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OBJECTIVES  This study was designed to identify a common gene expression signature in dilated
cardiomyopathy (DCM) across different microarray studies.
Dilated cardiomyopathy is a common cause of heart failure in Western countries. Although
gene expression arrays have emerged as a powerful tool for delineating complex disease
patterns, differences in platform technology, tissue heterogeneity, and small sample sizes
obscure the underlying pathophysiologic events and hamper a comprehensive interpretation
of different microarray studies in heart failure.
We accounted for tissue heterogeneity and technical aspects by performing 2 genome-wide
expression studies based on ¢cDNA and short-oligonucleotide microarray platforms which
comprised independent septal and left ventricular tissue samples from nonfailing (NF) (n =
20) and DCM (n = 20) hearts.
Concordant results emerged for major gene ontology classes between cDNA and oligonu-
cleotide microarrays. Notably, immune response processes displayed the most pronounced
down-regulation on both microarray types, linking this functional gene class to the
pathogenesis of end-stage DCM. Furthermore, a robust set of 27 genes was identified that
classified DCM and NF samples with >90% accuracy in a total of 108 myocardial samples
from our cDNA and oligonucleotide microarray studies as well as 2 publicly available datasets.
CONCLUSIONS For the first time, independent microarray datasets pointed to significant involvement of
immune response processes in end-stage DCM. Moreover, based on 4 independent
microarray datasets, we present a robust gene expression signature of DCM, encouraging
future prospective studies for the implementation of disease biomarkers in the management
of patients with heart failure. (J Am Coll Cardiol 2006;48:1610-7) © 2006 by the
American College of Cardiology Foundation

BACKGROUND

METHODS

RESULTS

Dilated cardiomyopathy (DCM) is characterized by dilata-
tion and impaired contraction of 1 or both ventricles in the
absence of significant coronary artery disease. The incidence
of DCM has been estimated to be 5 to 8 cases per 100,000

See page 1618

individuals, with a prevalence of 36 per 100,000 (1). Thus,
DCM is a leading cause of heart failure and cardiac
transplantation in Western countries (2). The high morbid-
ity and mortality associated with DCM underscore the need
for a better understanding of the underlying molecular
events leading to heart failure in DCM. So far, the natri-
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uretic peptides are the best characterized markers for diag-
nosing and managing heart failure. However, there is
significant heterogeneity in expression levels of these mo-
lecular disease markers that is not explained by left ventric-
ular function alone (3-5). Transcriptional signature analysis
is a powerful technique capable of identifying new molecular
targets which could ultimately become important for diag-
nosis and therapy of heart failure. Yet, differences in
platform technologies, experimental design, and the biolog-
ical heterogeneity associated with the use of human tissue
samples form obstacles to the successful comparison and
integration of results obtained by different microarray stud-
ies in heart failure. In addition, substantial regional variation
in gene expression exists in mammalian myocardium includ-
ing atrium, ventricle and septum or left and right side of the
heart (6-9). These differences make it difficult to determine
which transcripts are related to DCM as opposed to other
sources of biological variability.

The aim of the present study was 2-fold: First, we wanted
to identify common genes and shared biological processes
based on Gene Ontology (GO) (10) across 2 independent
microarray studies in human DCM to minimize over-
interpretation of either dataset. Biological variability was
accounted for by examining 20 DCM and 20 nonfailing
(NF) myocardial samples from different regions of human
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Abbreviations and Acronyms
DCM = dilated cardiomyopathy
GO = Gene Ontology
ICM ischemic cardiomyopathy
NF nonfailing

myocardium (septum and left ventricle of different trans-
mural origin). Our second goal aimed at establishing a
robust set of genes of DCM and NF hearts for the 2 present
and 2 additional, publicly available, microarray datasets. As
a result, we present a set of 27 genes which classified 108
NF and DCM samples in 4 independent microarray data-
sets with >90% accuracy.

