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This paper addresses the problem of high-resolution polarized source detection and introduces a new eigenstructure-based algo-
rithm that yields direction of arrival (DOA) and polarization estimates using a vector-sensor (or multicomponent-sensor) array.
This method is based on separation of the observation space into signal and noise subspaces using fourth-order tensor decom-
position. In geophysics, in particular for reservoir acquisition and monitoring, a set of Nx-multicomponent sensors is laid on the
ground with constant distance ∆x between them. Such a data acquisition scheme has intrinsically three modes: time, distance, and
components. The proposed method needs multilinear algebra in order to preserve data structure and avoid reorganization. The
data is thus stored in tridimensional arrays rather than matrices. Higher-order eigenvalue decomposition (HOEVD) for fourth-
order tensors is considered to achieve subspaces estimation and to compute the eigenelements. We propose a tensorial version of
the MUSIC algorithm for a vector-sensor array allowing a joint estimation of DOA and signal polarization estimation. Perfor-
mances of the proposed algorithm are evaluated.

Keywords and phrases: vector-sensor array, vector MUSIC, interspectral tensor, higher-order eigenvalue decomposition for 4th-
order tensors.

1. INTRODUCTION

Seismic measurements are used for mapping geological
features to discover, locate, and evaluate gas concentrations
or oil reservoirs. For this purpose, geophysicists study elastic
waves propagating in the earth originating from artificial
sources (such as explosions) and recorded on a sensor array
(Figure 1). To analyze the recorded data, models of wave-
forms are used and estimation techniques are applied to find
parameters describing the waves such as their direction of
arrival (DOA), polarization, power, and so forth. From the
estimated parameters, it is possible to obtain information
on layer structure, depth, and so forth. [1]. In order to
map a field or a reservoir, a sensor array which gives a 2D
signal s(tn, xn) of size Nx × Nt is generally used (tn is the
time recording dimension and xn is the distance dimension
(array aperture)). After performing a Fourier transform
along the time dimension, classical scalar-sensor version of

the MUSIC algorithm can be used in order to estimate the
DOAs of sources [2].

Vector sensors are nowadays widely used in seismic ac-
quisition allowing a better characterization of the layers be-
cause of the polarization dimension added to detection pro-
cess. One sensor measures the particle-displacement vector
that describes the particle motion in 3D at a given point
in space. As the polarization is wavefield dependent, it is
used as an essential attribute to separate waves in addition
to their different DOAs. In the last decade, many array-
processing techniques for source localization and polariza-
tion estimation using vector sensors have been developed,
mainly in electromagnetics. Nehorai and Paldi [3] developed
the Cramer-Rao bound (CRB) for this problem and the vec-
tor crossproduct DOA. Li and Compton [4] developed the
ESPRIT algorithm for a vector-sensor array. MUSIC-based
algorithms for this problem were also proposed by Wong
and Zoltowski [5, 6, 7], who also developed vector-sensors
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Figure 1: Seismic acquisition scheme (reflection).

versions of ESPRIT [8, 9, 10, 11, 12]. These approaches use
matrix techniques directly derived from scalar-sensor array
processing. Such a method is based on the long-vector ap-
proach, consisting in the concatenation of all components of
the vector-sensor array in a long vector of size NcNx [8]. The
originality of our method consists in keeping multidimen-
sional structures for data organization and processing. These
structures are more adapted to the nature of polarized sig-
nals, allowing data organization closer to its multimodal in-
trinsic nature. A block of acquisition data is represented as a
3D table of sizeNc×Nx×Nt , whereNc is the number of com-
ponents of each vector sensor,Nx is the array aperture (num-
ber of sensors), and Nt is the number of time samples. The
proposed method is a version of MUSIC algorithm adapted
to this multilinear structure. The technique is very efficient
for geophysicists purpose where seismic sources have a strong
nonstationary behavior.

This correspondence is organized as follows. In Section 2,
a brief presentation of scalar-sensor array MUSIC algorithm
is given. The vector version of this estimator is then devel-
oped in Section 3. The performance of the proposed algo-
rithm evaluated in simulations is described in Section 4.

2. SCALAR-SENSORMUSIC

In order to better understand themulticomponent approach,
a short reminder of scalar-sensor MUSIC technique is pre-
sented.

