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dentification of a Common Gene Expression Signature in
ilated Cardiomyopathy Across Independent Microarray Studies

ndreas S. Barth, MD,* Ruprecht Kuner, PHD,§ Andreas Buness, MSC,§ Markus Ruschhaupt, MSC,‡§
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OBJECTIVES This study was designed to identify a common gene expression signature in dilated
cardiomyopathy (DCM) across different microarray studies.

BACKGROUND Dilated cardiomyopathy is a common cause of heart failure in Western countries. Although
gene expression arrays have emerged as a powerful tool for delineating complex disease
patterns, differences in platform technology, tissue heterogeneity, and small sample sizes
obscure the underlying pathophysiologic events and hamper a comprehensive interpretation
of different microarray studies in heart failure.

METHODS We accounted for tissue heterogeneity and technical aspects by performing 2 genome-wide
expression studies based on cDNA and short-oligonucleotide microarray platforms which
comprised independent septal and left ventricular tissue samples from nonfailing (NF) (n �
20) and DCM (n � 20) hearts.

RESULTS Concordant results emerged for major gene ontology classes between cDNA and oligonu-
cleotide microarrays. Notably, immune response processes displayed the most pronounced
down-regulation on both microarray types, linking this functional gene class to the
pathogenesis of end-stage DCM. Furthermore, a robust set of 27 genes was identified that
classified DCM and NF samples with �90% accuracy in a total of 108 myocardial samples
from our cDNA and oligonucleotide microarray studies as well as 2 publicly available datasets.

CONCLUSIONS For the first time, independent microarray datasets pointed to significant involvement of
immune response processes in end-stage DCM. Moreover, based on 4 independent
microarray datasets, we present a robust gene expression signature of DCM, encouraging
future prospective studies for the implementation of disease biomarkers in the management
of patients with heart failure. (J Am Coll Cardiol 2006;48:1610–7) © 2006 by the

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.07.026
American College of Cardiology Foundation
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ilated cardiomyopathy (DCM) is characterized by dilata-
ion and impaired contraction of 1 or both ventricles in the
bsence of significant coronary artery disease. The incidence
f DCM has been estimated to be 5 to 8 cases per 100,000

See page 1618

ndividuals, with a prevalence of 36 per 100,000 (1). Thus,
CM is a leading cause of heart failure and cardiac

ransplantation in Western countries (2). The high morbid-
ty and mortality associated with DCM underscore the need
or a better understanding of the underlying molecular
vents leading to heart failure in DCM. So far, the natri-
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retic peptides are the best characterized markers for diag-
osing and managing heart failure. However, there is
ignificant heterogeneity in expression levels of these mo-
ecular disease markers that is not explained by left ventric-
lar function alone (3–5). Transcriptional signature analysis
s a powerful technique capable of identifying new molecular
argets which could ultimately become important for diag-
osis and therapy of heart failure. Yet, differences in
latform technologies, experimental design, and the biolog-
cal heterogeneity associated with the use of human tissue
amples form obstacles to the successful comparison and
ntegration of results obtained by different microarray stud-
es in heart failure. In addition, substantial regional variation
n gene expression exists in mammalian myocardium includ-
ng atrium, ventricle and septum or left and right side of the
eart (6–9). These differences make it difficult to determine
hich transcripts are related to DCM as opposed to other

ources of biological variability.
The aim of the present study was 2-fold: First, we wanted

o identify common genes and shared biological processes
ased on Gene Ontology (GO) (10) across 2 independent
icroarray studies in human DCM to minimize over-

nterpretation of either dataset. Biological variability was
ccounted for by examining 20 DCM and 20 nonfailing

NF) myocardial samples from different regions of human
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yocardium (septum and left ventricle of different trans-
ural origin). Our second goal aimed at establishing a

obust set of genes of DCM and NF hearts for the 2 present
nd 2 additional, publicly available, microarray datasets. As
result, we present a set of 27 genes which classified 108
F and DCM samples in 4 independent microarray data-

ets with �90% accuracy.

