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ABSTRACT

Lung cancer is the leading cause of cancer-related death in
developed countries. Recently, molecular targeted therapies
have shown promising results in the management of lung
cancer. These therapies require a clear understanding of the
relevant pathways that drive carcinogenesis and mainte-
nance of the malignant phenotype. The fibroblast growth
factor receptor (FGFR) signaling axis is one such pathway
that plays a central role in normal cellular function. Alter-
ations in this pathway have been found in many cancers. In
this review article, we focus on the role of this pathway in
lung cancer. We present the molecular structure of FGFR,
the interaction of the receptor with its ligands (the fibro-
blast growth factors), its downstream signaling, and aber-
rations in the FGFR pathway. We also discuss clinical trials
involving selective and multikinase FGFR inhibitors in lung
cancer treatment.
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Methods
A systematic analysis of the literature was conducted

on March 15, 2015, by performing a MeSH (medical
subject headings) search in PubMed using the terms
FGFR and FGF combined with NSCLC, squamous cell lung
cancer, and therapeutics. The search was limited to
English-language articles published between January 1,
1990, and March 15, 2015. Abstracts from the annual
meetings of the American Society of Clinical Oncology,
European Society of Medical Oncology, and American
Association for Cancer Research and the AACR-
NCI-EORTC (American Association for Cancer
Research–National Cancer Institute–European Organisa-
tion for Research and Treatment of Cancer) International
Conference on Molecular Targets and Cancer Therapeu-
tics published between January 1, 2000, and March 15,
2015, were also considered for inclusion. The references
lists of the articles identified were also searched for other
relevant articles.
Introduction
The fibroblast growth factor receptor (FGFR)

pathway plays a key role in signal transduction in
lung cancer. It controls cellular processes such as cell
cycle progression, migration, metabolism, survival,
proliferation, and differentiation.1 It also activates
multiple signal transduction pathways, including Rat
Sarcoma (RAS) kinase and mitogen-activated protein
kinase (MAPK), which in addition to performing other
proliferative functions, are also involved in the for-
mation of new blood vessels.2 Thus, FGFR is central to
angiogenesis, embryogenesis, inflammation, and ma-
lignant tumor cell proliferation.
Fibroblast growth factor receptors
The FGFRs constitute a family of four tyrosine kinase

receptors, FGFR1 through FGFR4, which mediate cellular
signaling after binding to their high-affinity ligands,
the fibroblast growth factors (FGFs; Fig. 1). FGFR1 is
encoded by a gene present on chromosome 8p, whereas
FGFR2, FGFR3, and FGFR4 are encoded by genes present
on chromosome 10q, chromosome 4p, and chromosome
5q, respectively.

The receptor consists of an extracellular ligand-
binding domain, which is usually glycosylated, a
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Figure 1. The various fibroblast growth factor receptor splice variants and receptor activation. Alternative splicing of the
Ig3-like domain is responsible for the formation of isoforms with different ligand-binding specificity. Binding of fibroblast
growth factor ligands and heparin sulfate proteoglycan to the fibroblast growth factor receptor activates the receptor, which
results in dimerization of the receptor–ligand complex and in turn leads to transphosphorylation of the tyrosine kinase do-
mains, endocytosis of the complex, and ultimately, activation of downstream signaling cascades.
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transmembrane domain, and an active cytoplasmic
tyrosine kinase domain. The extracellular region con-
sists of a signal peptide at the N-terminus; three
immunoglobulin-like domains, designated Ig1 through
Ig3, with an acidic box consisting of 7 or 8 acidic
residues present between Ig1 and Ig2; a cell adhesion
molecule homology domain; and a positively charged
heparin-binding domain at the beginning of Ig2.3

Alternative splicing in Ig3 of FGFR1 through FGFR3
(see Fig. 1) results in isoforms with varying de-
grees of binding specificity; the FGFR3b and FGFR3c
isoforms are mainly epithelial and mesenchymal,
respectively.4,5 The transmembrane domain is inter-
posed between the extracellular and intracellular do-
mains. The intracellular region consists of a
juxtamembrane domain, which acts as a binding site
for phosphotyrosine-binding domains of proteins such
as FGFR substrate 2 (FRS2), and two kinase domains
linked by a tyrosine kinase insert.6 FRS2 functions as a
lipid-anchored docking protein and targets signaling
molecules to the plasma membrane in response to
stimulation by FGF. This complex links receptor acti-
vation with the MAPK and other signaling pathways
essential for cellular growth and differentiation.7 The
intracellular portion of FRS2 also contains additional
regulatory sequences that are subjected to autophos-
phorylation and phosphorylation by heterologous
protein kinases.8
Fibroblast growth factors
Each FGF receptor recognizes a unique subset of the

