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The spanning tree invariant of Lind and Tuncel [12] is observed in

the context of loop systems of Markov chains. For n = 1, 2, 3 the

spanning tree invariants of the loop systems of a Markov chain

determined by an irreducible stochastic (n × n)-matrix P coincide

if and only if P is doubly stochastic and, in this case, the common

value of the spanning tree invariants of the loop systems is n.
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1. Introduction

LindandTuncel introduce the spanning tree invariantasan invariantofblock isomorphismofMarkov

chains [12]. Its definition is as follows. Let P be a (finite and irreducible) stochastic matrix. For every

subdigraph H of the underlying digraph D(P) = (V(P), E(P)) induced by P, let

wtP(H) = ∏
e∈E(H)

wtP(e), (1.1)

where wtP(e) = Pxy is the transition probability of the edge e = xy ∈ E(P) with x and y the initial

and terminal vertices of e (since P is stochastic,
∑

y∈V(P) Pxy = 1 for all x ∈ V(P)). For every vertex

u ∈ V(P), let
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S(u) = {T|T is a spanning tree rooted at u}
(a subdigraph T is a spanning tree rooted at u if uhas no outgoing edges in T , every vertex v ∈ V(P) \ {u}
has a unique outgoing edge in T and there exists a unique path in T from v to u). The local spanning

tree invariant at u is

τu(P) = ∑
T∈S(u)

wtP(T) (1.2)

and the spanning tree invariant is

τ(P) = ∑
u∈V(P)

τu(P). (1.3)

Our original motivation for looking at the spanning tree invariant was to determine if it was an invari-

ant of almost isomorphism, an equivalence relation introduced in [5]. We know from [12] that if the

spectrum of P is {λ1 = 1, λ2, . . . , λn}, then
τ(P) =

n∏
k=2

(1 − λk)

and this implies that the spanning tree invariant is determined by the (stochastic) zeta function (see

[1,14,4])

ζP(t) = 1

det(I − tP)
.

It is well known that almost isomorphismdoes not preserve the zeta function (see [5,8]). Hence almost

isomorphismdoes not preserve the spanning tree invariant. Anotherway to see this is bymeans of loop

systems (see [5,8,9]). We describe them formally using the semiring R+ which is defined as follows.

Let (R+,×) be the multiplicative group of the positive real numbers. Let Z[R+] be the integral group
ring on R+ and let Z+[R+] be the semiring consisting of those elements with nonnegative integral

coefficients. Let R = Z[R+][[t]] be the ring of power series with coefficients in Z[R+] and let R+
be the semiring consisting of those elements with coefficients Z+[R+]. The first return loop system at

u ∈ V(P) is described by the power series f (u) ∈ R+ defined by

1 − f (u)(t) = det(I − tP)

det(I − tQ (u))
,

where Q (u) results from P by removing the row and column corresponding to u. For any n > 1, the nth

coefficient is∑
ρ∈R+

a(ρ)
n [ρ],

where a
ρ
n equals the number of first return loops to u with weight ρ (zero is the constant term, an

instance of what is known in positive K-theory as the no Z+-cycles condition of Boyle and Wagoner

[6]). This fact comes from carrying out the weights on the following form of the zeta function of a shift

of finite type defined by a nonnegative integral matrix A,

1

det (I − tA)
= ∏

γ

(1 − t|γ |)−1

with γ ranging over all periodic orbits of length |γ | (see [13]).

