The prevalence of cochlear and vestibular dysfunction in patients with cystic fibrosis

P Przeracki1, K MacLean1, V Harris1, J Seabrook2,3, A Webber4, D Lewis4, M Husin5,6, A Price2,3, 1London Health Sciences Centre, Pharmacy Services, London, Canada; 2London Health Sciences Centre, Paediatrics, London, Canada; 3Western University, Paediatrics, London, Canada; 4London Health Sciences Centre, Audiology, Ear, Nose and Throat, London, Canada; 5London Health Sciences Centre, Otolaryngology, London, Canada; 6Western University, Otolaryngology, London, Canada

Objectives: The primary objective was to determine the prevalence of cochlear (C-DF) and vestibular (V-DF) dysfunction in patients with CF at LHSC. Secondary objectives included determining if there is an association between aminglycoside (AMG) exposure or other risk factors and otoxicity in CF patients.

Methods: 73 patients with C-DF and V-DF are needed to detect a 0–10% prevalence rate with 95% confidence. Patients with a diagnosis of CF were eligible for study enrollment. Study participants completed audiometric testing to detect C-DF. V-DF was detected by completing five standard balance tests. Additional risk factors for otoxicity, including AMG exposure, were investigated.

Results: 49 patients (1–48 years of age) completed audiometric testing and 37 patients completed balance testing. Of these, 4 (8.9%) patients had C-DF and 20 (54.1%) patients had V-DF. There was no statistically significant difference in the rate of C-DF and V-DF in patients exposed to AMG as compared to those not exposed (C-DF, P=0.812; V-DF, P=0.051). Family history of hearing loss, prematurity, loud noise exposure, or ototoxic medication use did not produce statistically significant higher rates of C-DF and V-DF.

Conclusion: The prevalence of C-DF and V-DF amongst CF patients at LHSC appears to be 8.9% (95% CI 3.5–20.7%) and 54.1% (95% CI 38.4–69.0%) respectively. The high rate of V-DF may be the result of physiological immaturity or acute illness, as opposed to a pathological process. AMG exposure does not appear to be associated with an increase in C-DF and V-DF rates amongst study participants and no other risk factors were identified which might predispose CF patients to otoxicity.

Association of urinary kidney injury molecule-1 with aminoglycoside exposure in children with cystic fibrosis

S.J. McWilliam1, D.J. Antoine2, R.L. Smyth1, M. Permohamed1, 1University of Liverpool, Department of Molecular and Clinical Pharmacology, Liverpool, United Kingdom; 2University of Liverpool, MRC Centre for Drug Safety Science, Liverpool, United Kingdom; 3University College London, Institute of Child Health, London, United Kingdom

Objectives: Aminoglycoside antibiotics, commonly used for the treatment of pulmonary exacerbations in cystic fibrosis, are potentially toxic to renal proximal tubule epithelial cells. A novel urinary biomarker, Kidney Injury Molecule-1 (KIM-1), has specificity for proximal tubule injury. The aim of this study was to assess KIM-1 as a biomarker of aminoglycoside-induced nephropathy in children with cystic fibrosis.

Methods: Baseline urine samples were collected from 44 children aged 0–16 years with cystic fibrosis, and before, during and after exposure to tobramycin in 10 of these children. KIM-1 was measured using a Meso Scale Discovery analytical platform, and standardised to urinary creatinine.

Results: Mean baseline KIM-1 was 0.57 ng/mg Cr (95% Confidence Interval (CI), 0.40–0.73 ng/mg Cr, n=44). There was a significant correlation between baseline KIM-1 and the number of previous courses of aminoglycosides (R=0.70, P<0.002). During exposure to tobramycin mean peak KIM-1 was significantly elevated from baseline (mean peak KIM-1, 1.24 ng/mg Cr, 95% CI, 0.71–1.78 ng/mg Cr, P=0.02, n=10). Mean fold change [peak KIM-1 during tobramycin exposure]/[pre-treatment baseline KIM-1] was 3.03 (95% CI, 1.89–4.17).

Conclusion: In children with cystic fibrosis we have demonstrated significant acute changes in urinary KIM-1 during exposure to tobramycin, and an association of baseline KIM-1 with previous aminoglycoside exposure. KIM-1 may be a useful, non-invasive, biomarker of acute and chronic proximal tubular injury associated with exposure to aminoglycosides in children with cystic fibrosis.

Fast and convenient metalloprotease activity assay based on flow cytometry and its application in cystic fibrosis

G. Bergamini1,2, A. Sandri1, B.M. Assael2, P. Melotti2, C. Sorio1, 1University of Verona, Pathology and Diagnostics, Sec General Pathology, Verona, Italy; 2Azienda Ospedaliera Universitaria Integrata di Verona, Cystic Fibrosis Center, Verona, Italy

Objectives: Pseudomonas aeruginosa (Pa) is the most common pathogen of cystic fibrosis (CF). We focused on Pa metalloproteases (MP). The modulation of Pa virulence factors such as MP may provoke resistance to antibiotics (AZM) beneficial effects in CF patients. Our work aimed to develop a highly reproducible and easy method to detect MP activity in Pa clinical strains and establish the sensitivity of it to AZM.

Methods: Fluorochrome-labeled substrate (FITC-gelatin) coated microspheres allowed to evaluate MP activity in conditioned media (CM) from Pa clinical strains and in spots of CF patients and the effect of AZM treatment on Pa strains able to release MPs.

Results: MP activity was measured in CM from 136 isolates classified as sporadic and 134 defined as chronic. Activity was detected in 100 of 136 sporadic strains (73%) while this was true only for 70 of 134 (52%) chronic strains (p<0.0001, Fisher’s exact test). AZM treatment induced decrease of MP activity in 76 of 91 (83%) sporadic strains while it had a similar effect only on 28 of 56 chronic strains (50%) (p<0.0001, Fisher’s exact test). We measured MP activity in the cell-free spuata from CF patients Pa chronically colonized being untreated or treated with AZM (n=37). A strong decrease of fluorescence was detected in both conditions (76.4% reduction average based on MFI values, for n=14 untreated patients, 74.9% reduction for n=23 AZM-treated patients).

Conclusion: This method is sensitive and reproducible and allows a simple data interpretation. AZM treatment decrease MP activity in Pa. Bacterial MP released by Pa might contribute, along with leukocyte-derived enzymes, to lung damage in CF patients.