METHODS

Study design. We performed 2 microarray studies with a
total of 40 patient samples. The cDNA microarray study
(dataset A) was based on 28 septal myocardial samples
obtained from 13 DCM hearts at the time of transplanta-
tion and 15 NF donor hearts that were not transplanted
because of palpable coronary calcifications. The latter pa-
tient group was not known to have any history of overt
cardiovascular disease. For our oligonucleotide microarray
study (dataset B), 12 independent subendocardial left ven-
tricular samples were collected from 7 DCM patients and 5
NF donors. Detailed patient characteristics are listed in
supplemental Table 1 (see Appendix). All transplanted
patients gave written informed consent. The investigation
was approved by the Institutional Review Board.

After excision, all tissue specimens were frozen in liquid
nitrogen and stored at —80°C. RNA isolation, sample
preparation, labeling, and hybridization to RZPD Unigene
3.1 ¢cDNA (37.5 K) and to Affymetrix U133A (22.2 K)
arrays were carried out as described previously (6,11,12).
The original data files for datasets A and B were deposited
in the Gene Expression Omnibus database (GEO) (13) and
are accessible through GEO series accession numbers
GSE3585 and GSE3586.

For the classification and the verification of the classifier
gene set, we included 2 additional studies, for which data
were publicly available. Dataset C consists of 6 NF, 21
DCM, and 10 ischemic cardiomyopathy (ICM) samples
hybridized to Affymetrix HG-U133A arrays (14). Normal-
ized gene expression data were downloaded from GEO
(GSE1869). Dataset D is available online through a pro-
gram for genomic application funded by the National Heart,
Lung, and Blood Institute and consists of 14 NF, 27 DCM,
and 32 ICM samples hybridized to Affymetrix HG-U133
2.0-plus arrays (15). In summary, we used 68 DCM and 40
NF samples from 4 independent studies for classification.
Data extraction and statistical analysis. Preprocessing
and most of the statistical analysis were done using R (16)
and Bioconductor (17). After quality control, all cDNA
microarray data were normalized using arrayMagic (18) and
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“VSN” (19). Normalized data were filtered with respect to
signal intensity. Quality of the HG-U133A arrays was
assured by controlling for dynamic range, perfect match
saturation, pixel noise, grid misalignment, and signal-to-
noise ratio. Microarray data of all samples in microarray
study B were normalized in common using robust multi-
array average (RMA) (20) implemented in Bioconductor’s
“affy” package. Probe sets with “absent” calls in more than
50% of tissue samples in either group (NF and DCM) were
excluded.

To determine differentially expressed genes, 2-class un-
paired significance analysis of microarrays (SAM) (21) was
applied in both studies. Differences in gene expression were
regarded as statistically relevant if a false discovery rate
(FDR) of q < 0.05 and a fold-change of =1.2 were
achieved.

Mapping of transcripts between cDNA clones and Af-
fymetrix probe sets was achieved by means of the Match-
Miner software tool (22). Functional annotation of differ-
entially expressed genes was based on hierarchical system of
GO domains “cellular component,” “biological process,” and
“molecular function.” Over-representation of specific GO
classes in a gene set was statistically analyzed by “FatiGO”
(23).

Expression values of selected transcripts were validated by

quantitative real-time polymerase chain reaction (PCR)
(ABI Prism 7900HT Sequence Detection System; Applied
Biosystems, Weiterstadt, Germany). A detailed list of genes
examined by RT-PCR including protocols used for RT-
PCR is given in the supplemental Materials and Methods
section (see Appendix).
Identification of a gene expression signature for DCM. Pre-
diction analysis for microarrays (PAM) (24) was used for
classification. The ability to correctly classify the status of
DCM and NF samples was assessed by complete cross-
validation implemented in the Bioconductor package
“MCRestimate” (25). First, the samples in every study were
randomly divided into equally sized subsets. In each follow-
ing step, 1 subset was left aside and the classifier (filtering
and PAM) was built on the remaining samples (training
set). The status (NF vs. DCM) of the left-out samples was
predicted and compared with the clinically diagnosed status.
Optimization of the PAM parameter and of the number of
genes remaining after variance filtering was achieved
through a second cross-validation within each training set.
To estimate the variability of the cross-validation result
based on different sample compositions of the training set,
the procedure was repeated 50 times. A sample was called
“misclassified” if it was incorrectly classified in more than
half of all cross-validations.