The power series f (u) determines a countable state Markov chain called a loop system (we let P(u)

be its transition matrix and henceforth we may identify it with f (u)). It is a Markov chain on the loop

digraph D(f (u))with vertex set V(f (u)) and edge set E(f (u)) determined by first setting a distinguished

vertex that we also denote by u ∈ V(f (u)) and then, for each ρ which appears in f (u) and every n� 1,
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Fig. 1. A loop system at u.

a
(ρ)
n simple directed cycles at u of length n� 1, all vertex disjoint except for u, with the weight of

the outgoing edges of u being ρ and 1 the weight of all other edges. Fig. 1 describes a loop system

with two first return loops of length one, three of length two, two of length three and so forth; the

weights are not illustrated (clearly P yields at most one first return loop of length one, the illustration

showsmore to put this in the context ofmatrices overmore general rings as in [8,14]). Loop systems are

important in studying almost isomorphisms, in particular, because an irreducible and strongly positive

recurrent Markov shift is always almost isomorphic to its loop systems via finitary isomorphisms

which are magic word isomorphisms and hence have finite (exponentially fast) coding time (see also

[5,8,18]).

If P were an infinite stochastic matrix, then (1.1), (1.2) and (1.3) would make sense only as limits.

We assume that P is finite, but P(u) is infinite. Still, it is simple to determine the spanning trees on the

loop digraph D(f (u)) and therefore to obtain for the loop system f (u) an expression for the spanning

tree invariant τ(f (u)) (see Lemma 2.1). In general a Markov chain possesses loop systems with distinct

spanning tree invariants (see Theorem 2.3). Let the spanning tree invariant spectrum be {τ(f (u))}u∈V(P)

with f (u) the loop system at u ∈ V(P). The following is a natural question.

Question 1.4. When does the spanning tree invariant spectrum consist of a singleton?

If |V(P)| � 3, then the spanning tree invariants of the loop systems coincide if and only if P is doubly

stochastic (i.e. if and only if
∑

x∈V(P) Pxy = 1 for all y ∈ V(P)), and in this case |V(P)| is the common

value of the spanning tree invariants. We think that this holds in general for irreducible systems, and

that it is equivalent to a condition thatwe call the doubly stochastic condition on spanning tree invariants,

namely

τ(P) − τu(P)

τu(P)
= τ(P) − τv(P)

τv(P)
∀u, v ∈ V(P). (1.5)

On their spanning tree invariant Lind and Tuncel comment: “Since spanning trees are maximal

subgraphs without loops, this is in some sense an operation orthogonal to recurrent behavior”. (They

also point out that it is possible to construct finer invariants e.g. by the matrix of powers Pt , see

[14].) In this note we use the spanning tree invariant spectrum to detect symmetries like double

stochasticity.

There exists a general interest in doubly stochastic processes and the literature is extensive. A

fundamental fact on doubly stochastic matrices is due to Birkhoff who showed in [3] that the set of

doubly stochastic matrices is a polytope with the permutation matrices as extreme points. Recent

work on doubly stochastic matrices includes problems on (inverse) eigenvalues [10,11,15,19,17,16],

tridiagonal matrices [7,20] and trees [21,2].
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Fig. 2. In a loop system at u, the weight of the spanning tree rooted at r = u is 1.

2. The spanning tree invariant of loop systems

Henceforth P is a finite stochastic irreducible matrix such that the adjacency matrix of the under-

lying Markov shift has Perron value greater than one.

Lemma 2.1. Let f (u) ∈ R+ be a loop system of P. Write

f (u)(t) =
∞∑
k=1

∑
ρ∈R+

a
(ρ)
k [ρ]tk.

Then

τ(f (u)) = 1 +
∞∑
k=2

∑
ρ∈R+

(k − 1)a
(ρ)
k ρ.

Proof. For each vertex r ∈ V(f (u)) in the loop graph defined by f (u), there is one and only one spanning

tree rooted at r and is as follows:

1. If the root r is the distinguished vertex u, then the tree is the one that results from removing all

edges that start at u. Clearly, in this case, the weight of the tree is 1 (see Fig. 2).

2. If the root r is not the distinguished vertex u, then r belongs to a unique loop γ at u of some length

k � 2 and weight ρ (γ possesses k − 1 of this kind of vertices). The tree is the one that results from

removing all edges that start at u except for the edge that belongs to γ , and in its place remove the

only edge that starts at r. Clearly, in this case, the weight of the tree is ρ (see Fig. 3).

