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Abstract

For a nonnegative self-adjoint operator A0 acting on a Hilbert space H singular perturbations of the form
A0 + V , V = ∑n

1 bij 〈ψj , ·〉ψi are studied under some additional requirements of symmetry imposed on
the initial operator A0 and the singular elements ψj . A concept of symmetry is defined by means of a
one-parameter family of unitary operators U that is motivated by results due to R.S. Phillips. The abstract
framework to study singular perturbations with symmetries developed in the paper allows one to incorporate
physically meaningful connections between singular potentials V and the corresponding self-adjoint real-
izations of A0 +V . The results are applied for the investigation of singular perturbations of the Schrödinger
operator in L2(R3) and for the study of a (fractional) p-adic Schrödinger type operator with point interac-
tions.
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1. Introduction

Let A0 be an unbounded nonnegative self-adjoint operator acting on a Hilbert space H and let
H2(A0) ⊂ H1(A0) ⊂ H ⊂ H−1(A0) ⊂ H−2(A0) be the standard scale of Hilbert spaces associated
with A0. More precisely,

Hk(A0) = D
(
A

k/2
0

)
, k = 1,2, (1.1)

equipped with the norm ‖u‖k = ‖(A0 + I )k/2u‖. The dual spaces H−k(A0) can be defined as the
completions of H with respect to the norms ‖u‖−k = ‖(A0 + I )−k/2u‖ (u ∈ H). The resolvent
operator (A0 + I )−1 can be continuously extended to an isometric mapping (A0 + I )−1 from
H−2(A0) onto H and the relation

〈ψ,u〉 = (
(A0 + I )u, (A0 + I )−1ψ

)
, u ∈ H2(A0), (1.2)

enables one to identify the elements ψ ∈ H−2(A0) as linear functionals on H2(A0).
Consider the heuristic expression

A0 +
n∑

i,j=1

bij 〈ψj , ·〉ψi, bij ∈ C, n ∈ N, (1.3)

where elements ψj (1 � j � n) form a linearly independent system in H−2(A0). In what fol-
lows it is supposed that the linear span X of {ψj }nj=1 satisfies the condition X ∩ H = {0}, i.e.,
elements ψj are H-independent. In this case, the perturbation V = ∑n

i,j=1 bij 〈ψj , ·〉ψi is said to
be singular and the formula

Asym = A0 � D(Asym), D(Asym) = {
u ∈ D(A0): 〈ψj ,u〉 = 0, 1 � j � n

}
(1.4)

determines a closed densely defined symmetric operator in H.
In the theory of singular perturbations, cf. e.g. [3,5,23], each intermediate extension A of

Asym, i.e., Asym ⊂ A ⊂ A∗
sym, can be viewed to be singularly perturbed with respect to A0 and,

in general, such an extension can be regarded as an operator-realization of (1.3) in H. In this
context, the natural question arises whether and how one could establish a physically meaningful
correspondence between the parameters bij of the singular potential V and the intermediate
extensions of Asym. The investigation of this problem is one of goals of the present paper. In the
approach developed by S. Albeverio and P. Kurasov in [4,5] one considers an operator realization
A of (1.3) by setting

A = AR � D(A), D(A) = {
f ∈ D

(
A∗

sym

)
: ARf ∈ H

}
, (1.5)

where

AR = A0 +
n∑

i,j=1

bij

〈
ψex

j , ·〉ψi (1.6)

is seen as a regularization of (1.3).
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Formula (1.6) involves a construction of the extended functionals 〈ψex
j , ·〉 defined on

D(A∗
sym). These functionals are uniquely determined by the choice of a Hermitian matrix

R = (rjp)nj,p=1. Since for elements ψ ∈ X ∩ H−1(A0) the functionals 〈ψ, ·〉 admit extensions by
continuity onto H1(A0) ∩ D(A∗

sym), a lot of natural restrictions appears in the choice of R. For
their preservation the concept of admissible matrices R for the regularization of (1.3) has been
introduced in [4, Definition 3.1.2]. However, this definition involves certain spectral measures
and, in what follows, their calculation will be avoided. In fact, an equivalent operator concept
of admissible large coupling limits of (1.3) is introduced in the form convenient for the further
studies in the present paper.

If the singular potential V in (1.3) is not form-bounded (i.e., X 	⊂ H−1(A0)), then an admis-
sible large coupling limit A∞ cannot be determined uniquely and one needs to impose some
extra assumptions to achieve the uniqueness. For instance, in many applications, the condition of
extremality [9,10] allows one to select a unique operator A∞ (see Theorem 3.12). It should be
noted that the concept of extremality is physically reasonable. For example, extremal operators
determine free evolutions in the Lax–Phillips scattering theory [31].