RESULTS

Common changes of biological processes in DCM. To
identify differentially expressed genes, we analyzed our 2
experimental studies, which included septal myocardial
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tissue samples from 13 DCM and 15 NF hearts (dataset A)
and left ventricular samples from 7 DCM and 5 NF hearts
(dataset B) by SAM analysis. In dataset A, 1,353 transcripts
were up-regulated and 384 were down-regulated in DCM.
In dataset B, 399 transcripts were up-regulated and 75
transcripts were down-regulated in DCM (supplemental
Table 2, see Appendix). In both studies, up-regulation was
about 4 to 5 times more common than down-regulation,
indicating a net transcriptional activation in heart failure.
Overall, 76 transcripts were found to be consistently dereg-
ulated in both studies, representing ~16% overlap at the
single gene level between both microarray studies (supple-
mental Table 3). These transcripts included known marker
genes of heart failure, such as pro-brain natriuretic peptide
(pro-BNP) (26), and chemokine (C-C motif) ligand 2
(CCL2) (27), but also many genes previously not associated
with cardiomyopathies. Validation of microarray expression
values was done by using quantitative real-time PCR. As a
result, we found a strong correlation for the expression ratios
between arrays and quantitative PCR for 11 of 12 differen-
tially expressed genes analyzed in dataset A (supplemental
Table 4, see Appendix).

To gain a comprehensive insight into the biological
processes associated with DCM, we related differentially
expressed genes to their respective GO classes. Thereby, we
were able to identify specific biological processes which were
consistently enriched in up- or down-regulated transcripts
of both studies (supplemental Table 5, see Appendix). For
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example, both studies showed a marked up-regulation of
transcripts involved in protein biosynthesis in DCM. How-
ever, it is interesting to note that this functional GO class
comprises qualitatively different genes in the 2 studies.
Whereas the cDNA microarray study (dataset A) detected
many elongation factors, ribosomal transcripts were more
frequently recognized in the Affymetrix study (dataset B)
(supplemental Table 6, sece Appendix).

The biological processes “immune” and “inflammatory
response” displayed the most significant changes in the
group of down-regulated genes in DCM. These functional
gene classes included components of the complement sys-
tem (C1QB, C1QR1, C1R, C3), chemokines (CCL2,
CCL11, CCL18), interferon-induced genes (IFI27, IFI30,
IFITM1, IFITM3, STATS3), calgranulins (S100AS8,
S100A9), and leukocyte antigens (CD14, CD53, CD163),
suggesting a profound deregulation of the immune system
in DCM (Fig. 1). In accordance with down-regulation of
immune response genes in DCM, the functional class of
“chemokine activity” displayed the most prominent down-
regulation specified by level 6 of GO category “molecular
function.”

Consistent with prominent structural remodeling in end-
stage DCM, many deregulated transcripts were related to
extracellular matrix composition and turnover. Notably,
up-regulation of collagen transcripts (COL5A1, COL8A1)
and the procollagen C-endopeptidase enhancer 2
(PCOLCE2) which binds to type I procollagen and poten-
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Figure 1. Functional analysis based on Gene Ontology for selected gene classes comparing up-regulated genes in DCM (yellow bars) and down-regulated
genes (green bars) in dilated cardiomyopathy (DCM) of datasets A (open bars) and B (striped bars). Differences in gene classes marked by an asterisk
were statistically significant (Fisher exact test; p < 0.05) according to “FatiGO” (23). Results for cellular component, biological process, and molecular