ETHODS

tudy design. We performed 2 microarray studies with a
otal of 40 patient samples. The cDNA microarray study
dataset A) was based on 28 septal myocardial samples
btained from 13 DCM hearts at the time of transplanta-
ion and 15 NF donor hearts that were not transplanted
ecause of palpable coronary calcifications. The latter pa-
ient group was not known to have any history of overt
ardiovascular disease. For our oligonucleotide microarray
tudy (dataset B), 12 independent subendocardial left ven-
ricular samples were collected from 7 DCM patients and 5
F donors. Detailed patient characteristics are listed in

upplemental Table 1 (see Appendix). All transplanted
atients gave written informed consent. The investigation
as approved by the Institutional Review Board.
After excision, all tissue specimens were frozen in liquid

itrogen and stored at �80°C. RNA isolation, sample
reparation, labeling, and hybridization to RZPD Unigene
.1 cDNA (37.5 K) and to Affymetrix U133A (22.2 K)
rrays were carried out as described previously (6,11,12).
he original data files for datasets A and B were deposited

n the Gene Expression Omnibus database (GEO) (13) and
re accessible through GEO series accession numbers
SE3585 and GSE3586.
For the classification and the verification of the classifier

ene set, we included 2 additional studies, for which data
ere publicly available. Dataset C consists of 6 NF, 21
CM, and 10 ischemic cardiomyopathy (ICM) samples

ybridized to Affymetrix HG-U133A arrays (14). Normal-
zed gene expression data were downloaded from GEO
GSE1869). Dataset D is available online through a pro-
ram for genomic application funded by the National Heart,
ung, and Blood Institute and consists of 14 NF, 27 DCM,
nd 32 ICM samples hybridized to Affymetrix HG-U133
.0-plus arrays (15). In summary, we used 68 DCM and 40
F samples from 4 independent studies for classification.
ata extraction and statistical analysis. Preprocessing

nd most of the statistical analysis were done using R (16)
nd Bioconductor (17). After quality control, all cDNA

Abbreviations and Acronyms
DCM � dilated cardiomyopathy
GO � Gene Ontology
ICM � ischemic cardiomyopathy
NF � nonfailing
icroarray data were normalized using arrayMagic (18) and e
VSN” (19). Normalized data were filtered with respect to
ignal intensity. Quality of the HG-U133A arrays was
ssured by controlling for dynamic range, perfect match
aturation, pixel noise, grid misalignment, and signal-to-
oise ratio. Microarray data of all samples in microarray
tudy B were normalized in common using robust multi-
rray average (RMA) (20) implemented in Bioconductor’s
affy” package. Probe sets with “absent” calls in more than
0% of tissue samples in either group (NF and DCM) were
xcluded.

To determine differentially expressed genes, 2-class un-
aired significance analysis of microarrays (SAM) (21) was
pplied in both studies. Differences in gene expression were
egarded as statistically relevant if a false discovery rate
FDR) of q � 0.05 and a fold-change of �1.2 were
chieved.

Mapping of transcripts between cDNA clones and Af-
ymetrix probe sets was achieved by means of the Match-

iner software tool (22). Functional annotation of differ-
ntially expressed genes was based on hierarchical system of
O domains “cellular component,” “biological process,” and

molecular function.” Over-representation of specific GO
lasses in a gene set was statistically analyzed by “FatiGO”
23).

Expression values of selected transcripts were validated by
uantitative real-time polymerase chain reaction (PCR)
ABI Prism 7900HT Sequence Detection System; Applied
iosystems, Weiterstadt, Germany). A detailed list of genes
xamined by RT-PCR including protocols used for RT-
CR is given in the supplemental Materials and Methods
ection (see Appendix).
dentification of a gene expression signature for DCM. Pre-
iction analysis for microarrays (PAM) (24) was used for
lassification. The ability to correctly classify the status of
CM and NF samples was assessed by complete cross-

alidation implemented in the Bioconductor package
MCRestimate” (25). First, the samples in every study were
andomly divided into equally sized subsets. In each follow-
ng step, 1 subset was left aside and the classifier (filtering
nd PAM) was built on the remaining samples (training
et). The status (NF vs. DCM) of the left-out samples was
redicted and compared with the clinically diagnosed status.
ptimization of the PAM parameter and of the number of

enes remaining after variance filtering was achieved
hrough a second cross-validation within each training set.
o estimate the variability of the cross-validation result
ased on different sample compositions of the training set,
he procedure was repeated 50 times. A sample was called
misclassified” if it was incorrectly classified in more than
alf of all cross-validations.