FGF family of ligands. The FGFs bind FGFRs to regulate cell
growth, migration, and differentiation during embryo-
genesis and homeostasis later in life.9 They act both in
mesenchymal and epithelial cells. There are 22 different
FGFs, identified as FGF1 through FGF23 (note that there is
no FGF15). The first family of FGFs consists of FGF1 and
FGF2, which are either secreted or remain intracellular.
The second and third families comprise FGF3 through
FGF10 and FGF16 through FGF23, respectively, and they
are always secreted. The final family consists of FGF11
through FGF14, which remain intracellular and do not
bind FGFRs. This family is referred to as FHFs or FGF ho-
mologous factors. The secreted FGFs are further sub-
divided into 2 subfamilies: hormone-like and canonical
forms. The hormone-like FGFs have low affinity for
heparin-like molecules and rely on klotho proteins, which
are transmembrane proteins that act as co-receptors for
tissue-selective cofactors to help with FGFR interaction.9

The ligand–receptor complex, in association with hepa-
rin or heparin sulfate proteoglycan, activates the receptor.
FGFs have increased affinity toward certain FGFRs
depending on the splicing pattern of these receptors.
FGF1 is considered a universal FGF because it can activate
all the FGFRs. FGF7, FGF10, and FGF22 strongly activate
FGFR2b, whereas FGF8, FGF17, and FGF18 show higher
relative activity on FGFR3c. FGF9, FGF16, and FGF20



Figure 2. The downstream signaling pathway after activation of ligand-dependent fibroblast growth factor receptor. Acti-
vation of fibroblast growth factor receptor facilitates the attachment of docking proteins and activation of key downstream
pathways: RAS–RAF–MAPK, phosphoinositide 3-kinase (PI3K)–AKT–mTOR (mammalian target of rapamycin), phospholipase c
gamma, and signal transducer and activator of transcription (STAT). The mTOR complex (mTORC) consists of mTOR, raptor,
proline-rich AKT substrate 40 kDa (PRAS40), and mammalian LST8 (mLST8), which is sensitive to and responsible for
rapamycin-induced processes.11 Activation of the P13K pathway by either growth factors or mutations leads to activation of
AKT. AKT increases the downstream signaling of mTORC by phosphorylating TSC2 and PRAS40, thereby preventing the activity
of negative regulators of mTORC.14 This mTORC activation results in the phosphorylation of 4EBP1 (eukaryotic translation
initiation factor 4E–binding protein), which prevents inactivation of Eif4E (eukaryotic initiation factor 4E), thereby leading to
cellular proliferation and angiogenesis through increased mRNA translation of cyclin D, Bcl-2, and VEGF.11 In addition, mTORC
phosphorylates S6K1, thus leading to translation of mRNAs encoding for proteins and elongation factors. Hypoxia-mediated
inhibition of mTORC1 requires expression of REDD1 (regulated in development and DNA damage responses 1) and is
dependent on tuberous sclerosis complex function.15
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preferentially activate the “c” splice forms of FGFR, and
FGF19, FGF21, and FGF23 show consistent activity
toward FGFR1c.10

FGFR signaling
FGFR signaling is achieved by changes in receptor

conformation upon ligand binding, thus leading to
receptor dimerization and subsequent activation by
autophosphorylation of the tyrosine kinase intracellular
domains (see Fig. 1). FGFs require heparin sulfate pro-
teoglycans to activate FGFR.12 The receptor dimer is sta-
bilized by a secondary binding site involving interactions
betweenFGFand Ig2 of the second receptor in the complex,
as well as by receptor–receptor interactions. Heparin or
heparin sulfate proteoglycans are also necessary for stable
dimerization of the FGF–FGFR complexes.13
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As shown in Figure 2, the activated FGFR phosphory-
lates FRS2 on several sites, thereby allowing the recruit-
ment of the adaptor proteins, son of sevenless, and
growth factor receptor–bound protein 2 (GRB2) to acti-
vate RAS and the downstream RAF and MAPK pathways.7

The activated MAPK pathway is necessary for cell cycle
progression. Further downstream signaling occurs by
means of two main pathways through the intracellular
receptor, FRS2 and phospholipase Cg, thus ultimately
leading to up-regulation of the RAS-dependent MAPK and
RAS-independent phosphoinositide 3-kinase–AKT
signaling pathways.17 After phospholipase Cg is activated,
it hydrolyzes phosphatidylinositol-4,5-biphosphate
(PIP2) to phosphatidylinositol-3,4,5-triphosphate and
diacylglycerol,18 thereby activating protein kinase C,
which partly reinforces activation of the MAPK pathway
by phosphorylating RAF. Several other pathways are also
activated by FGFRs depending on the cellular context,
including the p38 MAPK and Jun N-terminal kinase
pathways, signal transducer and activator of transcription
signaling,19,20 and ribosomal protein S6 kinase 2.21
Molecular aberrations in the FGFR
signaling pathway
Solid tumors