The main assumptions used for the scalar-sensor MUSIC
algorithm are listed below.

(A1) Consider the case of a linear, uniform scalar-sensor ar-
ray.

(A2) The recorded signals are far-field seismic waves propa-
gated in an isotropic, homogeneous medium.

(A3) The signal is made of K sources (K is known). If K is
not known, it can be estimated from the eigenvalues
variation [13].

(A4) Sources (s1, s2, . . . , sK ) are statistically decorrelated and
spatially coherent.

(A5) They are all confined in the array plane.

(A6) Sources are considered as centered unknown deter-
ministic processes.

(A7) There are more sensors than sources (Nx > K).

(A8) The noise is centered and spatially white.

2.1. Scalar-sensor arraymodel

If we choose the first sensor of the array as a reference, the
output of themth sensor in frequency domain is given by

Xm(ν) =
K∑
k=1

Sk(ν) exp
(− j2πντmk

)
+Nm(ν), (1)

where Sk(ν) is the complex amplitude of the kth source,
Nm(ν) is the additive noise on sensorm, and τmk is the prop-
agation delay between the reference and the mth sensor for
source k. Intersensor phase-shift θk, corresponding to the kth
source will be used to characterize the DOA of the source
on the array rather than the incidence angle αk (because it is
independent of physical quantities such as intersensors dis-
tance ∆x and wave propagation velocity vk). The incidence
angle αk can then be calculated using the following relation:

θk = 2πν
∆x sinαk

vk
. (2)

The array output at frequency ν is a vector containing the
sensors samples as

x(ν) = [X1(ν) · · ·XNx (ν)
]T
, (3)

where T is the matrix transposition operator. For a plane
wave impinging on an antenna, the source vector ak models
kth-source propagation on the antenna and has the following
expression:

ak
(
θk
) = 1√

Nx

[
1, e− jθk , . . . , e− j(Nx−1)θk]T , (4)

where θk is the intersensor phase-shift corresponding to the
source Sk.

2.2. Spectral matrix and scalar-MUSIC estimator

The interspectral matrix (or crossspectral matrix) defines
second-order statistical relationships between the array out-
puts at a given frequency [14]. This matrix is described as

Γ̂ = ξ
{
xxH

}
, (5)

where H is the complex conjugate transpose and ξ{·} is the
mathematical expectation operator which allows to access an
estimate of the interspectral matrix Γ̂. Without the ξ{·} op-
erator (smoothing operator), Γ is a rank-one matrix (any de-
composition can be found and sources are fully correlated).
Eigenstructure-based source localization techniques, such as
ESPRIT and MUSIC, assume nonsingular signal correlation
matrix. In geophysical prospection, because of the impulsive
nature of sources, the recorded signals have a strong non-
stationary behavior. In order to decorrelate the signals in
the interspectral matrix, several smoothing techniques have
been proposed [15, 16, 17, 18], mainly based on the spec-
tral and spatial diversity of the signals. The drawback of spa-
tial smoothing is the reduction of effective array-aperture
length, resulting in lower resolution and accuracy, while the
frequency averaging induces bias in the DOA estimates.
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The eigenvalue decomposition (EVD) of interspectral
matrix yields

Γ̂ =
Nx∑
i=1

λivivHi (6)

with λ1 � λ2 � · · · � λNx � 0 being the eigenvalues and
vi the eigenvectors of Γ̂. The first K eigenvectors are used to
build the signal subspace projector such as

ΠS =
K∑
i=1

vivHi . (7)

The noise subspace projector is then given by

ΠN =
Nx∑

i=K+1
vivHi . (8)

Scalar-MUSIC algorithm consists in estimating DOA by
projection of the steering vector

m(θ) = 1√
Nx

[
1, e− jθ , . . . , e− j(Nx−1)θ]T (9)

on noise subspace. The estimator of DOA is obtained as the
inverse of the Frobenius norm1 of this projection:

MUSIC(θ) = 1∥∥ΠNm(θ)
∥∥ . (10)

Scalar MUSIC yields asymptotically efficient estimation in
case of uncorrelated or partially correlated signals.