ESULTS

ommon changes of biological processes in DCM. To
dentify differentially expressed genes, we analyzed our 2

xperimental studies, which included septal myocardial
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issue samples from 13 DCM and 15 NF hearts (dataset A)
nd left ventricular samples from 7 DCM and 5 NF hearts
dataset B) by SAM analysis. In dataset A, 1,353 transcripts
ere up-regulated and 384 were down-regulated in DCM.

n dataset B, 399 transcripts were up-regulated and 75
ranscripts were down-regulated in DCM (supplemental
able 2, see Appendix). In both studies, up-regulation was

bout 4 to 5 times more common than down-regulation,
ndicating a net transcriptional activation in heart failure.

verall, 76 transcripts were found to be consistently dereg-
lated in both studies, representing �16% overlap at the
ingle gene level between both microarray studies (supple-
ental Table 3). These transcripts included known marker

enes of heart failure, such as pro-brain natriuretic peptide
pro-BNP) (26), and chemokine (C-C motif) ligand 2
CCL2) (27), but also many genes previously not associated
ith cardiomyopathies. Validation of microarray expression
alues was done by using quantitative real-time PCR. As a
esult, we found a strong correlation for the expression ratios
etween arrays and quantitative PCR for 11 of 12 differen-
ially expressed genes analyzed in dataset A (supplemental
able 4, see Appendix).
To gain a comprehensive insight into the biological

rocesses associated with DCM, we related differentially
xpressed genes to their respective GO classes. Thereby, we
ere able to identify specific biological processes which were

onsistently enriched in up- or down-regulated transcripts
f both studies (supplemental Table 5, see Appendix). For

igure 1. Functional analysis based on Gene Ontology for selected gene cl
enes (green bars) in dilated cardiomyopathy (DCM) of datasets A (open

ere statistically significant (Fisher exact test; p � 0.05) according to “FatiGO

unction are based on supplemental Table 5 (see Appendix).
xample, both studies showed a marked up-regulation of
ranscripts involved in protein biosynthesis in DCM. How-
ver, it is interesting to note that this functional GO class
omprises qualitatively different genes in the 2 studies.

hereas the cDNA microarray study (dataset A) detected
any elongation factors, ribosomal transcripts were more

requently recognized in the Affymetrix study (dataset B)
supplemental Table 6, see Appendix).

The biological processes “immune” and “inflammatory
esponse” displayed the most significant changes in the
roup of down-regulated genes in DCM. These functional
ene classes included components of the complement sys-
em (C1QB, C1QR1, C1R, C3), chemokines (CCL2,
CL11, CCL18), interferon-induced genes (IFI27, IFI30,

FITM1, IFITM3, STAT3), calgranulins (S100A8,
100A9), and leukocyte antigens (CD14, CD53, CD163),
uggesting a profound deregulation of the immune system
n DCM (Fig. 1). In accordance with down-regulation of
mmune response genes in DCM, the functional class of
chemokine activity” displayed the most prominent down-
egulation specified by level 6 of GO category “molecular
unction.”

Consistent with prominent structural remodeling in end-
tage DCM, many deregulated transcripts were related to
xtracellular matrix composition and turnover. Notably,
p-regulation of collagen transcripts (COL5A1, COL8A1)
nd the procollagen C-endopeptidase enhancer 2
PCOLCE2) which binds to type I procollagen and poten-

omparing up-regulated genes in DCM (yellow bars) and down-regulated
) and B (striped bars). Differences in gene classes marked by an asterisk
asses c
bars
” (23). Results for cellular component, biological process, and molecular
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iates its cleavage by procollagen C-proteinases, was ob-
erved. In addition, extracellular matrix protein 2 (a member
f the small leucine rich proteoglycans (SLRP), important
or collagen fibrillogenesis), asporin, and most other mem-
ers of the SLRP family were found to be up-regulated as
ell (decorin, lumican, biglycan, fibromodulin, osteoglycin,

nd osteomodulin), highlighting their importance in extra-
ellular remodeling. Furthermore, we noted prominent
p-regulation of genes coding for Z-disc components,
ncluding caldesmon 1, sarcospan, sarcoglycan epsilon, utro-
hin, spectrin, titin, vinculin, sarcoglycan D and G, alpha-
ctinin, LIM-domain binding 3, and alpha-2-capping pro-
ein. The Z-disc is thought to act as a sensor, linking
iomechanical forces to the activation of stress pathways
28). In this sense, we were able to corroborate the desen-
itization of beta-adrenergic signaling by gene expression
nalysis with down-regulation of adrenergic, beta-1-
eceptor in end-stage DCM (supplemental Table 2, see
ppendix). Profound changes in signal transduction were

lso reflected in the down-regulation of the GO class
integral to plasma membrane” specified by level 6 of GO
ategory “cellular component.” With regard to the deregu-
ation of important signaling pathways, we found transcrip-
ional repression of the oncostatin M receptor (OSMR),
nti-apoptotic gene BCL2L1, and signal transducer
TAT3, which are involved in the protection of the
yocardium from heart failure via the JAK-STAT pathway.