function are based on supplemental Table 5 (see Appendix).
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tiates its cleavage by procollagen C-proteinases, was ob-
served. In addition, extracellular matrix protein 2 (a member
of the small leucine rich proteoglycans (SLRP), important
for collagen fibrillogenesis), asporin, and most other mem-
bers of the SLRP family were found to be up-regulated as
well (decorin, lumican, biglycan, fibromodulin, osteoglycin,
and osteomodulin), highlighting their importance in extra-
cellular remodeling. Furthermore, we noted prominent
up-regulation of genes coding for Z-disc components,
including caldesmon 1, sarcospan, sarcoglycan epsilon, utro-
phin, spectrin, titin, vinculin, sarcoglycan D and G, alpha-
actinin, LIM-domain binding 3, and alpha-2-capping pro-
tein. The Z-disc is thought to act as a sensor, linking
biomechanical forces to the activation of stress pathways
(28). In this sense, we were able to corroborate the desen-
sitization of beta-adrenergic signaling by gene expression
analysis with down-regulation of adrenergic, beta-1-
receptor in end-stage DCM (supplemental Table 2, see
Appendix). Profound changes in signal transduction were
also reflected in the down-regulation of the GO class
“Integral to plasma membrane” specified by level 6 of GO
category “cellular component.” With regard to the deregu-
lation of important signaling pathways, we found transcrip-
tional repression of the oncostatin M receptor (OSMR),
anti-apoptotic gene BCL2L1, and signal transducer
STATS3, which are involved in the protection of the
myocardium from heart failure via the JAK-STAT pathway.
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Ultimately, the balance between pro- and anti-apoptotic
programs may determine if relevant loss of myocytes occurs.
In line with this notion, we noted up-regulation of anti-
(FGF1, DSIPI) and pro-apoptotic transcripts (CCL2,
BCLAF1, FOXO3A).

Identification of a gene expression signature for DCM. The
second goal of our analysis was to identify a specific set of
transcripts that could reliably classify DCM and NF sam-
ples. We approached this issue by performing the PAM
classification method in 4 independent microarray studies.
Very low misclassification rates were found in our 2 studies
(datasets A and B) and in dataset D for the classification of
NF vs. DCM samples (Fig. 2). One out of 12 samples was
misclassified in dataset B. Likewise, datasets A and D
showed similar results, with 1 out of 28 and 3 out of 41
misclassified samples, respectively. In contrast, the classifi-
cation algorithm did not show any predictive power in
dataset C. This was unexpected, because the expression
levels of established molecular cardiomyopathy markers,
including pro-BNA or pro-ANP, suggested a clear separa-
tion into NF and failing ventricular samples (Fig. 3).

The smallest number of probe sets used for classification
was found in dataset B, with a median of 5 probe sets
comprising 31 different probe sets and a median absolute
deviation of 2.9. Therefore, we evaluated the ability of this
set of 31 probe sets coding for 27 genes (Table 1) to
correctly classify DCM and NF samples of the remaining 3

misclassification
rate

PAM classification

number of probe sets
needed for
classification

DATASET B
Own Affymetrix study (HG-U133A)
7 DCM /5 NF

112

DATASET A
Own cDNA microarray study
(Unigene 3.1) - 15 DCM/ 13 NF

1/28

DATASET D
(Affymetrix HG-U133 2.0 plus)’®
27 DCM / 14 NF

3/41

DATASET C
(Affymetrix HG-U133A)4
21DCM/ 6 NF

N/A

31 > PAM classification

T with 31 probe sets

misclassification rate

461 2/28

4458 2/41

1221 2/27

Figure 2. Prediction analysis for microarrays (PAM) classification. In the first step, PAM classification was applied to all 4 datasets separately. Very low
misclassification rates were found in datasets A, B, and D for the classification of nonfailing (NF) versus dilated cardiomyopathy (DCM) samples, whereas
the classification algorithm did not show any power in dataset C. In the second step, we repeated the procedure with the smallest gene signature obtained
from dataset B (31 probe sets which correspond to 27 transcripts), now achieving more than 90% accuracy for classifying DCM and NF samples across

all studies, including dataset C.