Another approach inspired by [4,5,30] deals with the preservation of initially existing sym-
metries of singular elements ψj in the definition of the extended functionals ψex

j . To study this
problem in an abstract framework, one needs to define the notion of symmetry for the unper-
turbed operator A0 and for the singular elements ψj in (1.3). Generalizing the ideas suggested in
[5,26,37], the required definitions will be formulated here as follows:

Let T be a subset of the real line R and let U = {Ut }t∈T be a one-parameter family of unitary
operators acting on H with the following property:

Ut ∈ U ⇔ U∗
t ∈ U. (1.7)

Definition 1.1. (See [20].) A linear operator A (	= 0) acting in H is said to be p(t)-homogeneous
with respect to U if there exists a real function p(t) defined on T such that

UtA = p(t)AUt , ∀t ∈ T. (1.8)

In other words, the set U determines the structure of a symmetry and the property of A to be
p(t)-homogeneous with respect to U means that A possesses a certain symmetry with respect
to U.

Definition 1.2. (See [20].) A singular element ψ ∈ H−2(A0) \ H is said to be ξ(t)-invariant with
respect to U if there exists a real function ξ(t) defined on T such that

Utψ = ξ(t)ψ, ∀t ∈ T, (1.9)

where Ut is the continuation of Ut onto H−2(A0) (see Section 4 for details).

The main aim of the paper is to study (1.3) assuming that the initial operator A0 is p(t)-
homogeneous and the singular elements ψj are ξj (t)-invariant with respect to U. It appears
that the preservation of ξj (t)-invariance for the extended functionals 〈ψex

j , ·〉 is equivalent to
the p(t)-homogeneity of the operator A∞ which is used for the regularization of (1.3) (Theo-
rem 4.8). Combining this result with the complete description of admissible large coupling limits
(Theorem 3.6) allows one to select a unique admissible large coupling limit A∞ by imposing the
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condition of p(t)-homogeneity (Theorems 4.13, 4.14). One of interesting properties discovered
here is the possibility to get the Friedrichs and the Krein–von Neumann extension (and more gen-
erally, all p(t)-homogeneous self-adjoint extensions transversal to A0) as solutions of a system
of equations involving the functions p(t) and ξj (t) (Corollary 4.10, Proposition 4.16).

The choice of a p(t)-homogeneous admissible large coupling limit A∞ for the regularization
of (1.3) immediately gives a new specific relation for the corresponding Weyl function M(z)

(Theorem 5.5) and enables one to establish simple relations involving the functions p(t) and
ξj (t), and the properties of operator realizations of (1.3) (Theorem 5.1, Proposition 5.3).

It is well known, see e.g. [2,13,25,30] that the Schrödinger operators perturbed by potentials
homogeneous with respect to a certain set U of unitary operators might possess a lot of interest-
ing properties. Obviously, such properties become even more meaningful if, in addition to (1.7),
the set U has further algebraic group properties. In particular, if U is the set of scaling trans-
formations, then the additional multiplicative property Ut1Ut2 = Ut2Ut1 = Ut1t2 of it elements
enables one to get simple solutions of many problems (like description of nonnegative operator
realizations, spectral properties, completeness of the wave operators, explicit form of the scat-
tering matrix) for Schrödinger operators with singular potentials ξ(t)-invariant with respect to
scaling transformations in R3 (Section 6).

The abstract approach to the notion of symmetry developed in the paper can be also useful for
the study of supersingular perturbations [30], for applications in the non-Archimedean analysis
(Example 5.6), and for the investigation of Weyl families of boundary relations [15].

In a very recent paper [36], K.A. Makarov and E. Tsekanovskii considered the so-called μ-
scale invariant operators, which can be seen as a special case of p(t)-homogeneous operators
in the present paper. The main result of [36] is intimately related to [20, Lemma 4.5], see also
Section 4 below.

Throughout the paper D(A), R(A), and kerA denote the domain, the range, and the null-
space of a linear operator A, respectively, while A � D stands for the restriction of A to the
set D.

2. Preliminaries on operator realizations

Following [4,5] an operator realization A of (1.3) in H are defined by (1.5), (1.6). To clarify
the meaning of A0 and ψex

j in (1.6), observe that A0 stands for the continuation of A0 as a

bounded linear operator acting from H into H−2(A0). Using the extended resolvent (A0 + I )−1

this continuation can be determined also by the formula

A0f = [
(A0 + I )−1]−1

f − f, ∀f ∈ H. (2.1)