Although FGFRs are overexpressed in many cancers,
the significance of protein expression per se is unclear.
Molecular aberrations that are believed to be oncogenic
and therefore targetable include somatic mutations, gene
amplification, and chromosomal fusions.22 Table 1
shows the genetic aberration in FGFR in various tu-
mors.16,23 Among human cancers, FGFRs are the most
frequently mutated kinase genes.17 Constitutive FGFR
activation occurs in as many as 50% to 60% of non–
muscle-invasive and 17% of high-grade bladder cancers.
Endometrial cancer is associated with mutations in the
kinase domain of FGFR2 in 12% of cases.24 It has been
reported that up to 10% of gastric cancers are associated
with FGFR2 amplifications, which portend a poor prog-
nosis.25 FGFR1 gene amplification is present in 7.5% to
17% of all breast cancers and in 16% to 27% of luminal
B–type breast cancer,26,27 thus making this pathway an
attractive target for breast cancer therapy.

Other abnormalities in the FGFR signaling axis have
been described. Overproduction of autocrine FGF has
been observed in various tumors, including lung, esoph-
ageal, colon, hepatocellular, and prostate cancers.17,28

Paracrine FGF signaling has also been reported in small
cell lung cancer (SCLC) and portends a poor prognosis.
Furthermore, preclinical studies have demonstrated that
paracrine production of FGFs leads to neoangiogenesis in
cancer cells through FGFR1 and FGFR2.29 Altered FGFR
splicing results in an up-regulation of ligand-dependent
signaling by increasing the range of FGFs that bind with
and activate the receptors. Genome-wide association
studies have shown that SNPs within intron 2 of the
FGFR2 gene increased the risk of early-onset breast
cancer.30 Mutations in proteins that regulate internali-
zation of FGFR and thereby result in prolonged signaling
have also been described,31 as have mutations in the
negative regulators, including SPRY2, which in turn leads
to increased FGFR signaling.17

Non–small cell lung cancer
Mutations

Comprehensive analyses of genomic alteration in
squamous cell lung cancer have shown that FGFR2 mu-
tations are present in 3% of cases. The extracellular
domain mutations W290C and S320C and the kinase
domain mutations K660E and K660N are most often
involved.32 In a comprehensive analysis that sequenced
623 genes from 188 cases of primary lung adenocarci-
noma, the FGFR family of receptors was among the
highly dysregulated genes, with aberrations found in
19% of cases.33

Gene amplification
Gene amplification is a selective increase in the

number of copies of a gene sequence without a pro-
portional increase in other genes. FGFR gene amplifica-
tion causes ligand-independent signaling. Weiss et al.
found frequent FGFR1 amplification in squamous cell
lung cancer (155 of 232 lung cancer specimens) and
confirmed the presence of FGFR1 amplifications in an
independent cohort of squamous cell lung cancer sam-
ples (22% of cases by fluorescence in situ hybridization
[FISH]).34 They demonstrated that the FGFR inhibitor
PD173074 inhibited growth and induced apoptosis in
lung cancer cells carrying amplified FGFR1. They further
demonstrated that inhibition of FGFR1 with a small
molecule led to significant tumor shrinkage. A recent
meta-analysis has demonstrated a prevalence of FGFR1
amplification in lung squamous cell carcinoma of 19%.35

Chromosomal translocations
Some chromosomal rearrangements lead to proteins

fusing to the kinase domain of FGFR. These fusion pro-
teins do not undergo lysosomal degradation and are not
susceptible to negative feedback inhibition leading to
activation in the absence of a ligand and continued
signaling.36 Prominent among FGFR fusions that have
been described are BAG4–FGFR1, FGFR2–KIAA1967, and
FGFR3–TACC3.22 Cells having FGFR fusions are charac-
terized by increased sensitivity to FGFR inhibitors
PD173074 and pazopanib.22 Whole-genome sequencing
of 148 Korean patients with lung squamous cell cancer



Table 1. Genetic aberrations in FGFR in different tumors

Genetic
abberation Gene Cancer type

Amplification FGFR1 Squamous NSCLC (20%), breast cancer
(10%), ovarian cancer (5%), bladder
dancer (3%)

FGFR2 Gastric cancer (10%), breast cancer (4%)
FGFR3 Bladder cancer, salivary adenoid cystic

cancer
FGFR4 Colorectal cancer (5%)

Mutation FGFR2 Endometrial cancer (12%), Squamous
NSCLC (5%)

FGFR3 Bladder cancer (non-muscle invasive)
(50%-60%), bladder cancer (muscle
invasive)(10%-15%), cervical cancer
(5%), myeloma (5%), spermatocytic
seminoma (7%), prostate cancer (3%),
colrectal carcinoma and oral
squamous cancer

FGFR4 Rhabdomyosarcoma (7%-8%)
Translocation FGFR3 Myeloma (15%-20%), bladder cancer

(muscle invasive) (6%), glioblastoma
(3%-7%)