1614 Barth et al.

Gene Expression Signature of Human DCM

U p < 0.05 p <0.05 116
o w
&5 14 pE
g5 1M E
5 2
cE 58
28 12 52
o 4 = 0
112 3%
28 S o
[ xX O
o=
10
{10
8
8
NF DCM NF DCM
dataset A dataset B
(Unigene 3.1 cDNA) (Affymetrix U133A)
e p<0.05 p=NS 4
gz T L3 £ 2
% 5 10 T % 5
- 7 5
cE 12 2 E
28 28
0 m© 0 ©
[ [ .
E— U‘; 9— L 11 a u?
32 32
w L10
8-
-9
74 N
NF DCM NF DCM
dataset C* dataset D"
Affymetrix U133A (Affymetrix U133 2.0 plus)

Figure 3. Mean expression £ SEM of pro-brain natriuretic peptide
(NPPB) in nonfailing (NF) (black bars) and dilated cardiomyopathy
(DCM) samples (red bars) in datasets A to D. Statistical comparison was
carried out by Student 7 test.

studies. First, we reduced datasets C and D to the 31 probe
sets that were used for classification in dataset B. Next, we
used PAM without filtering on the reduced set for classifi-
cation and estimated the prediction power by performing a
complete classification procedure. For dataset A, we first
determined the presence of 17 out of 27 genes on the cDNA
microarray and proceeded with the classification as previ-
ously described. In summary, we found that a small set of 27
genes was sufficient to classify DCM and NF hearts across
all 4 independent studies with more than 90% accuracy (Fig.
2). Remarkably, this comprehensive gene set was able to
classify DCM and NF samples in dataset C, for which the
PAM method had initially failed.

The 27-gene signature included known marker genes of
heart failure like pro-BNP, pro-atrial natriuretic peptide
(pro-ANP), corin (which converts pro-ANP to biologically
active ANP), transcripts encoding for sarcomer structure
proteins (MYH6, MYH10), apoptotic processes (CCL2,
PHLDA1, SNCA), cell growth (FRZB, SFRP4, SPOCK,
CTGF), and cell cycle control (G0S2, ETVS5, RARRES1).

Notably, the selection of individual known marker genes
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such as pro-BNP alone was not sufficient to classify the
DCM cases because of the heterogeneous gene expression
across all 108 myocardial samples (Fig. 3).

Because several previously described genes for heart
failure were part of the classifier gene set, its validity might
well hold for heart failure in general, irrespective of etiology.
We tested this hypothesis by PAM analysis for ICM and
NF samples included in datasets C (ICM: n = 10; NF: n =
6) and D ICM: n = 32; NF: n = 14) and found that this
gene set classified more than 90% of these samples correctly
as well (data not shown).

DISCUSSION

Different etiologies and duration of dilated cardiomyopathy,
differences in age, gender, and medications, as well as
individual course of the disease contribute to the variability
of gene expression data. In addition, it is very difficult to
obtain true “non-failing” human ventricular tissue, because
donor hearts may have been exposed to varying degrees of
hypoxia or hemodynamic stress which are known to be
potent inducers of chemokine and BNP gene expression
(29). In the present work, we considered these variables by
integrating independent microarray studies from a large
number of failing and non-failing hearts to identify com-
mon transcripts and biological processes involved in the
pathogenesis of DCM and to define a robust, common
denominator for DCM and NF hearts. Based on the
smallest gene set for classification from dataset B, the PAM
method classified all 4 human heart failure datasets with low
misclassification rates. Notably, despite the large variation
of gene expression values for single genes, the classifier as a
whole is highly valuable to distinguish DCM and NF
samples. This supports the usefulness of this molecular
approach for future diagnostic applications. In addition, the
classificator gene set based on DCM and NF hearts also
achieved a similarly high accuracy of classification in ICM
as in DCM samples, suggesting that this gene set could be
representative of molecular changes of heart failure in
general.