The linear functionals 〈ψex
j , ·〉 are extensions of 〈ψj , ·〉 onto D(A∗

sym). Using the well-known
relation

D
(
A∗

sym

) = D(A0) +̇ H, where H = ker
(
A∗

sym + I
)
, (2.2)

one concludes that 〈ψj , ·〉 can be extended onto D(A∗
sym) by fixing their values on H. It follows

from (1.2) and (1.4) that the vectors

hj = (A0 + I )−1ψj , j = 1, . . . , n, (2.3)
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form a basis of the defect subspace H = ker(A∗
sym + I ) of Asym. Hence, the functionals 〈ψex

j , ·〉
are well defined by the formula

〈ψex
j , f 〉 = 〈ψj ,u〉 +

n∑
p=1

αprjp (2.4)

for all elements f = u + ∑n
p=1 αphp ∈ D(A∗

sym) (u ∈ D(A0), αp ∈ C) if the entries rjp =
〈ψj , (A0 + I )−1ψp〉 = 〈ψj ,hp〉 of the matrix R = (rjp)nj,p=1 are known.

If all ψj ∈ H−1(A0), then rjp are well defined and R is a Hermitian matrix [5]. Otherwise,
the matrix R is not uniquely determined. In what follows, it is assumed that R is already chosen
as a Hermitian matrix. The problem of an appropriate choice of R will be discussed in Section 3.

In order to describe an operator realization A of (1.3) in terms of parameters bij of the singular
perturbation V , the method of boundary triplets (see [16,18] and the references therein) is now
incorporated.

Definition 2.1. (See [18].) A triplet (N,Γ0,Γ1), where N is an auxiliary Hilbert space and Γ0,
Γ1 are linear mappings of D(A∗

sym) into N , is called a boundary triplet of A∗
sym if (A∗

symf,g) −
(f,A∗

symg) = (Γ1f,Γ0g)N − (Γ0f,Γ1g)N for all f,g ∈ D(A∗
sym) and the mapping (Γ0,Γ1) :

D(A∗
sym) → N ⊕ N is surjective.

The next two results (Lemma 2.2 and Theorem 2.3) are known (see e.g. [6,14]). For the
convenience of the reader some principal steps of their proofs are repeated.

Lemma 2.2. The triplet (Cn,Γ0,Γ1), where the linear operators Γi : D(A∗
sym) → Cn are defined

by the formulas

Γ0f =
⎛⎝ 〈ψex

1 , f 〉
...

〈ψex
n , f 〉

⎞⎠ , Γ1f = −
⎛⎝α1

...

αn

⎞⎠ , (2.5)

where f = u + ∑
j=1 αjhj ∈ D(A∗

sym) (u ∈ D(A0), αj ∈ C) and 〈ψex
j , f 〉 is defined by (2.4),

forms a boundary triplet for A∗
sym.

Proof. Using (1.2), (2.2), and (2.3) it is easy to verify that the mappings

Γ̂0f =
⎛⎝α1

...

αn

⎞⎠ , Γ̂1f =
⎛⎝ 〈ψ1, u〉

...

〈ψn,u〉

⎞⎠ , f = u +
∑
j=1

αjhj (2.6)

satisfy the conditions of Definition 2.1. Thus (Cn, Γ̂0, Γ̂1) is a boundary triplet for A∗
sym. It fol-

lows from (2.4), (2.5), and (2.6) that

Γ0f = Γ̂1f + RΓ̂0f, Γ1f = −Γ̂0f, f ∈ D
(
A∗

sym

)
. (2.7)

These relations between Γi and Γ̂i and the fact that (Cn, Γ̂0, Γ̂1) is a boundary triplet for A∗
sym

imply that (Cn,Γ0,Γ1) also is a boundary triplet for A∗
sym. �
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Theorem 2.3. The operator realization A of (1.3) is an intermediate extension of Asym which
coincides with the operator

AB = A∗
sym � D(AB), D(AB) = {

f ∈ D
(
A∗

sym

)
: BΓ0f = Γ1f

}
, (2.8)

where Γi are defined by (2.5) and B = (bij )
n
i,j=1 is the coefficient matrix of the singular pertur-

bation V = ∑n
i,j=1 bij 〈ψj , ·〉ψi in (1.3).

If V is symmetric, i.e., 〈V u,v〉 = 〈u,V v〉 (u, v ∈ H2(A0)), then the corresponding operator
realization AB becomes self-adjoint.

Proof. It follows from (2.1) that A0hj = ψj − hj for all hj defined by (2.3). Rewriting f ∈
D(A∗

sym) in the form f = u + ∑n
i=1 αihi , where u ∈ D(A0), hi ∈ H, αi ∈ C, and using (1.6)

and (2.5) leads to

ARf = A0u −
n∑

i=1

αihi +
n∑

i,j=1

bij

〈
ψex

j , f
〉
ψi +

n∑
i=1

αiψi

= A∗
symf + (ψ1, . . . ,ψn)[BΓ0f − Γ1f ].

This equality and (1.5) show that f ∈ D(A) if and only if BΓ0f − Γ1f = 0. Therefore, the
operator realization A of (1.3) is an intermediate extension of Asym and A coincides with the
operator AB defined by (2.8).