The result follows. �

Observation 2.2. If Q (u) results from P by removing the row and column corresponding to u, then

f (u) = Puut + ∑
i,j /=u

∞∑
k=2

Pui(Q
(u))k−2

ij Pjut
k

and thus

τ(f (u)) = 1 + ∑
i,j /=u

∞∑
k=2

(k − 1)Pui(Q
(u))k−2

ij Pju.
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Fig. 3. In a loop system at u, the weight of the spanning tree rooted at r /= u is ρ .

Fig. 4. A 2 × 2 Markov chain.

Fig. 5. The spanning trees of a 2 × 2 Markov chain.

Now, if λQ (u) is the Perron value of Q (u), then λQ (u) < 1 because Q (u) < P. It follows that there exists

c > 0 such that (Q (u))kij < cλk
Q (u) (see e.g. [13]). Hence τ(f (u)) < ∞ (more generally, it can be shown

that if an infinite matrix is strongly positive recurrent [5,9], then its spanning tree invariant is finite).

Theorem 2.3. Let P be an irreducible stochastic (2 × 2)-matrix and let f (1), f (2) ∈ R+ be the loop systems

at1and2. Then τ(f (1)) = τ(f (2)) if andonly if P is doubly stochastic and in this case τ(f (1))=τ(f (2))=2.

Proof. Let P =
(
a b
c d

)
be an irreducible (so b > 0 and c > 0) stochasticmatrix. It determines a 2 × 2

Markov chain (see Fig. 4). The local spanning tree invariants of P are as follows (see Fig. 5):

τ1(P) = c and τ2(P) = b.

Wewill show th at the spanning tree invariants of the loop systems coincide if and only if (1.5) holds,

that is, if and only if

τ2(P)

τ1(P)
= τ1(P)

τ2(P)
(2.4)

and that this is equivalent to P being doubly stochastic.

We let Q (1) = (d) and Q (2) = (a) to write the power series that describe the loop systems

f (1)(t) = [a]t +
∞∑
n=0

(
b(Q (1))nc

)
tn+2

and

f (2)(t) = [d]t +
∞∑
n=0

(
c(Q (1))nb

)
tn+2.
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Fig. 6. A 3 × 3 Markov chain.

Fig. 7. The spanning trees rooted at 1 that define the local spanning tree invariant τ1(P).

Since (Q (1))n = (dn) and (Q (2))n = (an), Lemma 2.1 implies

τ(f (1)) = 1 +
∞∑
n=0

(n + 1)bdnc = 1 + bc

∞∑
n=0

(n + 1)dn = 1 + bc

(1 − d)2
= 1 + b

c

and

τ(f (2)) = 1 +
∞∑
n=0

(n + 1)canb = 1 + bc

∞∑
n=0

(n + 1)an = 1 + bc

(1 − a)2
= 1 + c

b
,

so that τ(f (1)) = τ(f (2)) if and only if b/c = c/b, that is, if and only if (2.4) holds. In this case, b2 = c2

and hence b = c and a = d and hence P is doubly stochastic. Clearly τ(f (1)) = τ(f (2)) = 2. �

Theorem 2.4. Let P be an irreducible stochastic (3 × 3)-matrix and let f (k) ∈ R+ be the loop systems

at k = 1, 2, 3. Then τ(f (1)) = τ(f (2)) = τ(f (3)) if and only if P is doubly stochastic and in this case

τ(f (1)) = τ(f (2)) = τ(f (3)) = 3.

Proof. Let

P =
⎛
⎝a b c

d e f

g h i

⎞
⎠

be an irreducible stochastic matrix (see Fig. 6). The local spanning tree invariants of P are as follows

(see Fig. 7):

τ1(P) = dg + dh + fg,

τ2(P) = bg + bh + ch,

τ3(P) = bf + cd + cf .
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We will show that the spanning tree invariants of the loop systems coincide if and only if (1.5) holds,

that is, if

τ2(P) + τ3(P)

τ1(P)
= τ1(P) + τ3(P)

τ2(P)
= τ1(P) + τ2(P)

τ3(P)
(2.6)

and that this is equivalent to P being doubly stochastic.