FGFR, fibroblast growth factor receptor; SNP, single nucleotide
polymorphism.
Data from Dieci et al.16 and Dienstmann et al.23
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revealed that two had in-frame fusion of FGFR3 with
TACC3. Analysis of the TCGA data set showed that
four of the 178 samples had FGFR3–TACC3 fusions.
FGFR3–TACC3 fusions are found in 2% of squamous cell
lung cancer.37

Small cell lung cancer
Integrated genome analysis revealed focal amplifi-

cation of FGFR1 in 6% of SCLC cases.38 In another study
with PD173074, Pardo et al. used two human SCLC
xenograft models, H-510 and H-69, and demonstrated
decreased proliferation in a dose-dependent manner
when the drug was administered orally for 28 days.
Longer median survival was observed in the H-150
xenograft than in the control animals, with the effect of
cisplatin being potentiated by concurrent use of
PD173074. In addition, complete remission was
observed in half the mice for longer than 6 months.39

Voortman et al. reported high–copy number gains of
the FGFR1 gene in SCLC.40 The frequency of 33.3%,
suggests that this could be a possible therapeutic target.
Yet another study of 13 SCLC cell lines and 68 SCLC
tumor samples from patients reported that FGFR1 mu-
tations and focal amplifications were rare in SCLC (focal
amplification of the FGFR1 gene was present in only five
tumor samples with high-level focal amplification in
only one tumor sample).41 A recent study reported a
subset of patients with SCLC with an activated FGFR
pathway that was evidenced by positive FGF2, FGF9,
and FGFR1 protein or FGFR1 gene copy number.42

Further studies are warranted to test the benefit of
FGFR inhibitors in this population of patients with
SCLC. There are no approved targeted therapies in
SCLC. This lack of approved therapies is due partly to
the scarcity of tissue for molecular studies because of
the difficulty in obtaining tissue samples on account of
the aggressive nature of the disease process. Multiple
phase 1 and phase 2 studies of the effect of FGFR in-
hibitors on patients with SCLC do exist, however
(Tables 2 and 3).43

Clinical development of FGFR
inhibitors in lung cancer

The first class of agents to be studied as FGFR in-
hibitors were multikinase antiangiogenic compounds
that had initially been developed to target vascular
endothelial growth factor receptor (VEGFR). With the
emergence of FGFR as an important target for cancer
therapy, however, these agents were repositioned as
FGFR inhibitors and studied for their FGFR-inhibitory
activity. These agents include brevanib, cediranib, dovi-
tinib, lucitanib, and nintedanib. In the past few years,
however, a number of potent and specific second-
generation inhibitors of FGFR have been introduced
into the clinic. These second-generation inhibitors are
listed in Table 2.43

Specific FGFR inhibitors
AZD4547 is a selective inhibitor of FGFR1, FGFR2,

and FGFR3 tyrosine kinases that has shown potent
antitumor activity against FGFR-deregulated tumors in
preclinical models.44 In a phase 1B open label multi-
center study of AZD4547 in 15 patients with advanced
solid tumors, eight had low amplification (FISH gene-to-
centromere ratios between 2 and 2.8) and seven had
high amplification (FISH ratios >2.8). The most common
drug-related adverse events were central serous reti-
nopathy and dyspnea. One partial response (in a patient
with high FGFR1 amplification), four patients with stable
disease, and nine patients with progressive disease
(seven cases of progression and two deaths) were re-
ported. Therefore, AZD4547 did not meet its pre-
specified efficacy end point for overall response rate to
warrant continuation. The increase in serum phosphate,
however, indicated that AZD4547 at doses of 80 mg
twice daily causes FGFR inhibition.44 Gavine et al. stud-
ied the pharmacological profile of AZD4547 in a FGFR-
driven human xenograft model; they reported potent
dose-dependent antitumor activity correlating with
continued plasma exposure.45 AZD4547 has also been
proven to effectively inhibit phosphorylation of FGFR2,
thus resulting in a significant dose-dependent reduction
in tumor growth in FGFR2-amplified xenograft (SNU-16)



Table 2. Active clinical trials of selective FGFR inhibitors in lung cancer

Drug Mechanism
Trial
identifier Phase Regimen Target tissue Status

AZD4547 FGFR1-3 NCT01824901 1, 2 Docetaxel with or without FGFR
inhibitor AZD4547 in treating
patients with recurrent NSCLC

NSCLC Active, not
recruiting

NCT01795768 2 Proof-of-concept study of AZD4547 in
patients with FGFR1- or FGFR2-
amplified tumors

Gastric cancer,
esophageal cancer,
breast cancer,
squamous cell
carcinoma of the lung

Recruiting

NCT00979134 1 Study designed to assess the safety
and tolerability of AZD4547 at
increasing doses in patients with
advanced tumors