To complete the proof it suffices to finally observe that V is symmetric if and only if the
corresponding matrix of coefficients B = (bij )

n
i,j=1 is Hermitian. In this case (2.8) immediately

implies the self-adjointness of AB. �
Corollary 2.4. The operator realization AB of (1.3) in Theorem 2.3 determined by the boundary
condition BΓ0f = Γ1f in (2.8) takes the form

ABf = A0f +
n∑

i,j=1

bij

〈
ψex

j , f
〉
ψi, f ∈ D(AB), (2.9)

where the extended functionals 〈ψex
j , ·〉, j = 1, . . . , n, are determined by (2.4).

Proof. Since the vectors hj in (2.3) span the defect subspace H = ker(A∗
sym + I ) of Asym, one

has A0hj = ψj − hj = ψj + A∗
symhj and hence

A∗
symf = A0u +

n∑
i=1

αi(A0hi − ψi) = A0f −
n∑

i=1

αiψi (2.10)

for f = u + ∑n
i=1 αihi ∈ D(A∗

sym). By substituting the boundary condition BΓ0f = Γ1f in
(2.10) yields the desired perturbation formula for AB in (2.9). �
Remark 2.5. Another approach, also involving the use of boundary triplets, to determine self-
adjoint operator realizations of finite rank singular perturbations of the form A0 + GαG∗, where
G is an injective linear mapping from Cn to H−k(A0) was presented in [14, Section 4].
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3. Admissible matrices and admissible large coupling limits

There are certain natural requirements for the determination of the entries rjp of the matrix R
in (2.4). Indeed, if the linear span X of {ψj }nj=1 has a nonzero intersection with H−1(A0), then

for any ψ ∈ X ∩H−1(A0), the corresponding element h = (A0 + I )−1ψ belongs to H1(A0) and,
hence, the functional 〈ψ, ·〉 defined by (1.2) admits the following extension by continuity onto
H1(A0):

〈ψ,f 〉 = (
(A0 + I )1/2f, (A0 + I )1/2h

)
, ∀f ∈ H1(A0). (3.1)

To preserve such natural extensions of 〈ψ, ·〉 onto D(A∗
sym) ∩ H1(A0) in the definition (2.4), the

concept of admissible matrices R as introduced in [4] is used.

Definition 3.1. A Hermitian matrix R = (rjp)nj,p=1 is called admissible for the regularization AR
of (1.3) if its entries rjp are chosen in such a way that if a singular element ψ = c1ψ1 +· · ·+cnψn

belongs to H−1(A0), then for all f ∈ D(A∗
sym) ∩ H1(A0)

〈
ψex, f

〉 = (
(A0 + I )1/2f, (A0 + I )1/2h

) =
n∑

j=1

cj

〈
ψex

j , f
〉
, (3.2)

where 〈ψex
j , f 〉 are defined by (2.4) and h = (A0 + I )−1ψ .

It is convenient to describe the set of admissible matrices in terms of a certain associated
operators. It follows from the relations in (2.7) that the choice of a matrix R in (2.4) is equivalent
to the choice of an operator A∞ defined by

A∞ = A∗
sym � D(A∞), D(A∞) = kerΓ0 = {

f ∈ D
(
A∗

sym

)
: −RΓ̂0f = Γ̂1f

}
. (3.3)

Since R is Hermitian, the general theory of boundary triplets [16] implies that A∞ is a self-
adjoint extension of Asym. By the construction, A∞ and A0, D(A0) = kerΓ1 (= ker Γ̂0), are
transversal extensions of Asym, i.e., D(A0) + D(A∞) = D(A∗

sym). Furthermore, it follows from
Theorem 2.3 that A∞ and the operator realization AB of (1.3) determined by the boundary con-
dition BΓ0f = Γ1f , f ∈ D(A∗

sym) are also transversal extensions of Asym for every coefficient
matrix B in (1.3), i.e., the operator A∞ determined by (3.3) is always transversal to the sin-
gular perturbations AB in (2.9). The operator A∞ corresponds formally to the matrix B with
infinite entries in (2.9) (such an extension of Asym need not be unique). In this sense, A∞ can be
considered as a large coupling limit of operator realizations AB of (1.3) with finite entries of B.

Definition 3.2. An operator A∞ is called admissible large coupling limit of (1.3) if A∞ is defined
by (3.3) with an admissible matrix R.

So, the choice of an admissible large coupling limit A∞ of (1.3) is equivalent to the choice of
an admissible matrix R for the regularization AR of (1.3).