Extended versions of MUSIC algorithm for multicompo-
nent sensors (mainly developed for electromagnetic anten-
nas) were proposed a couple of years ago, based on long-
vector approaches. In seismic prospection, the vector-sensor
data processing is most often done by applying the classi-
cal MUSIC algorithm independently on each component.
In order to take into account the coherent information be-
tween the components, we propose a version of the algorithm
adapted to the multidimensional nature of seismic vector-
sensor arrays acquisitions, for a better DOA estimation.

3. VECTOR-SENSOR ARRAY PROCESSING

3.1. Polarization and vector signal

We start with considering the general case of a polarized sig-
nal in a 3D space. Suppose we have a vector sensor at the
origin of a spherical coordinate system, as shown in Figure 2.
One can show that for a seismic wave propagating in a 3D
medium, particle movements are confined in a plane (polar-
ization plane). Assume that a signal is arriving from direc-
tion (α,β), where β ∈ [−π/2,π/2] is the elevation angle and

1The Frobenius norm of a vector v is given by ‖v‖ = √〈v, v〉, where 〈·〉 is
a classical scalar product.
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Figure 2: Vector-sensor array coordinate system.

α ∈ [−π,π] is the azimuth angle. We consider the polariza-
tion ellipse of the source in a fixed transverse plane spanned
by vectors �v1, �v2. The unit vectors �v1, �v2, and �u (in that or-
der) form a right-handed coordinate system (−�u is a unit
vector pointing in the signal propagation direction). The co-
ordinates of �u in the sensor’s(x, y, z) coordinate system can
be written as

�u =
[
cosα cosβ sinα cosβ sinβ

]
�x
�y
�z


 . (11)

In relation (11),

u =
[
cosα cosβ sinα cosβ sinβ

]T
(12)

represents the coordinates of the propagation vector in the
sensor coordinates system. An incoming wave s(t) generates
three signals on the three outputs sx(t), sy(t), and sz(t) of the
vector sensor. The vector-sensor response model to s(t) can
thus be written as

s(t) =


sx(t)
sy(t)
sz(t)


 = Puw(t), (13)

with w(t) the complex signal of the source signal s(t) and P
a matrix describing the orientation angle of the polarization
plane and the parameters of polarization ellipse. P has dif-
ferent expressions for different types of seismic waves [19]
(compressional, shear, Rayleigh, Love, etc. [1]).

In this paper, we propose a tensorial model for a polar-
ized source arriving on a vector-sensor array. This model
contains the same statistical information as the long-vector
model plus a modal (orientation) information (distance-
components). A tensor can be seen as a higher-ordered (> 2)-
dimensional table of numerical values with respect to a num-
ber of bases. The real or complex-valued tensors of a given
dimensionality form a linear vector space which implies def-
inition of sum and multiplication with a scalar (we will con-
sider the componentwise sum and scalar multiplication).

In order to determine the transfer function of a vector-
sensor array to an incoming polarized source, more assump-
tions have to be done in addition to those describing the
scalar case.
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(A9) We suppose that the additive noise on the sensors is
not polarized (the crosscovariance matrix for noise on
a vector-sensor components is diagonal).

(A10) Sources polarization is constant in time and along the
antenna (temporal and spatial stationarity).

(A11) Sources have different polarizations.

The mathematical model of a source k can be written as
the outer product of a vector containing information on the
source behavior along the antenna ak, and a polarization vec-
tor pk yielding the energy repartition between the compo-
nents of the vector sensor:

Ak = ak ◦ pk. (14)

The outer product A ◦B of a tensorA ∈ CI1×I2 and a tensor
B ∈ CJ1×J2 is defined by

(A ◦B)i1i2 j1 j2 = ai1i2bj1 j2 (15)

for all values of indices.
The polarized wave model described before assumes

three components oriented in the three-physical-space di-
rections. In seismic prospection, this is not always the case.
Seismic vector sensors are composed of two to four compo-
nents, geophones (recording ground movements), and hy-
drophones (water pressure sensors, for ocean bottom investi-
gations). In this case, the geometrical orthogonality between
components is no longer respected. This is why we propose
a polarization model less complex but more flexible, fitting
with the acquisition system. The DOA of the source k will
thus be characterized only by the azimuth angle αk (or the
corresponding intersensor phase-shift quantity θk). We con-
sider the case of a two-component (2C) (Nc = 2) vector-
sensor array (the formalism remains the same in the case of
an arbitrary Nc). The polarization vector for the kth source
can thus be written as

pk
(
ρk,ϕk

) = 1√
ρ2k + 1

[
1, ρke jϕk

]
, (16)

in which ρk and ϕk are the amplitude ratio and the phase
shift, respectively, between the second component of the sen-
sor and the first. The behavior of a polarized source on a two-
component vector-sensor array can be modeled by a second-
order tensor (a matrix) of rank 1:

Ak
(
θk, ρk,ϕk

) = ak
(
θk
) ◦ pk(ρk,ϕk

)
, (17)

where pk is given by (16) and ak is such that

ak
(
θk
) = 1√

Nx

[
1, e− jθk , . . . , e− j(Nx−1)θk]T . (18)

We have to estimate θk, ρk, and ϕk to characterize a source on
an Nc = 2C vector-sensor array. In frequency domain, out-
puts of the vector-sensor array are given by a Nx ×Nc matrix

in which every column corresponds to a vector component
and each row to a sensor as follows:

X(ν) =



x11(ν) x12(ν)

...
...

xNx1(ν) xNx2(ν)


 . (19)

If assumptions (A10) and (A11) are considered, at a given
frequency ν0, X(ν0) can be written as a linear combination
of K unknown deterministic signals sk with additive white
noise. For simplification, argument ν0 will be omitted so that
X(ν0) = X:



x11 x12
...

...
xNx1 xNx2


 =A •2



s1
...
sK



T

+



n11 n12
...

...
nNx1 nNx2


 . (20)

The operator •2 represents the second-mode product of a
tensor by a matrix (given by (21)).

The 2-mode product of a tensor A ∈ CI1×I2×I3 and a ma-
trix U ∈ CJ2×I2 , denoted byA •2 U, is an (I1 × J2 × I3) tensor
given by

(
A •2 U

)
i1 j2i3

=
∑
i2

ai1i2i3uj2i2 . (21)

A is a third-order tensor regrouping all the information of
the sources behavior on the vector-sensor array. Another way
of writing (20) is

X =
K∑
k=1

Aksk +N, (22)

with N the additive noise matrix.
In order to characterize the incident field, second-order

statistics are considered through a “spectral tensor.”

3.2. Interspectral tensor

Interspectral tensor is a fourth-order complex tensor of size
Nx×Nc×Nx×Nc defined as the second-order automoments
and crossmoments between all the components on all sensors
as follows:

T = ξ
{
X ◦X∗}, (23)

where an element of T is given by

ti1i2i3i4 = ξ
{
xi1i2x

∗
i3i4

}
. (24)

If we replace (22) in (23) and using (A4), (A7), (A9), and
(A10), T can be written as

T =
K∑
k=1

σ2kAk ◦ A∗k +N , (25)

in which σ2k represents the sk-source power and N = ξ{N ◦
N∗} is a fourth-order tensor containing the second-order
noise statistics.
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3.3. Higher-order eigenvalue decomposition
Compared to the long-vector spectral matrix, spectral-tensor
also includes an orientation (modal) information (distance-
components), allowing a couple of different tensor decom-
positions corresponding to different types of tensor orthog-
onality [20]. The HOEVD studied in this paper uses the con-
cept of simple orthogonality as it was also defined in [21].
HOEVD does not make full use of the modal information
but it allows detection of NxNc − 1 sources (almost Nc times
more than in the scalar case). Higher-order singular value de-
composition (HOSVD) [21] improves the resolution power
by imposing a more restrictive constraint, the strong orthogo-
nality, forcing orthogonality along each mode in the spectral
tensor. Themain drawback of thismethod is that it allows de-
tection of maximummin(Nc−1,Nx−1) sources (that is one
source on a 2C sensor-array). This explains the choice of HO-
EVD to illustrate tensor formalism in this paper. PARAFAC
(parallel factors) decomposition [21] can also be applied to
spectral tensor yielding an accurate tensor-rank estimation (a
good estimator of source number). The drawback of this de-
composition is that the resulting rank-1 tensors are not nec-
essary orthogonal which is not suitable for decomposition in
orthogonal subspaces. A detailed comparison of these tensor
decompositions is beyond the scope of this paper and should
be included in a subsequent paper.