For each k = 1, 2, 3, let Q (k) be the matrix that results from P by removing the kth row and column

of P. Their eigenvalues are

x1 = 1

2

(
e + i − √

α
)

and y1 = 1

2

(
e + i + √

α
)
,

with α = e2 − 2ei + i2 + 4fh� 0,

x2 = 1

2

(
a + i −

√
β

)
and y2 = 1

2

(
a + i +

√
β

)
,

with β = a2 − 2ai + i2 + 4cg � 0 and

x3 = 1

2

(
a + e − √

γ
)

and y3 = 1

2

(
a + e + √

γ
)

with γ = a2 − 2ae + e2 + 4bd � 0. Diagonalizing we obtain

(Q (1))n =
⎛
⎜⎝− e−i−√

α

2
√

α
xn1 + e−i+√

α

2
√

α
yn1 − f√

α
xn1 + f√

α
yn1

− h√
α
xn1 + h√

α
yn1

e−i+√
α

2
√

α
xn1 − e−i−√

α

2
√

α
yn1

⎞
⎟⎠ ,

(Q (2))n =
⎛
⎜⎝− a−i−√

β

2
√

β
xn2 + a−i+√

β

2
√

β
yn2 − c√

β
xn2 + c√

β
yn2

− g√
β
xn2 + g√

β
yn2

a−i+√
β

2
√

β
xn2 − a−i−√

β

2
√

β
yn2

⎞
⎟⎠ ,

(Q (3))n =
⎛
⎜⎝− a−e−√

γ

2
√

γ
xn3 + a−e+√

γ

2
√

γ
yn3 − b√

γ
xn3 + b√

γ
yn3

− d√
γ
xn3 + d√

γ
yn3

a−e+√
γ

2
√

γ
xn3 − a−e−√

γ

2
√

γ
yn3

⎞
⎟⎠

and then the loop systems are described by

f (1)(t) = at +
∞∑
n=0

(
b(Q (1))n11d + b(Q (1))n12g + c(Q (1))n21d + c(Q (1))n22g

)
tn+2,

f (2)(t) = et +
∞∑
n=0

(
d(Q (2))n11b + d(Q (2))n12h + f (Q (2))n21b + f (Q (2))n22h

)
tn+2,

f (3)(t) = it +
∞∑
n=0

(
g(Q (3))n11c + g(Q (3))n12f + h(Q (3))n21c + h(Q (3))n22f

)
tn+2.

Let

A1 = −bd

(
e − i − √

α

2
√

α

)
− bg

f√
α

− cd
h√
α

+ cg

(
e − i + √

α

2
√

α

)
,

B1 = bd

(
e − i + √

α

2
√

α

)
+ bg

f√
α

+ cd
h√
α

− cg

(
e − i − √

α

2
√

α

)
,

A2 = −db

(
a − i − √

β

2
√

β

)
− dh

c√
β

− fb
g√
β

+ fh

(
a − i + √

β

2
√

β

)
,
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B2 = db

(
a − i + √

β

2
√

β

)
+ dh

c√
β

+ fb
g√
β

− fh

(
a − i − √

β

2
√

β

)
,

A3 = −gc

(
a − e − √

γ

2
√

γ

)
− gf

b√
γ

− hc
d√
γ

+ hf

(
a − e + √

γ

2
√

γ

)
,

B3 = gc

(
a − e + √

γ

2
√

γ

)
+ gf

b√
γ

+ hc
d√
γ

− hf

(
a − e − √

γ

2
√

γ

)

(observe that A1 + B1 = bd + cg, A2 + B2 = db + fh and A3 + B3 = gc + hf ). Using Lemma 2.1, the

spanning tree invariants of the loop systems are

τ(f (1)) = 1 + A1

(1 − x1)2
+ B1

(1 − y1)2
, (2.7)