The next lemma contains some useful facts concerning the (unperturbed) nonnegative self-
adjoint operator A0 and its relation to the Friedrichs extension AF of Asym. They can be consid-
ered to be well known from the extension theory of nonnegative operators, therefore details for
the present formulations with their proofs are left to the reader; see e.g. [8,17,21,22,29,32].
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Lemma 3.3. Let C = (A0 + I )−1 − (AF + I )−1 and let S0 = A0 ∩ AF . Moreover, denote H =
ker(A∗

sym + I ) and H′ = ker(S∗
0 + I ). Then:

(i) R(C) = H′;
(ii) kerC = R(S0 + I ) = R(Asym + I ) ⊕ H′′, where H′′ = H � H′;

(iii) R(C1/2) = D(A
1/2
0 ) ∩ H = H′;

(iv) D(A
1/2
0 ) = D(A

1/2
F ) +̇ R(C1/2).

Using the spaces introduced in (1.1) and (iii) in Lemma 3.3 one can rewrite the decomposition
in part (iv) of Lemma 3.3 as follows:

H1(A0) = D ⊕1 H′, H′ = H ∩ H1(A0) = (A0 + I )−1[X ∩ H−1(A0)
]
, (3.4)

where D (= D(A
1/2
F )) stands for the completion of D(Asym) in H1(A0), ⊕1 denotes the orthog-

onal sum in H1(A0), and X is the linear span of {ψj }nj=1.
The set of admissible large coupling limits of (1.3) can now be characterized in ‘coordinate

free’ manner as follows.

Theorem 3.4. A self-adjoint extension Ã of Asym is an admissible large coupling limit of (1.3) if
and only if Ã is transversal to A0 (i.e., D(A0) + D(Ã) = D(A∗

sym)) and

D(Ã) ∩ H1(A0) ⊂ D(AF ), (3.5)

where AF is the Friedrichs extension of Asym.

Proof. Assume that the self-adjoint extension Ã of Asym is transversal to A0 and it satisfies the
condition (3.5). In view of (2.6), D(A0) = ker Γ̂0. Therefore, the transversality of Ã and A0 is
equivalent to the representation of D(Ã) in the form (3.3) with an n × n Hermitian matrix R
(here Asym has finite defect numbers (n,n)), cf. [17, Proposition 1.4].

Since

D(AF ) = D ∩ D
(
A∗

sym

)
, (3.6)

the decomposition (3.4) shows that the condition (3.5) is equivalent to the relation(
(A0 + I )1/2f̃ , (A0 + I )1/2h

) = 0, ∀f̃ ∈ D(Ã) ∩ H1(A0), ∀h ∈ H′. (3.7)

Now it is shown that R is an admissible matrix in the sense of Definition 3.1 by verifying (3.2)
for all ψ ∈ X ∩ H−1(A0). Observe, that the mapping Γ0 defined in Lemma 2.2, see also (2.7),
determines the extended functionals 〈ψex

j , f 〉 in (2.4).

The transversality of Ã and A0 yields the following decomposition for the elements f ∈
D(A∗

sym):

f = f̃ + u, (3.8)
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where f̃ ∈ D(Ã) and u ∈ D(A0) are uniquely determined modulo D(Asym). If ψ = ∑n
j=1 cjψj ∈

H−1(A0), then by (3.4) h = (A0 + I )−1ψ ∈ H′. Now with f ∈ D(A∗
sym) ∩ H1(A0) decomposed

as in (3.8) one obtains:

〈
ψex, f

〉 =
n∑

j=1

cj

〈
ψex

j , f
〉 = cΓ0f

(3.8)= cΓ0(f̃ + u)

(2.7)= c(Γ̂1 + RΓ̂0)u = cΓ̂1u
(2.6)= 〈ψ,u〉 (1.2)= (

(A0 + I )u,h
)

(3.9)

where c := (c1, . . . , cn). On the other hand, it follows from (3.7) that(
(A0 + I )1/2f, (A0 + I )1/2h

) = (
(A0 + I )1/2(f̃ + u), (A0 + I )1/2h

) = (
(A0 + I )u,h

)
,

which combined with (3.9) proves (3.2). Thus, R is an admissible matrix and Ã (= A∞) is an
admissible large coupling limit of (1.3).

Conversely, assume that Ã = A∞ satisfies the condition of Definition 3.2. Then (3.3) ensures
the transversality of Ã and A0 and R determines the extended functionals 〈ψex

j , ·〉 via (2.4).
Reasoning as in (3.9) it is seen that (3.2) implies

0 = (
(A0 + I )1/2f, (A0 + I )1/2h

) − 〈
ψex, f

〉 = (
(A0 + I )1/2f̃ , (A0 + I )1/2h

)
for all f ∈ D(A∗

sym) ∩ H1(A0) and h ∈ H′. Thus, the relation (3.7) and, equivalently, the relation
(3.5) is satisfied. Theorem 3.4 is proved. �

For some further study of admissible large coupling limits the following lemma is needed.