Of note, the classificator based on dataset B performed as
well in datasets A and D as if one used classificators
generated from these 2 datasets alone. What is more, the
gene signature from dataset B was also able to accurately
discriminate NF and DCM samples in dataset C. As noted
by the authors of dataset C, differences in gene expression
were greater between left ventricular assist-device (LVAD)
and non-LVAD hearts in the DCM group than between
DCM and NF samples (14). This peculiarity might impede
the PAM approach for identifying a useful classifier be-
tween DCM and NF within this dataset itself.

The classifier gene signature can be grouped into different
functional sets with respect to the pathogenesis of DCM.
Up-regulation of the cardiomyopathy markers pro-ANP
and pro-BNP is well established in heart failure (26) and
mediated by neurohormonal dysregulation (30). Activation



Table 1. Classifier Gene Set in DCM
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Mean of NF Mean of DCM Linear
(Dataset B) £ SD (Dataset B) = SD Fold-Change Ranking Ranking Ranking Ranking
Gene Name [Arbitrary Units] [Arbitrary Units] (Dataset B) Dataset B Dataset A Dataset C Dataset D
Adipocyte enhancer binding protein 1 349 + 122 911 = 415 2.61 16 12 21 17
Alanine-glyoxylate aminotransferase 2-like 1 205 £ 129 82 + 27 0.4 19 — 8 13
Asporin 1,305 = 614 3,142 = 1,134 2.41 17 16 3 5
Activating transcription factor 3 580 = 376 271 £ 83 0.47 18 — 28 12
Chemokine (C-C motif) ligand 2 2,315 + 1,039 761 = 197 0.33 9 2 11 1
Complement factor H-related 3 321 =128 1,099 * 373 3.42 5 — 12 11
Corin 932 + 567 281 * 255 0.3 25 — 26 26
Connective tissue growth factor 567 = 270 2,006 = 737 3.54 7 5 24 28
Ets variant gene 5 310 = 57 561 £ 70 1.81 31 = 25 30
Ficolin 3 1,040 + 587 465 * 306 0.45 27 15 5 8
Frizzled-related protein 230 =72 819 = 449 3.56 12; 21 14 16; 30 759
Putative lymphocyte GO/G1 switch gene 1,584 + 593 711 = 210 0.45 30 — 27 21
Inhibitor of DNA binding 4 149 * 62 474 + 198 3.17 8; 28 — 9; 29 19; 23
Kelch-like 3 802 £ 103 1,722 * 444 2.15 15 13 20 18
Myosin, heavy polypeptide 6, cardiac, alpha 6,357 = 2,812 2,933 = 2,703 0.46 24 = 1 2
Myosin, heavy polypeptide 10, non-muscle 1,653 + 148 3,126 + 797 1.89 29 4 13 22
Natriuretic peptide precursor A 6,216 * 3,194 26,824 * 3,506 4.32 3 9 17 14
Natriuretic peptide precursor B 1,343 + 1,354 19,173 * 4,557 14.29 1 10 19 27
Ornithine decarboxylase 1 888 + 239 2,001 = 358 227 11 1 7 31
Procollagen C-endopeptidase enhancer 2 549 + 98 1,081 + 394 1.96 23 3 6 16
Pleckstrin homology-like domain, family A, member 1 365 + 124 1,425 * 490 3.90 2; 4 8 2; 4 20; 24
Retinoic acid receptor responder 1 738 = 603 119 + 48 0.16 6; 13 17 15;18 3; 10
S100 calcium binding protein A8 1,084 + 487 266 = 142 0.25 14 = 31 6
Secreted frizzled-related protein 4 178 = 32 474 = 252 2.67 22 11 23 4
Synuclein, alpha 420 * 104 843 + 223 2.01 26 — 14 15
Sparc/osteonectin proteoglycan 904 *= 359 2,268 + 679 2.51 10 7 22 29
Zinc finger and BTB domain containing 16 785 = 472 1,430 * 373 1.82 20 6 10 25