Cancer, advanced solid
malignancies

Active, not
recruiting

NCT02154490 2, 3 Lung-MAP: S1400 biomarker-targeted
second-line therapy in treating
patients with recurrent stage
IIIB–IV squamous cell lung cancer

NSCLC Recruiting

NCT02117167 2 Intergroup Trial UNICANCER UC 0105-
1305/ IFCT 1301: efficacy of
targeted drugs guided by genomic
profiles in patients with metastatic
NSCLC (SAFIR02_Lung)

NSCLC Recruiting

BGJ398 FGFR1-3 NCT01928459 1 Phase 1b trial of BGJ398/BYL719 in
solid tumors

Advanced solid tumors Recruiting

NCT02160041 2 BGJ398 for patients with tumors with
FGFR genetic alterations
(CBGJ398XUS04)

Solid tumor,
hematologic
malignancies

Recruiting

NCT01697605 1 Phase I study of oral BGJ398 in Asian
patients

Tumor with alterations
of the FGF-R

Recruiting

NCT01004224 1 Dose escalation study in adult patients
with advanced solid malignancies

Tumors with FGFR1–3
amplification

Recruiting

LY2874455 FGFR1-4 NCT01212107 1 Study of LY2874455 in patients with
advanced cancer

Advanced cancer Active not
recruiting

JNJ-42756493 FGFR1-4 NCT01962532 1 Study to evaluate the safety,
pharmacokinetics, and
pharmacodynamics of JNJ-42756493
in patients with advanced or
refractory solid tumors or lymphoma

Advanced or refractory
solid tumors or
lymphoma

Active,
recruiting

NCT01703481 1 Study to evaluate the safety,
pharmacokinetics, and
pharmacodynamics of JNJ-42756493
in adult patients with advanced or
refractory solid tumors or lymphoma

Advanced or refractory
solid tumors or
lymphoma

Active,
recruiting

FP-1039
(Ligand
Traps)

FGF1,
FGF2,
FGF4

NCT01868022 1 Study to evaluate GSK3052230 in
combination with paclitaxel and
carboplatin, or docetaxel or as
single agent in subjects with solid
malignancies and deregulated FGF
pathway signaling

Cancer Recruiting

FGFR, fibroblast growth factor receptor; NSCLC, non–small cell lung cancer; FGF, fibroblast growth factor.
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and patient-derived gastric cancer xenograft models.46 A
three-part phase 1 study of AZD4547 was conducted in
patients with advanced solid tumors: part A was to
determine the maximum tolerated dose and continu-
ous tolerable dose (RD), part B to elucidate the phar-
macokinetic and safety profile, and part C to access the
safety and clinical activity of AZD4547 (80 mg twice
daily with continuous dosing) in patients with
amplification of FGFR1 and FGFR2. When the interim
data were reported, 43 patients had been treated in the
dose escalation phase (part A) and the RD was deter-
mined to be 80 mg orally twice daily. Dose-limiting
toxicities included elevated liver enzymes, stomatitis,
renal failure, and hyperphosphatemia. In the dose
expansion phase of the study (phase B) six patients were
treated to confirm the tolerability of the RD. In part C1,



Table 3. Active clinical trials of multikinase inhibitors in lung cancer

Agent Mechanism Trial identifier Phase Regimen Targeted tissue Status

Brivanib VEGFR, FGFR
inhibitor

NCT00798252 1 Multiple-dose study of brivanib in
combination with
chemotherapy agents in
subjects with advanced
cancers

Advanced cancers Active, not
recruiting

Dovitinib FGFR, PDGFR,
VEGFR, FLT3,
C-KIT

NCT01831726 2 Dovitinib for patients with tumor
pathway activations inhibited
by dovitinib (SIGNATURE)

NSCLC, RCC, solid
tumors,
hematologic
malignancy

Active,
recruiting

NCT01676714 2 Study of dovitinib and biomarkers
in advanced NSCLC or
advanced CRC

Advanced NSCLC, CRC Active,
recruiting

NCT01700270 1 Pharmacokinetic drug–drug
interaction study of dovitinib
(TKI258) in patients with
advanced solid tumors
(CTKI258A2120)

Advanced solid
tumors, excluding
breast cancer

Active, not
recruiting

NCT01596647 1 Pharmacokinetic drug–drug
interaction study of dovitinib
(TKI258) in patients with
advanced solid tumors

Advanced solid
tumors, excluding
breast cancer

Ongoing, not
recruiting

NCT01421004 1 Bioequivalence of 2 formulations
of TKI258 in patients with
advanced solid tumors

Advanced solid
tumors, excluding
breast cancer

Active, not
recruiting

NCT01861197 2 Phase II study of dovitinib for
FGFR1 amplified squamous
NSCLC

NSCLC Active,
recruiting

Lenvatinib FGFR, PDGFR,
VEGFR

NCT00121719 1 Open-label phase I dose
escalation study of E7080

Solid tumors Active, not
recruiting

NCT01529112 2 Study comparing the combination
of the best supportive care
plus E7080 vs. best supportive
care alone, in patients with
advanced lung cancer or lung
cancer that has spread, who
have been previously treated,
unsuccessfully, with at least 2
different treatments