Lemma 3.5. Let H̃ be a subspace of H = ker(A∗
sym + I ). Then the symmetric operator

S = AF �D(S), D(S) = (AF + I )−1[R(Asym + I ) ⊕ H̃
]

(3.10)

satisfies the relations

D(S) ∩ D(A0) = D(Asym) and D(S) + D(A0) = D(AF ) +̇ H′ (3.11)

if and only if

dim H̃ = dim H′ and H̃ ∩ H′′ = {0}, (3.12)

where H′ = H ∩ H1(A0) and H′′ = H � H′. In this case, the domain of S admits the description

D(S) = D(Asym) +̇{
h′ + u: h′ ∈ H′, u = u(h′)

}
, (3.13)

where u = u(h′) ∈ D(A0) is (uniquely) determined by h′ ∈ H′ and satisfies the relation(
(A0 + I )u, h̃⊥) = 〈ψ,u〉 = 0, ∀h̃⊥ ∈ H � H̃, ψ = (A0 + I )̃h⊥. (3.14)
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Proof. Denote S0 = AF ∩ A0. By Lemma 3.3

D(S0) = (A0 + I )−1[R(Asym + I ) ⊕ H′′] = (AF + I )−1[R(Asym + I ) ⊕ H′′], (3.15)

where H′′ = H � H′. Comparing (3.10) and (3.15), one concludes that

D(S) ∩ D(A0) = D(S) ∩ D(S0) = (AF + I )−1[R(Asym + I ) ⊕ (H̃ ∩ H′′)
]
.

Thus,

D(S) ∩ D(A0) = D(Asym) ⇔ H̃ ∩ H′′ = {0}.

The relations (3.10) and (3.15) also show that

D(S) + D(A0) = (AF + I )−1[R(Asym + I ) ⊕ (H̃ +̇ H′′)
] + (A0 + I )−1 H′. (3.16)

Here (A0 + I )−1 H′ can be represented as

(A0 + I )−1 H′ = {
(AF + I )−1h′ + Ch′: h′ ∈ H′}, (3.17)

where C = (A0 + I )−1 − (AF + I )−1. It follows from Lemma 3.3 that

R(C) = H′, kerC = ran(Asym + I ) ⊕ H′′. (3.18)

Relations (3.16)–(3.18) show that the second identity in (3.11) holds if and only if H̃ +̇ H′′ = H.
Obviously, this representation is possible only in the case where dim H̃ = dim H′.

The definition (3.10) shows that D(S) = D(Asym) +̇ (AF + I )−1 H̃, where

(AF + I )−1 H̃ = {
(A0 + I )−1h̃ − Ch̃: h̃ ∈ H̃

}
.

Since H̃ satisfies (3.12), it follows from (3.18) that CH̃ = H′. Now, setting u = (A0 + I )−1h̃ and
h′ = −Ch̃, one obtains (3.13) and (3.14). Note that the preimage h̃ = C−1h′ ∈ H̃, and therefore
also u, is uniquely determined by h′ ∈ H′. �

The next theorem gives a description of all admissible large coupling limits.

Theorem 3.6. Let Ã be a self-adjoint extension of Asym and let the symmetric operator S =
Ã ∩ AF be represented as in (3.10) with some subspace H̃ of H. Then the following statements
are equivalent:

(i) Ã (= A∞) is an admissible large coupling limit of (1.3);
(ii) Ã is a self-adjoint extension of S transversal to the Friedrichs extension SF of S and the

subspace H̃ satisfies the conditions in (3.12).

Proof. Let Ã be an admissible large coupling limit. Since Ã and A0 are transversal, one has

D(Ã) ∩ D(A0) = D(Asym), D(Ã) + D(A0) = D(AF ) +̇ H = D
(
A∗

sym

)
. (3.19)



S. Hassi, S. Kuzhel / Journal of Functional Analysis 256 (2009) 777–809 787
The condition (3.5) is equivalent to

D(Ã) ∩ H1(A0) = D(Ã) ∩ D(AF ) = D(Ã ∩ AF ).

Thus, intersecting all parts of (3.19) with H1(A0) one concludes that the relations (3.11) are
true for S = Ã ∩ AF . By Lemma 3.5, the subspace H̃ satisfies (3.12). Furthermore, since the
Friedrichs extension SF of S coincides with AF , one gets D(SF ) ∩ D(Ã) = D(AF ) ∩ D(Ã) =
D(S). This implies the transversality of SF and Ã. The implication (i) ⇒ (ii) is proved.