As interspectral tensor presents a higher-order Hermitian
symmetry (ti1i2i3i4 = t∗i3i4i1i2 ), De Lathauwer [21] shows that it
can be decomposed into eigenelements bymeans of HOEVD.
Interspectral tensor can be written as

T =
P∑

p=1
λpUp ◦U∗p , (26)

where P = NxNc, λp are real eigenvalues, and Up ∈ CNx×Nc

are P mutually orthonormal eigentensors. In order to de-
fine the mutually orthonormal eigentensors, it is necessary
to generalize the well-known definitions of scalar product
and orthogonality from vector case (first-order tensors) to
second-order tensors. The scalar product 〈A,B〉 of two ten-
sorsA,B ∈ CI1×I2 is defined as

〈A,B〉 =
∑
i1,i2

b∗i1i2ai1i2 . (27)

Tensors of which the scalar product equals 0 aremutually or-
thogonal [21]. This definition is equivalent to simple orthog-
onality [20] and implies a global orthogonality of tensors.

To obtain the HOEVD of interspectral tensor, we apply
the EVD on standard matrix unfoldings [21]. For a forth-
order tensor T ∈ CNx×Nc×Nx×Nc , there are four different ways
to unfold it in order to obtain a square matrix. In our par-
ticular case, ti1i2i3i4 = t∗i3i4i1i2 only two of these unfolding tech-
niques yield Hermitian symmetric matrices. So, two linear
mappings between the vector space of T -like tensors and the
vector space of Hermitian matrices G of size NxNc × NxNc

can be defined as follows:

g1((i2−1)Nx+i1,(i4−1)Nx+i3) = t(i1,i2,i3,i4),

g2((i1−1)Nc+i2,(i3−1)Nc+i4) = t(i1,i2,i3,i4)
(28)

for all indices i1, i2, i3, and i4. In these expressions, g(i, j)
are the entries of G. The two decompositions g1 and g2
are equivalent, yielding the same eigentensors with HOEVD.
This is a natural result, the HOEVD of a pairwise symmet-
ric tensor being unique. The second-order eigentensors are
obtained by reintroduction of the tensor notation for the re-
sulting matrices in the decomposition (the inverse operation
of matrix unfolding).

3.4. Vector-MUSIC estimator

By identification of (25) with (26), we associate the first K
eigenvalues to the signal part of the observation and the other
P − K eigenvalues to the noise part. We build the noise sub-
space projector using the last P − K eigentensors as follows:

PN =
P∑

p=K+1
Up ◦U∗p . (29)

The steering tensorM(θ, ρ,ϕ) is generated as follows:

M(θ, ρ,ϕ) = a(θ) ◦ p(ρ,ϕ)

= 1√
Nx
(
1 + ρ2

)




1 ρe jϕ

e− jθ ρe j(ϕ−θ)

...
...

e− j(Nx−1)θ ρe j(ϕ−(Nx−1)θ)


 .

(30)

Vector-MUSIC estimator, denoted VM, is then computed by
projecting the steering tensorM on the noise subspace as fol-
lows:

VM(θ, ρ,ϕ) = 1∥∥〈PN ,M(θ, ρ,ϕ)
〉
i1i2

∥∥ , (31)

in which 〈PN ,M〉i1i2 is the inner product over the first two
indices, and ‖ · ‖ is the Frobenius norm.2

MUSIC-estimator values are stored in a third-order mul-
tidimensional table. So, we can detectNxNc−1 sources, while
in monocomponent-sensor case, we can estimate a maxi-
mum of Nx − 1 DOAs. In the general case of an arbitrary
number Nc of components, the number of parameters to es-
timate is 2Nc − 1. In the following section, this algorithm is
evaluated on synthetic data in order to characterize and sep-
arate seismic sources in DOA-polarization domain.

4. SIMULATION RESULTS

To illustrate the performances of vector-MUSIC algorithm,
we have considered a scenario with two seismic sources
recorded on a 2C vector-sensor array. The polarization

2The Frobenius norm of a matrix M is given by ‖M‖ =
√
Tr(MMH ),

where Tr(·) is the trace of a square matrix.
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Figure 3: Two-component seismic section. (a) First component
and (b) second component.