NSCLC Ongoing, not
recruiting

NCT01877083 2 Study of the safety and activity of
lenvatinib (E7080) in subjects
with KIF5B-RET–positive
adenocarcinoma of the lung

KIF5B-RET–positive
adenocarcinoma of
the lung

Recruiting

Nintedanib FGFR,PDGFR,
VEGFR

NCT01948141 2 Nintedanib in treating patients
with advanced NSCLC who
have failed up to 2 previous
chemotherapy regimens

NSCLC Recruiting

NCT02225405 1 Induction study of cisplatin,
docetaxel, and nintedanib
stage IB-IIIA NSCLC

Lung cancer Not yet open

NCT01346540 1 Phase I/II study of continuous oral
treatment with BIBF 1120
added to standard
gemcitabine/cisplatin therapy
in first-line NSCLC patients
with squamous cell histology

NSCLC Active, not
recruiting

NCT01684111 1 Dose escalation trial of oral BIBF
1120 in combination with
intravenous vinorelbine in
elderly patients with advanced
NSCLC, stage IV (VENUS-1)

NSCLC Recruiting

(continued)
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Table 3. Continued

Agent Mechanism Trial identifier Phase Regimen Targeted tissue Status

NCT01683682 1 Dose escalation trial of oral BIBF
1120 in combination with
intravenous carboplatin and
vinorelbine in elderly patients
with advanced NSCLC, stage IV
(VENUS-2)

NSCLC Recruiting

NCT00876460 1 BIBF 1120 plus docetaxel (Japan)
in patients with advanced
NSCLC, phase I

NSCLC Active, not
recruiting

NCT01349296 1 BIBF 1120 and RAD001 in solid
tumors, phase I (BARIS)

Solid tumors Recruiting

NCT00805194 3 LUME-Lung 1: BIBF 1120 plus
docetaxel as compared to
placebo plus docetaxel in
second-line NSCLC

NSCLC Active, not
recruiting

NCT00806819 3 LUME-Lung 2: BIBF 1120 plus
pemetrexed compared with
placebo plus pemetrexed in
second-line nonsquamous
NSCLC

NSCLC Active, not
recruiting

NCT00979576 1 BIBF 1120 in combination with
pemetrexed in advanced
NSCLC

NSCLC Active, not
recruiting

NCT01441297 2 BIBF 1120 as second-line
treatment for small cell lung
cancer

Small cell lung
cancer; small cell
lung cancer,
recurrent

Recruiting

PI-88 FGF 1, FGF 2, VEGF NCT01828099 3 LDK378 vs. chemotherapy in
previously untreated patients
with ALK rearranged NSCLC

NSCLC Recruiting

ENMD-2076 FGFR1, KDR, FGFR2,
PDGFR, VEGFR,
FLT3, c-KIT,
Aurora K, FLT3

NCT00658671 1 Dose escalation study of ENMD-
2076 administered orally to
patients with advanced cancer

Tumors Unknown

E-3810/
Lucitanib

FGFR1, VEGFR NCT02109016 2 Study to assess the efficacy of the
VEGFR–FGFR inhibitor,
lucitanib, given to patients
with FGFR1-driven lung cancer

Squamous NSCLC,
NSCLC, stage IV
lung cancer,
metastatic lung
cancer

Recruiting

NCT01283945 1 Study of oral lucitanib (E-3810), a
dual VEGFR–FGFR tyrosine
kinase inhibitor, in patients
with solid tumors

Solid tumors Recruiting

FP-1039
(Ligand
Traps)

FGF1, FGF2, FGF4 NCT01868022 1 Study to evaluate GSK3052230 in
combination with paclitaxel
and carboplatin, or docetaxel
or as single agent in subjects
with solid tumors and
deregulated FGF pathway
signaling

Cancer Recruiting

VEGFR, vascular endothelial growth factor; FGFR, fibroblast growth factor receptor; PDGFR, platelet-derived growth factor receptor; FLT3,
Fms-related tyrosine kinase 3; NSCLC, non–small cell lung cancer; RCC, renal cell carcinoma; CRC, colorectal cancer; FGF, fibroblast growth
factor.
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21 patients with FGFR1- or FGFR2-amplified tumors
received AZD4547 (80 mg twice daily). Prolonged pe-
riods of disease stabilization (>24 weeks) were
observed in four patients. Part C2 (squamous NSCLC)
and part C3 (gastric cancer) are ongoing.47
BGJ398 is a potent inhibitor of FGFR1, FGFR2, and
FGFR3 and has shown single-agent activity in patients
with FGFR aberrations. Preliminary analysis of efficacy
data in a phase 1 study of BGJ398 in 94 patients with
advanced solid tumors with FGFR genetic alterations
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showed tumor regression in four of five patients with
urothelial cancer with FGFR3-activating mutations (with
tumor reductions ranging from 27% to 48%) and a
partial response in one patient with FGFR1-amplified
squamous cell cancer. The maximum tolerated dose was
125 mg, with the most common adverse events being
hyperphosphatemia (78%), stomatitis (37%), alopecia
(32%), and decreased appetite (32%).48 Three phase 1
studies and one phase 2 study of oral BGJ398 are
currently recruiting patients with advanced solid tumors
with alterations in FGFR.