igure 2. Prediction analysis for microarrays (PAM) classification. In the
isclassification rates were found in datasets A, B, and D for the classificat

he classification algorithm did not show any power in dataset C. In the se

rom dataset B (31 probe sets which correspond to 27 transcripts), now achievi
ll studies, including dataset C.
ltimately, the balance between pro- and anti-apoptotic
rograms may determine if relevant loss of myocytes occurs.
n line with this notion, we noted up-regulation of anti-
FGF1, DSIPI) and pro-apoptotic transcripts (CCL2,
CLAF1, FOXO3A).

dentification of a gene expression signature for DCM. The
econd goal of our analysis was to identify a specific set of
ranscripts that could reliably classify DCM and NF sam-
les. We approached this issue by performing the PAM
lassification method in 4 independent microarray studies.
ery low misclassification rates were found in our 2 studies

datasets A and B) and in dataset D for the classification of
F vs. DCM samples (Fig. 2). One out of 12 samples was
isclassified in dataset B. Likewise, datasets A and D

howed similar results, with 1 out of 28 and 3 out of 41
isclassified samples, respectively. In contrast, the classifi-

ation algorithm did not show any predictive power in
ataset C. This was unexpected, because the expression

evels of established molecular cardiomyopathy markers,
ncluding pro-BNA or pro-ANP, suggested a clear separa-
ion into NF and failing ventricular samples (Fig. 3).

The smallest number of probe sets used for classification
as found in dataset B, with a median of 5 probe sets

omprising 31 different probe sets and a median absolute
eviation of 2.9. Therefore, we evaluated the ability of this
et of 31 probe sets coding for 27 genes (Table 1) to
orrectly classify DCM and NF samples of the remaining 3

tep, PAM classification was applied to all 4 datasets separately. Very low
nonfailing (NF) versus dilated cardiomyopathy (DCM) samples, whereas

step, we repeated the procedure with the smallest gene signature obtained
first s
ion of
cond
ng more than 90% accuracy for classifying DCM and NF samples across
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tudies. First, we reduced datasets C and D to the 31 probe
ets that were used for classification in dataset B. Next, we
sed PAM without filtering on the reduced set for classifi-
ation and estimated the prediction power by performing a
omplete classification procedure. For dataset A, we first
etermined the presence of 17 out of 27 genes on the cDNA
icroarray and proceeded with the classification as previ-

usly described. In summary, we found that a small set of 27
enes was sufficient to classify DCM and NF hearts across
ll 4 independent studies with more than 90% accuracy (Fig.
). Remarkably, this comprehensive gene set was able to
lassify DCM and NF samples in dataset C, for which the
AM method had initially failed.
The 27-gene signature included known marker genes of

eart failure like pro-BNP, pro-atrial natriuretic peptide
pro-ANP), corin (which converts pro-ANP to biologically
ctive ANP), transcripts encoding for sarcomer structure
roteins (MYH6, MYH10), apoptotic processes (CCL2,
HLDA1, SNCA), cell growth (FRZB, SFRP4, SPOCK,
TGF), and cell cycle control (G0S2, ETV5, RARRES1).

igure 3. Mean expression � SEM of pro-brain natriuretic peptide
NPPB) in nonfailing (NF) (black bars) and dilated cardiomyopathy
DCM) samples (red bars) in datasets A to D. Statistical comparison was
arried out by Student t test.
otably, the selection of individual known marker genes m
uch as pro-BNP alone was not sufficient to classify the
CM cases because of the heterogeneous gene expression

cross all 108 myocardial samples (Fig. 3).
Because several previously described genes for heart

ailure were part of the classifier gene set, its validity might
ell hold for heart failure in general, irrespective of etiology.
e tested this hypothesis by PAM analysis for ICM and
F samples included in datasets C (ICM: n � 10; NF: n �

) and D (ICM: n � 32; NF: n � 14) and found that this
ene set classified more than 90% of these samples correctly
s well (data not shown).