Twenty-seven transcripts classifying dilated cardiomyopathy (DCM) and nonfailing (NF) samples (generated by prediction analysis for microarrays [PAM] classification from dataset B and listed in alphabetical order). In addition to
expression values for DCM and NF samples of dataset B, the ranking of the single genes for classification of datasets A to D based on PAM parameters is given. When transcripts were represented by 2 probe sets, the ranking of both
is indicated. Genes indicated with a dash in dataset A were not present in the cDNA array dataset.
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of pro-fibrotic stress hormone pathways leads to prominent
structural remodeling in DCM, exemplified by deregulation
of genes coding for sarcomer structure and extracellular
matrix proteins such as myosin 6 and 10, asporin,
PCOLCE2, kelch-like 3 (KLHL3), and adipocyte en-
hancer binding protein 1 (AEBP1). In addition to pro-
BNP, further transcripts of this set of classifier genes,
including the transcription factor ZBTB16 (31), the con-
nective tissue growth factor CTGF (32), and the chemokine
CCL2 (33), characterize important targets of the renin-
angiotensin system in failing myocardium, because they all
have been shown to be regulated by angiotensin-II.

Other transcripts of this classifier gene set belong to
apoptotic (PHLDA1, SNCA, CCL2) and cell growth
(FRZB, SFRP4, SPOCK, CTGF) processes. Of note, the
2 genes coding for frizzled-related protein (FRZB) and
secreted frizzled-related protein 4 (SFRP4) are members of
the Wnt signaling pathway, implicated in wound healing
and regeneration of heart failure (34,35). Especially, the
expression of the Wnt antagonist SFRP4 is associated with
myocyte apoptosis in overload-induced heart failure (34).

Furthermore, the genes coding for the complement factor
H-related 3 (CFHL3), ficolin 3 (FCN3), chemokine ligand
2 (CCL2), and calgranulin A (S100AS8) are related to stress
and immune response. Remarkably, the GO classes “im-
mune response” and “inflammatory response” showed the
most significant changes of all biological processes in our 2
datasets, A and B. Given that DCM has a very heteroge-
neous etiology, it is plausible that a subgroup of DCM
represents post-infectious autoimmune disease, especially in
individuals with genetic susceptibility. However, indepen-
dent experimental models of cardiomyopathy suggest that
cardiac remodeling itself is able to trigger immune response
(36,37). Chemokine ligand 2 is a prominent member of the
broader functional group of immune and inflammatory
processes and was found to be down-regulated in both
datasets A and B. This chemokine, capable of interacting
with tumor necrosis factor alpha and interleukin-6-related
pathways, has been localized to the cardiomyocyte compart-
ment by immunohistochemistry (27). It promotes attraction
and invasion of activated leukocytes into the failing myo-
cardium but is also involved in shaping the extracellular
matrix by modulating the activity of matrix metalloprotein-
ases and collagen turnover (38) as well as cell proliferation
and induction of apoptosis (27). Down-regulation of CCL2
transcripts in end-stage heart failure may therefore represent
an adaptive mechanism to promote cell survival. Of note,
additional chemokines like CCL11 and CCL18 also were
found to be down-regulated in Affymetrix and Unigene
arrays, respectively.

Given the limited availability of human myocardial sam-
ples, future studies will need to correlate gene expression
patterns in myocardium to tissue specimens more readily
available from individual patients and suitable as myocardial
surrogates (possibly peripheral blood leukocytes). In addi-
tion to the known cardiomyopathy markers pro-ANP and
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pro-BNP, we identified further genes involved in the
natriuretic system and immune response processes which
may be promising candidates for disease biomarkers. In this
respect, the identification of a robust molecular signature of
DCM across different microarray platforms and indepen-
dent studies enables careful “hypothesis driven” validation
studies of biomarkers of heart failure and testing their
clinical utility.
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APPENDIX

For an extended version of the Materials and Methods and
supplemental tables, please see the online version of this
article.
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