JNJ-42756493 is a pan-FGFR inhibitor that has
shown prolonged target inhibition in preclinical models
with FGFR genetic aberrations. A multipart phase 1
study was conducted to evaluate the safety, efficacy, and
antitumor activity of JNJ-42756493 in patients with
advanced solid tumors with FGFR aberrations. The study
comprised three parts. The first part consisted of dose
escalation to determine the recommended phase 2 dose,
the second part included the biopsy cohort to confirm
the recommended phase 2 dose, and the third part
involved the expansion cohort, which evaluated anti-
tumor activity in selected patients. When the interim
data were reported, a total of 28 patients had been
treated at five dose levels (0.5, 2, 4, 6, and 9 mg daily
continuously) in part 1 of the study. The pharmacoki-
netic studies were linear and revealed a half-life of 50 to
60 hours. Dose levels higher than 6 mg achieved pre-
dictable plasma concentrations that were found to be
efficacious. The most common adverse events were
hyperphosphatemia (57%), asthenia (46%), and dry
mouth (32%).49 Parera et al. showed that JNJ-42756493
is a single-digit nanomolar FGFR1, FGFR2, FGFR3, FGFR4
tyrosine kinase inhibitor in in vitro cell line–based
xenografts and patient-derived xenografts with high
distribution to the lung, liver, and kidney tissue.50

The structure–activity relationship and chemical syn-
thesis pathway of JNJ-42756493 were reported, which
demonstrated the mechanism of fragment-based drug
discovery to report FGFR1 through FGFR4 inhibitors
with nanomolar affinity.51 JNJ-42756493 has also been
proven to inhibit the growth of glioma cells with FGFR3-
TACC fusions both in vitro and in vivo.52

LY2874455 is a potent small molecule pan-FGFR
inhibitor that exhibits a sixfold to ninefold higher
selectivity in vitro and in vivo inhibition of FGF than does
VEGF-mediated targeted signaling in mice.53 In a phase 1
multicenter nonrandomized open label study of oral
LY2874455 that consisted of dose escalation and
expansion phases, 36 patients were treated with esca-
lating doses of LY2874455. Patients received continuous
dosing with 2 to 10 mg once daily or 8 to 24 mg twice
daily. The most common adverse events related to the
drug were gastrointestinal side effects (three patients).
Pharmacokinetic studies revealed that the plasma area
under the curve increased 1.1- to 2.3-fold with twice
daily administration and the half-life was relatively
short, with no evidence of drug accumulation from a
single dose. The starting dose for the dose expansion
cohort was selected as 16 mg orally twice daily.54

Monoclonal antibodies that bind to and inactivate
specific FGF circulating ligands have been developed.
These antibodies may potentially improve the side effect
profile associated with inhibition of multiple FGFR
isoforms.

FP-1039 (GSK230) is one such soluble FGF receptor 1
Fc fusion protein that traps FGF ligands by means of high-
affinity binding, thereby preventing FGF-dependent
angiogenesis and tumor growth. FP-1039 selectively
blocks mitogenic FGFs (FGF1 through FGF10, FGF16
through FGF18, FGF20, and FGF22) without binding the
hormonal FGFs (FGF19, FGF21, and FGF23), which
require a membrane anchored co-receptor klotho for
high-affinity binding and signaling. This limits the side
effect profile preventing development of hyper-
phosphatemia due to inhibition of FGF23. FP-1039 has
been shown to inhibit tumor growth in preclinical models
with FGFR1 gene amplification.55,56 A multiarm non-
randomized open label phase 1B study is currently
recruiting patients to evaluate the safety and preliminary
efficacy of FP-1039 in combination with paclitaxel and
carboplatin in previously untreated FGFR1-amplified
metastatic squamous NSCLC (arm A), in combination with
docetaxel in FGFR1-amplified metastatic squamous NSCLC
that progressed after one line of chemotherapy (arm B), or
in combination with pemetrexed and cisplatin in patients
with untreated and unresectable metastatic pleural meso-
thelioma (armC). The studyplan calls for administering FP-
1039 as a 30-minute intravenous infusion once a week in a
21-day cycle. The starting dose will be 5 mg/kg andwill be
escalated until the maximum tolerated dose or maximum
feasible dose in combination with chemotherapy is
achieved.57