Now, assume that (ii) is satisfied. Since S ⊃ Asym, the operator Ã is a self-adjoint exten-
sion of Asym. It follows from (3.10) that ker(S∗ + I ) = H � H̃ and hence, D(S∗) = D(SF ) +
ker(S∗ + I ) = D(AF ) +̇ (H � H̃). On the other hand, the transversality of SF and Ã gives
D(S∗) = D(AF ) + D(Ã). Therefore, D(AF ) + D(Ã) = D(AF ) +̇ (H � H̃). This equality and
the second relation in (3.11) yield

D(A0) + D(Ã) = D(S) + D(A0) + D(Ã)

= (
D(AF ) +̇ H′) + D(Ã) = D(AF ) +̇ H′ +̇ (H � H̃). (3.20)

The conditions (3.12) imply that H′ +̇ (H � H̃) = H. Hence, (3.20) shows that D(A0)+ D(Ã) =
D(AF ) +̇ H = D(A∗

sym), i.e., Ã and A0 are transversal. Furthermore, by Lemma 3.3, see also
(3.6), D(AF ) +̇ H′ = H1(A0) ∩ D(A∗

sym). Now, employing the second relation in (3.11) one
obtains

D(Ã) ∩ H1(A0) = D(Ã) ∩ (
D(S) + D(A0)

) = D(S)+D(Asym) = D(S) ⊂ D(AF ).

According to Theorem 3.4 this means that Ã is an admissible large coupling limit of (1.3). The
implication (ii) ⇒ (i) is proved. �

It follows from Theorem 3.6 that there is at least one admissible large coupling limit of (1.3).
Some further specifications are given in the following two corollaries.

Corollary 3.7. If all the elements ψj in (1.3) belong to H−1(A0), then there exists a unique
admissible large coupling limit A∞ and it coincides with the Friedrichs extension AF of Asym.

Proof. Assume that ψj ∈ H−1(A0) for all j = 1, . . . , n. Then D(A∗
sym) ⊂ H1(A0) and H′ = H.

Let Ã = A∞ be an admissible large coupling limit of (1.3) and let S = Ã ∩ AF . By Theorem 3.6
the corresponding subspace H̃ satisfies (3.12) in Lemma 3.5, so that H̃ = H. Now (3.10) gives
S = AF and since S = Ã ∩ AF , one concludes that Ã = AF . This completes the proof. �
Corollary 3.8. If all the elements ψj in (1.3) are H−1(A0)-independent (i.e. X ∩H−1(A0) = {0}),
then every self-adjoint extension Ã of Asym transversal to A0 is an admissible large coupling
limit of (1.3). The Friedrichs extension of Asym coincides with A0.

Proof. The condition of H−1(A0)-independency means that H′ = {0}. In this case, only the
zero subspace H̃ = {0} can satisfy (3.12). The corresponding operator S coincides with Asym.
Moreover, since H′ = {0}, Lemma 3.3 shows that SF = AF = A0. Thus, by Theorem 3.6, Ã is
an admissible large coupling limit if and only if Ã is transversal to A0. �
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Observe, that the condition X ⊂ H−1(A0) in Corollary 3.7 is equivalent to D(A∗
sym) ⊂

H1(A0); see (2.2). Since in this case all the elements ψj ∈ H−1(A0) admit their natural extension
by continuity onto H1(A0) via (3.1), the matrix R = (rjp)nj,p=1 in (2.4) is uniquely determined
and the extended functionals 〈ψex

j , ·〉 in (2.4) are obtained by restricting their natural contin-
uations to the subset D(A∗

sym) of H1(A0). It follows that if X ⊂ H−1(A0), then the operator
realizations of (1.3) described in Theorem 2.3 reduce to the so-called form bounded perturba-
tions of A0:

Corollary 3.9. If all the elements ψj in (1.3) belong to H−1(A0), then the operator realization
AB of (1.3) in Theorem 2.3 determined by the boundary condition BΓ0f = Γ1f in (2.8) takes
the form

ABf = A0f +
n∑

i,j=1

bij

〈
ψex

j , f
〉
ψi, f ∈ D(AB),

where the extended functionals 〈ψex
j , ·〉, j = 1, . . . , n, are determined by their continuations onto

H1(A0) via (3.1) and A0 as defined by (2.1) can be considered as a bounded operator acting from
H−1(A0) into H1(A0).

Proof. The statement is immediate from Corollary 2.4 and the fact that in this case D(A∗
sym) ⊂

H1(A0). Note that A0 defined by (2.1) satisfies A0(H1(A0)) ⊂ H−1(A0) and its restriction
to H1(A0) coincides with the continuation of A0 as a bounded operator from H−1(A0) into
H1(A0). �

The properties of admissible large coupling limits are closely related to the transversality of
the Friedrichs and the Krein–von Neumann extensions of Asym.

Theorem 3.10. There exists a nonnegative admissible large coupling limit of (1.3) if and only if
the Friedrichs extension AF and the Krein–von Neumann extension AN of Asym are transversal.