parameters simulated are ρ1 = 2, ϕ1 = −80◦ (−1.4 rad) for
the first source, and ρ2 = 3, ϕ2 = 60◦ (1.04 rad) for the sec-
ond. The intersensor phase-shift corresponding to the DOAs
of the sources are θ1 = −0.18 and θ2 = 0.58. The simulations
have been performed with an array ofNx = 20 vector sensors
recording Nt = 128 time samples each. The 2C of the origi-
nal data are represented in Figures 3a and 3b. Gaussian noise
has been added to a signal-to-noise ratio3 SNR1 = −7 dB
for the first component, and SNR2 = 12 dB for the second
one. To decorrelate the two sources in the interspectral ten-
sor, a frequency-smoothing technique has been used with av-
eraging over five frequency channels. This technique induces

3SNR = signal energy on the entire seismic section/noise energy on the

entire seismic section.
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Figure 4: Scalar MUSIC on each component. (a) On the first com-
ponent and (b) on the second component.

bias in θ and ϕ estimates because of the dependency on fre-
quency of these quantities. At the same time, it reinforces the
detection of sources having an intersensor phase-shift close
to zero, as it is the case for source 1. Vector-MUSIC esti-
mator has been calculated as well as the scalar-MUSIC es-
timator on each of the components independently. For θ, we
have used a computation step of 0.01 in the interval [−π,π],
ρ ∈ [0.1 : 0.1 : 10], and ϕ ∈ [−π : 0.1 : π]. In Figures
3b and 4a, we have shown the results of the scalar version
of MUSIC estimator applied to each component separately.
This method is commonly used in seismic vector-sensor ar-
ray data processing.

It is obvious that, on the first component, the two sources
are not clearly visible (Figure 4a). On the second compo-
nent (Figure 4b), the detection is more accurate but there
are still some false alarms that could mask the real detection.
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Furthermore, the estimates for θ1 and θ2 are slightly dif-
ferent on the 2C, mainly because of frequency-smoothing
technique. Figure 5 shows vector-MUSIC estimator for two
sets of polarization parameters. The solid line corresponds
to ρ1 = 2, ϕ1 = −80◦ (the polarization parameters of the
first source), and the dashed line corresponds to the second-
source polarization parameters (ρ2 = 3, ϕ2 = 60◦). We can
observe (Figure 5) that both detections are a lot smoother
than in the scalar case (the secondary lobs are much more
attenuated). It means that this estimator is more robust to
source correlation than the scalar one, allowing better results
for the same averaging technique. This improvement can be
explained by the fact that vector-MUSIC algorithm takes into
account the relationship existing between the components of
vector sensors.

Polarization parameters ρ and ϕ can also be estimated
with this method. For two values θ1 = −0.18 and θ2 = 0.58
corresponding to our sources DOAs, we represent the esti-
mator values in the polarization (ρ;ϕ) plane (Figures 6a and
6b). We find the simulated parameters slightly biased due to
the frequency averaging.

Vector-MUSIC estimator seems to be less sensitive to
source correlation (estimation accuracy) than its scalar ver-
sion. To illustrate vector-MUSIC sensitivity to spectral-
tensor estimation precision, we have computed the estimator
values for different numbers of statistically independent tri-
als. A scenario with one stationary source corrupted by noise
with an SNR = 3dB was considered. The intersensor phase-
shift corresponding to this source is θ ≈ 0.49 rad and the po-
larization parameters are ρ = 2 and ϕ = 60◦. In Figure 7, we
have represented the detection lobe corresponding to source
polarization parameters, for 10, 100, 500, and 1000 samples.
Naturally, the resolution power improves with the number of
samples, but the detection is robust even for a poor estima-
tion of spectral tensor (e.g., for 10 samples, the bias in the
estimation of θ is insignificant compared to detection lobe
width).
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Figure 6: Vector MUSIC for (a) θ = θ1(−0.18 rad) and (b) θ =
θ2(0.58 rad).
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Figure 8: Two-component seismic section, DOAs closed. (a) First
component and (b) second component.

