that \(f_k \in kV \) for some \(k \in \mathbb{N} \), a contradiction.

Theorem 3.2. If \(X \) is UBL, then \(\ell_\infty(\Omega, X)_{cv} \) is the locally convex hull of a family of UBL spaces.
Proof. If X is UBL, then $\ell_\infty(X)$ and X^n are UBL for each $n \in \mathbb{N}$. Then each subspace $\ell_\infty(\pi, X)$ is UBL and the conclusion follows from the previous lemma.

4. The subspace of functions with totally bounded range

Let $TB(\Omega, X)$ be the subspace of $\ell_\infty(\Omega, X)$ consisting of all functions with totally bounded range and $F(\Omega, X)$ be the linear subspace of $\ell_\infty(\Omega, X)$ of all those functions which are the uniform limit of a sequence of functions with finite-dimensional range.

Theorem 4.1. The space $TB(\Omega, X)$ is barrelled if and only if X is barrelled.

Proof. Given $f \in TB(\Omega, X)$, let K_f be the closure of $f(\Omega)$ in \hat{X} and denote by f^β the Stone–Čech extension $f^\beta: \beta\Omega \to K_f$ of $f: \Omega \to K_f$, the latter considered as a continuous mapping from Ω, equipped with the discrete topology, into the compact topological space K_f. Then the linear operator $S: TB(\Omega, X) \to C(\beta\Omega, \hat{X})$ defined by $Sf = f^\beta$ embeds $TB(\Omega, X)$ isometrically into $C(\beta\Omega, \hat{X})$, since

$$\|Sf\|_\infty = \sup_{\omega \in \beta\Omega} \|f^\beta(\omega)\| = \sup_{t \in \Omega} \|f(t)\| = \|f\|_\infty.$$

Seeing $C(\beta\Omega, X)$ as a topological subspace of $S(TB(\Omega, X))$, one has that $C(\beta\Omega, X) \hookrightarrow TB(\Omega, X) \hookrightarrow C(\beta\Omega, \hat{X})$.

If X is barrelled, then $C(\beta\Omega, X)$ is barrelled according to a well-known result of Mendoza [9]. And since $C(\beta\Omega, X)$ is a dense subspace of $C(\beta\Omega, \hat{X})$, we conclude that $TB(\Omega, X)$ is barrelled.

We end by giving a necessary and sufficient condition for $F(\Omega, X)$ to be UBL.

Theorem 4.2. Let X be an UBL space. If $F(\Omega, X)$ is totally barrelled, then $F(\Omega, X)$ is UBL.

Proof. Let $\{W_n\}$ be a sequence of closed absolutely convex sets in $F(\Omega, X)$ covering $F(\Omega, X)$ and identify $\ell_\infty(\Omega) \otimes_\pi X$ with the topological subspace of $\ell_\infty(\Omega, X)$ of all functions of finite-dimensional range. Since the projective topology on $\ell_\infty(\Omega) \otimes X$ is stronger than the injective one, each W_p is also closed in $\ell_\infty(\Omega) \otimes_\pi X$. So, using the fact that $\ell_\infty(\Omega) \otimes_\pi X$ is UBL (cf. [5, Theorem 1.6.5]), there is some $p \in \mathbb{N}$ such that W_p absorbs the closed unit ball of $\ell_\infty(\Omega) \otimes_\pi X$. This implies that $sp(W_p) \supseteq \ell_\infty(\Omega) \otimes_\pi X$ and, consequently, $sp(W_p)$ is a dense linear subspace of $F(\Omega, X)$. Hence, according to [10, Theorem 4.1], there is a subsequence $\{W_{n_j}\}$ of $\{W_n\}$ covering $F(\Omega, X)$ such that $sp(W_{n_j})$ is dense in $F(\Omega, X)$ for each $j \in \mathbb{N}$. Since $F(\Omega, X)$ is assumed to be totally barrelled, there is $j \in \mathbb{N}$ such that $sp(W_{n_j})$ is barrelled. This implies that $sp(W_{n_j})$ is a closed linear subspace of $F(\Omega, X)$, which guarantees that $sp(W_{n_j}) = F(\Omega, X)$. Since $F(\Omega, X)$ is barrelled, W_{n_j} must absorb the closed unit ball of $F(\Omega, X)$ and therefore $F(\Omega, X)$ is UBL.
References