ISCUSSION

ifferent etiologies and duration of dilated cardiomyopathy,
ifferences in age, gender, and medications, as well as
ndividual course of the disease contribute to the variability
f gene expression data. In addition, it is very difficult to
btain true “non-failing” human ventricular tissue, because
onor hearts may have been exposed to varying degrees of
ypoxia or hemodynamic stress which are known to be
otent inducers of chemokine and BNP gene expression
29). In the present work, we considered these variables by
ntegrating independent microarray studies from a large
umber of failing and non-failing hearts to identify com-
on transcripts and biological processes involved in the

athogenesis of DCM and to define a robust, common
enominator for DCM and NF hearts. Based on the
mallest gene set for classification from dataset B, the PAM
ethod classified all 4 human heart failure datasets with low
isclassification rates. Notably, despite the large variation

f gene expression values for single genes, the classifier as a
hole is highly valuable to distinguish DCM and NF

amples. This supports the usefulness of this molecular
pproach for future diagnostic applications. In addition, the
lassificator gene set based on DCM and NF hearts also
chieved a similarly high accuracy of classification in ICM
s in DCM samples, suggesting that this gene set could be
epresentative of molecular changes of heart failure in
eneral.

Of note, the classificator based on dataset B performed as
ell in datasets A and D as if one used classificators
enerated from these 2 datasets alone. What is more, the
ene signature from dataset B was also able to accurately
iscriminate NF and DCM samples in dataset C. As noted
y the authors of dataset C, differences in gene expression
ere greater between left ventricular assist-device (LVAD)

nd non-LVAD hearts in the DCM group than between
CM and NF samples (14). This peculiarity might impede

he PAM approach for identifying a useful classifier be-
ween DCM and NF within this dataset itself.

The classifier gene signature can be grouped into different
unctional sets with respect to the pathogenesis of DCM.
p-regulation of the cardiomyopathy markers pro-ANP

nd pro-BNP is well established in heart failure (26) and

ediated by neurohormonal dysregulation (30). Activation



Table 1. Classifier Gene Set in DCM

Gene Name

Mean of NF
(Dataset B) � SD
[Arbitrary Units]

Mean of DCM
(Dataset B) � SD
[Arbitrary Units]

Linear
Fold-Change
(Dataset B)

Ranking
Dataset B

Ranking
Dataset A

Ranking
Dataset C

Ranking
Dataset D

Adipocyte enhancer binding protein 1 349 � 122 911 � 415 2.61 16 12 21 17
Alanine-glyoxylate aminotransferase 2-like 1 205 � 129 82 � 27 0.4 19 — 8 13
Asporin 1,305 � 614 3,142 � 1,134 2.41 17 16 3 5
Activating transcription factor 3 580 � 376 271 � 83 0.47 18 — 28 12
Chemokine (C-C motif) ligand 2 2,315 � 1,039 761 � 197 0.33 9 2 11 1
Complement factor H-related 3 321 � 128 1,099 � 373 3.42 5 — 12 11
Corin 932 � 567 281 � 255 0.3 25 — 26 26
Connective tissue growth factor 567 � 270 2,006 � 737 3.54 7 5 24 28
Ets variant gene 5 310 � 57 561 � 70 1.81 31 — 25 30
Ficolin 3 1,040 � 587 465 � 306 0.45 27 15 5 8
Frizzled-related protein 230 � 72 819 � 449 3.56 12; 21 14 16; 30 7; 9
Putative lymphocyte G0/G1 switch gene 1,584 � 593 711 � 210 0.45 30 — 27 21
Inhibitor of DNA binding 4 149 � 62 474 � 198 3.17 8; 28 — 9; 29 19; 23
Kelch-like 3 802 � 103 1,722 � 444 2.15 15 13 20 18
Myosin, heavy polypeptide 6, cardiac, alpha 6,357 � 2,812 2,933 � 2,703 0.46 24 — 1 2
Myosin, heavy polypeptide 10, non-muscle 1,653 � 148 3,126 � 797 1.89 29 4 13 22
Natriuretic peptide precursor A 6,216 � 3,194 26,824 � 3,506 4.32 3 9 17 14
Natriuretic peptide precursor B 1,343 � 1,354 19,173 � 4,557 14.29 1 10 19 27
Ornithine decarboxylase 1 888 � 239 2,001 � 358 2.27 11 1 7 31
Procollagen C-endopeptidase enhancer 2 549 � 98 1,081 � 394 1.96 23 3 6 16
Pleckstrin homology-like domain, family A, member 1 365 � 124 1,425 � 490 3.90 2; 4 8 2; 4 20; 24
Retinoic acid receptor responder 1 738 � 603 119 � 48 0.16 6; 13 17 15; 18 3; 10
S100 calcium binding protein A8 1,084 � 487 266 � 142 0.25 14 — 31 6
Secreted frizzled-related protein 4 178 � 32 474 � 252 2.67 22 11 23 4
Synuclein, alpha 420 � 104 843 � 223 2.01 26 — 14 15
Sparc/osteonectin proteoglycan 904 � 359 2,268 � 679 2.51 10 7 22 29
Zinc finger and BTB domain containing 16 785 � 472 1,430 � 373 1.82 20 6 10 25