Mechanism-based toxicity of FGFR inhibition
Hyperphosphatemia has emerged as a mechanism-

based toxicity that defines specific potent FGFR
inhibitors. FGF23 is a circulating factor secreted by os-
teocytes that inhibits phosphate reabsorption in the
proximal tubular epithelial cells of the kidney; elevated
levels cause renal phosphate wasting.58 Klotho functions
as a cofactor for FGF23 and is important in FGF signaling.9

Potent inhibitors such as AZD4547 and BGJ398 inhibit
FGF23/klotho signaling, whereas FGF “trap” agents such
as FP-1039 bind circulating FGF23. The inhibition of
FGF23 through these mechanisms results in a decrease in
renal phosphate excretion and hyperphosphatemia. Thus,
similar to the incidence of hypertension with potent



18 Desai and Adjei Journal of Thoracic Oncology Vol. 11 No. 1
VEGFR inhibitors, hyperphosphatemia has been used as a
pharmacodynamic marker of FGFR pathway inhibition.48

Resistance to FGFR inhibitors
Comprehensive profiling of two different FGFR1-

amplified lung cancer subtype xenografts, NCI-H1581
(large cell lung cancer [LCLC]) and DMS114 (SCLC),
that are intrinsically resistant to FGFR inhibitors
revealed that the two LCLC and SCLC models have
different mechanisms of resistance. MET pathway acti-
vation was found in the LCLC model, and activation of
the insulin-like growth factor-1 receptor was found to be
responsible for FGFR inhibitor resistance in the SCLC
model. Targeted therapies aimed at blocking both these
pathways was observed to prevent the intrinsic resis-
tance in these FGFR-driven tumors.59

Multikinase FGFR inhibitors
Multikinase FGFR inhibitors are not selective and

target the tyrosine kinase domains present in a wide
array of receptors, including VEGFR, platelet-derived
growth factor receptor, and FGFR. They are predomi-
nantly VEGFR inhibitors with relatively weak FGFR
inhibitory activity.60 A number of these inhibitors,
including brivanib, dovitinib, lenvatinib, and nintedanib,
have been studied in lung and other tumors (predomi-
nantly as antiangiogenic compounds), and they are now
being evaluated for their anti-FGFR properties. One
agent in this class, lucitanib, is a relatively potent in-
hibitor of FGFR, VEGFR, and platelet-derived growth
factor receptor, and it has shown striking activity in an
early clinical trial. This open label, dose escalation, phase
I/IIa study evaluated the safety and efficacy of lucitanib
as monotherapy in 76 patients with advanced solid tu-
mors. The maximum tolerated dose was 30 mg/day, with
the most common adverse events being hypertension
(91%), asthenia (42%), and proteinuria (57%) related to
inhibition of the VEGFR pathway. The clinical RECIST
(response evaluation criteria in solid tumors) response
was 26%, and the progression-free survival time was 25
weeks. Fifty percent of patients with FGF-aberrant
breast cancer achieved a RECIST partial response with
a median progression-free survival time of 40.4 weeks.61

Conclusions
The FGFR pathway is crucial to normal cellular

functioning. Dysregulation in this pathway has been
identified in NSCLC, particularly squamous cell lung
cancer. A number of FGFR inhibitors are being evaluated
in NSCLC. Unfortunately, as described earlier, clinical
activity to date has been modest at best. In the current
era, agents inhibiting protein targets of genetic de-
rangements that drive lung cancer growth, such as EGFR
tyrosine kinase inhibitors and ALK and ROS inhibitors,
yield response rates in excess of 40%. Thus, the low-
level responses seen with the aforementioned FGFR in-
hibitors have been considered disappointing. Several
potential reasons underlying this low activity exist. First,
the frequency of activating mutations in the FGFR gene in
NSCLC is extremely low. Second, most studies have
selected tumors with amplification of the FGFR gene, but
the definition of gene amplification in clinical trials has
not been uniform.

Gene amplification is the production of multiple
copies of a particular gene, which then amplify the
phenotype attributed to the gene. Gene copy number can
also be increased in cases of polysomy, which is distin-
guished by an increase in copy number of all genes on
the polysomic chromosome and is therefore not a se-
lective phenomenon. Unlike mutations that are dichoto-
mized molecular events—cells are mutated or not—the
level of gene amplification can vary. It is quite likely that
the cell’s degree of “addiction” to a gene may be pro-
portional to the number of excess copies. In support of
this idea, a recent report by Gadgeel et al.62 demon-
strated that a 3.5-fold amplification of FGFR was of
clinical significance. Interestingly, in their series the
rates of FGFR1 amplification using the cutoff level of 3.5
were 5.1% in squamous cell and 4.1% in adenocarci-
noma. Thus, future studies may have to either use a
higher cutoff for defining FGFR amplification, or stratify
patients into “low,” “moderate,” and “high” amplification
groups to better discern the efficacy of these compounds.
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