Next, the separation powers of these two algorithms (the
scalar and vector MUSIC) will be compared on a synthetic
example.We consider the same seismic sources with the same
polarization parameters as before ρ1 = 2, ϕ1 = −80◦, ρ2 = 3,
ϕ2 = 60◦ but with close DOAs (Figures 8a and 8b) (θ1 =
0.2 rad and θ2 = 0.5 rad). In this case, averaging over five
frequency channels is not an accurate choice because of the
important value of the resulting bias. This is why we prefer a
mix smoothing technique over three channels in frequency,
and three sensors along the antenna (spatial smoothing). The
results of MUSIC algorithm applied on each component in-
dependently is shown in Figures 9a and 9b. The theoretical
position of the detection peaks has been marked by a verti-
cal line for each source. One can see that on the first com-
ponent, scalar-MUSIC estimator presents only one detection
peak corresponding to an average DOA of the two sources.
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Figure 9: Scalar MUSIC on each of the components separately. (a)
On the first component and (b) on the second component.

On the second one, the sources are correctly detected but
the detection lobes are partially superposed. Vector-MUSIC
curves, plotted for polarization parameters corresponding to
the incoming waves, give a more accurate DOAs character-
ization, isolating each source (Figure 10). If we continue to
bring θ1 closer to θ2, (θ1 = 0.3 rad, θ2 = 0.5 rad), the scalar
version of the algorithm fails to detect both sources, even on
the second component (Figure 11), while the multicompo-
nent version still performs a correct detection (Figure 12).
The explanation is on one side, the use of coherent informa-
tion between the 2C, and on the other side, the isolation of
each source on one detection curve corresponding to its pa-
rameters of polarization. This way, the superposition of de-
tection lobes is avoided.

This algorithm performs an averaging between the Nc

components, so, it should be used only when the SNR is
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Figure 10: Vector MUSIC for the 2C dataset presented in Figure 8.
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Figure 11: Scalar MUSIC on the second component for very close
DOAs.

comparable on all of them. Using a very noisy component
could strongly deteriorate the estimation performance of the
algorithm. Also, the detection of sources having exactly the
same DOA is theoretically impossible, even if they have dif-
ferent polarizations. In this case the algorithm would esti-
mate one wave with polarization parameters equal to the
mean of the impinging waves.

Figure 13 plots the DOA root mean square (RMS) esti-
mation error for the proposed algorithm and the scalar ver-
sion. Two equal-power uncorrelated polarized sources with
random initial phases impinge on a 2C sensor-array com-

3

2.5

2

1.5

1

0.5

0

V
M

am
pl
it
u
de

−3 −2 −1 0 1 2 3

θ (rad)

Source 1

Source 2

Polarization source 1
Polarization source 2

Figure 12: Vector MUSIC for very close DOAs.
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posed of 10 identical, equally spaced sensors. The sources
DOAs are θ1 = −5◦, θ2 = 10◦, and they have the follow-
ing polarization parameters: ρ1 = 2, ϕ1 = −15◦, ρ2 = 3,
ϕ1 = 20◦. One hundred frequency samples are used in
eachMonte Carlo simulation run. Five hundred independent
Monte Carlo runs contribute to each data point on each fig-
ure. Additive white Gaussian noise (AWGN) is present, and
the SNR figures are calculated relative to each signal power.

The RMS error of θ̂ plotted in these figures is defined as the

RMS of the RMS estimation error of θ̂1 and θ̂2. For scalar
MUSIC, an averaging is operated over the 2C.
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Figure 13 shows that the proposed vector MUSIC algo-
rithm yields better results than its scalar version improving
estimator behavior, especially for low SNR.

5. CONCLUSIONS

Polarization provides an additional dimension to source pa-
rameters space. Taking it into account, we have proposed a
new model and an eigenstructure-based algorithm based on
the intrinsic data structure that enables characterization of
Nc times more sources than in the monocomponent array
case. Simulations were carried out to evaluate the perfor-
mance of the proposed method. We have shown that polar-
ization diversity enhances the performance of the direction
finding system. Both, accuracy and resolving power are im-
proved. Vector-MUSIC algorithm is less sensible to the cor-
relation of the sources than its scalar version, providing at
the same time a better separation power. The algorithm is
very flexible, allowing the choice of the number of parame-
ters to estimate. This permits the extension of vector-MUSIC
algorithm to an arbitrary number of components of a vector-
sensor array.
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the Centre National de la Recherche Sci-
entifique (CNRS) and is working in the Laboratoire des Images



84 EURASIP Journal on Applied Signal Processing

et des Signaux (UMR 5083), Grenoble, France. His research inter-
ests include polarized signal processing using multilinear algebra
and hypercomplex numbers techniques, and applications of signal
processing in geophysics.
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