Twenty-seven transcripts classifying dilated cardiomyopathy (DCM) and nonfailing (NF) samples (generated by prediction analysis for microarrays [PAM] classification from dataset B and listed in alphabetical order). In addition to
expression values for DCM and NF samples of dataset B, the ranking of the single genes for classification of datasets A to D based on PAM parameters is given. When transcripts were represented by 2 probe sets, the ranking of both
is indicated. Genes indicated with a dash in dataset A were not present in the cDNA array dataset.
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f pro-fibrotic stress hormone pathways leads to prominent
tructural remodeling in DCM, exemplified by deregulation
f genes coding for sarcomer structure and extracellular
atrix proteins such as myosin 6 and 10, asporin,
COLCE2, kelch-like 3 (KLHL3), and adipocyte en-
ancer binding protein 1 (AEBP1). In addition to pro-
NP, further transcripts of this set of classifier genes,

ncluding the transcription factor ZBTB16 (31), the con-
ective tissue growth factor CTGF (32), and the chemokine
CL2 (33), characterize important targets of the renin-

ngiotensin system in failing myocardium, because they all
ave been shown to be regulated by angiotensin-II.
Other transcripts of this classifier gene set belong to

poptotic (PHLDA1, SNCA, CCL2) and cell growth
FRZB, SFRP4, SPOCK, CTGF) processes. Of note, the

genes coding for frizzled-related protein (FRZB) and
ecreted frizzled-related protein 4 (SFRP4) are members of
he Wnt signaling pathway, implicated in wound healing
nd regeneration of heart failure (34,35). Especially, the
xpression of the Wnt antagonist SFRP4 is associated with
yocyte apoptosis in overload-induced heart failure (34).
Furthermore, the genes coding for the complement factor
-related 3 (CFHL3), ficolin 3 (FCN3), chemokine ligand
(CCL2), and calgranulin A (S100A8) are related to stress

nd immune response. Remarkably, the GO classes “im-
une response” and “inflammatory response” showed the
ost significant changes of all biological processes in our 2

atasets, A and B. Given that DCM has a very heteroge-
eous etiology, it is plausible that a subgroup of DCM
epresents post-infectious autoimmune disease, especially in
ndividuals with genetic susceptibility. However, indepen-
ent experimental models of cardiomyopathy suggest that
ardiac remodeling itself is able to trigger immune response
36,37). Chemokine ligand 2 is a prominent member of the
roader functional group of immune and inflammatory
rocesses and was found to be down-regulated in both
atasets A and B. This chemokine, capable of interacting
ith tumor necrosis factor alpha and interleukin-6–related
athways, has been localized to the cardiomyocyte compart-
ent by immunohistochemistry (27). It promotes attraction

nd invasion of activated leukocytes into the failing myo-
ardium but is also involved in shaping the extracellular
atrix by modulating the activity of matrix metalloprotein-

ses and collagen turnover (38) as well as cell proliferation
nd induction of apoptosis (27). Down-regulation of CCL2
ranscripts in end-stage heart failure may therefore represent
n adaptive mechanism to promote cell survival. Of note,
dditional chemokines like CCL11 and CCL18 also were
ound to be down-regulated in Affymetrix and Unigene
rrays, respectively.

Given the limited availability of human myocardial sam-
les, future studies will need to correlate gene expression
atterns in myocardium to tissue specimens more readily
vailable from individual patients and suitable as myocardial
urrogates (possibly peripheral blood leukocytes). In addi-

ion to the known cardiomyopathy markers pro-ANP and
ro-BNP, we identified further genes involved in the
atriuretic system and immune response processes which
ay be promising candidates for disease biomarkers. In this

espect, the identification of a robust molecular signature of
CM across different microarray platforms and indepen-

ent studies enables careful “hypothesis driven” validation
tudies of biomarkers of heart failure and testing their
linical utility.
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or an extended version of the Materials and Methods and
upplemental tables, please see the online version of this

rticle.
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