τ(f (2)) = 1 + A2

(1 − x2)2
+ B2

(1 − y2)2
, (2.8)

τ(f (3)) = 1 + A3

(1 − x3)2
+ B3

(1 − y3)2
. (2.9)

Since a = 1 − b − c, e = 1 − d − f and i = 1 − g − h, simplification yields

A1

(1 − x1)2
+ B1

(1 − y1)2
= τ2(P) + τ3(P)

τ1(P)
, (2.10)

A2

(1 − x2)2
+ B2

(1 − y2)2
= τ1(P) + τ3(P)

τ2(P)
, (2.11)

A3

(1 − x3)2
+ B3

(1 − y3)2
= τ1(P) + τ2(P)

τ3(P)
. (2.12)

Hence the spanning tree invariants of the loop systems coincide if and only if (2.6) holds.Wewill show

that this happens precisely when P is doubly stochastic. We have that

0 = τ2(P) + τ3(P)

τ1(P)
− τ1(P) + τ3(P)

τ2(P)
= τ2(P) − τ1(P)

τ1(P)τ2(P)
τ (P),

0 = τ2(P) + τ3(P)

τ1(P)
− τ1(P) + τ2(P)

τ3(P)
= τ3(P) − τ1(P)

τ1(P)τ3(P)
τ (P),

0 = τ1(P) + τ3(P)

τ2(P)
− τ1(P) + τ2(P)

τ3(P)
= τ3(P) − τ2(P)

τ2(P)τ3(P)
τ (P).

This yields the following system of equations

bg + bh + ch − dg − dh − fg = 0, (2.13)

bf + cd + cf − dg − dh − fg = 0, (2.14)

bf + cd + cf − bg − bh − ch = 0. (2.15)

From (2.13) and (2.14) we get the following system of equations on g and h,

(b − d − f )g + (b + c − d)h = 0,

(d + f )g + dh = cd + bf + cf .

Its solution is g = b + c − d and h = −b + d + f and therefore g + h = c + f . Similarly, (2.14) and

(2.15) yield the system of equations on d and f ,
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(c − g − h)d + (b + c − g)f = 0,

cd + (b + c)f = bg + bh + ch.

Its solution is d = b + c − g and f = −c + g + h and therefore d + f = b + h. Finally, (2.15) and

(2.13) yield the following system of equations on b and c,

(f − g − h)b + (d + f − h)c = 0,

(g + h)b + hc = dg + dh + fg.

Its solution is b = d + f − h and c = −f + g + h and therefore b + c = d + g. Then

P =
⎛
⎝1 − b − c b c

d 1 − d − f f

g h 1 − g − h

⎞
⎠

is doubly stochastic because g + h = c + f , d + f = b + h and b + c = d + g. The spanning tree

invariants of the loop systems are given by (2.7), (2.8) and (2.9). We show that Eqs. (2.10), (2.11) and

(2.12) are all equal to 2. Starting with (2.10), we have

b(f + g + h) + c(d + f + h)

dg + dh + fg
= b(2f + c) + c(2d + 2f − b)

cd + df + fg

= 2
bf + cd + cf

cd + df + fg
= 2

cd + df + fg

cd + df + fg
= 2.

For (2.11), we have

f (b + c + g) + d(c + g + h)

bg + bh + ch
= f (d + 2g) + d(2g + 2h − f )

bg + dh + gh

= 2
dg + dh + fg

bg + dh + gh
= 2

bg + dh + gh

bg + dh + gh
= 2.

Finally (2.12) is

g(b + d + f ) + h(b + c + d)

bf + cd + cf
= g(2b + h) + h(2b + 2c − g)

bc + bf + ch

= 2
bg + bh + ch

bc + bf + ch
= 2

bc + bf + ch

bc + bf + ch
= 2. �
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