Proof. Let Ã be a nonnegative admissible large coupling limit. Then Ã is a nonnegative exten-
sion of Asym and therefore

(AF + I )−1 � (Ã + I )−1 � (AN + I )−1, (3.21)

where AF is the Friedrichs extension and AN is the Krein–von Neumann extension of Asym (see
e.g. [21] and the references therein).

Recall that transversality of self-adjoint extensions Ã1 and Ã2 of Asym is equivalent to[
(Ã1 + I )−1 − (Ã2 + I )−1]H = H (3.22)

(see e.g. [16]). Hence, if AF and AN are not transversal then (AF + I )−1h = (AN + I )−1h for
some nonzero h ∈ H. Then nonnegativity of Ã and A0 yields (Ã + I )−1h = (A0 + I )−1h due to
(3.21) (with similar inequalities for A0), so that[

(Ã + I )−1 − (A0 + I )−1]H ⊂ H � 〈h〉
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and by (3.22) Ã and A0 cannot be transversal. This is a contradiction to the admissibility of Ã.
Thus AF and AN are transversal.

To prove the converse statement assume that AF and AN are transversal. Let H̃ be a subspace
of H, which satisfies (3.12) and let the symmetric operator S be defined by (3.10) in Lemma 3.5.
Moreover, let Ã be the Krein–von Neumann extension of S. Clearly, Ã is a nonnegative self-
adjoint extension of Asym. It remains to prove that Ã is an admissible large coupling limit of
(1.3). To see this, observe that the Friedrichs extension of S coincides with AF . Then it follows
from [10, Proposition 7.2] that the Friedrichs extension SF = AF and the Krein–von Neumann
extension Ã of S are transversal with respect to S. Therefore, by Theorem 3.6, Ã is an admissible
large coupling limit. �

Observe that S in Theorem 3.10 is a restriction of the Friedrichs extension AF of Asym. Since
the admissible large coupling limit Ã constructed in Theorem 3.10 is the Krein–von Neumann
extension of S it is a consequence of [10, Theorem 6.4] that Ã is an extremal extension of Asym

in the sense of the following definition.

Definition 3.11. (See [9,10].) A self-adjoint extension Ã of Asym is called extremal if it is non-
negative and satisfies the condition

inf
u∈D(Asym)

(
Ã(f − u),f − u

) = 0 for all f ∈ D(Ã).

Theorem 3.12. Let the Friedrichs extension AF and the Krein–von Neumann extension AN of
Asym be transversal, and let S be defined by (3.10) and (3.12). Then among all self-adjoint
extensions of S there exists a unique extremal admissible large coupling limit Ã of (1.3).

Proof. By Theorem 3.10, it suffices to show that the Krein–von Neumann extension Ã of S is the
only extremal extension of Asym which coincides with admissible large coupling limit of (1.3).

To prove this assume that Â is extremal and admissible in the sense of Definition 3.2. Then
by [10, Theorem 6.4] Â as an extremal extension of Asym is the Krein–von Neumann extension
of the symmetric operator Ŝ = Â ∩ AF . Moreover, by Theorem 3.6 the admissibility of Â means
that Ŝ is determined via (3.10) where the corresponding subspace Ĥ satisfies (3.12).

Since Â is an extension of S, one has S ⊆ Ŝ or, equivalently, H̃ ⊆ Ĥ, where the subspaces H̃
and Ĥ correspond to S and Ŝ in (3.10). Now the first equality in (3.12) forces that H̃ = Ĥ and
hence S = Ŝ. Therefore, Â = Ã and this completes the proof. �
Remark 3.13. The selection of a self-adjoint operator Ã transversal to the initial one A0 (but
without the condition (3.5)) is also a key point of the approach used in [11] to the determination
of self-adjoint realizations of a formal expression A0 + V , where a singular perturbation V is
assumed to be (in general) an unbounded self-adjoint operator V : H2(A0) → H−2(A0) such that
kerV is dense in H. In this case, the regularization of A0 + V takes the form AP ,V = A0 + V P
and it is well defined on the domain D(AP ,V ) = {f ∈ D(A∗

sym): P f ∈ D(V )}, where P is the

skew projection onto H2(A0) in D(A∗
sym) that is uniquely determined by Ã.
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4. Singular perturbations with symmetries and uniqueness of admissible large coupling
limits

According to (2.4) and (3.3) the regularization AR of (1.3) depends on the choice of an ad-
missible large coupling limit A∞. Apart from the case of form bounded singular perturbations,
admissible large coupling limits are not determined uniquely, cf. Theorem 3.6. However, in many
cases (see e.g. [4,5]), the uniqueness can be attained by imposing extra assumptions of symmetry
motivated by the specific nature of the underlying physical problem. In this section, we study this
problem in an abstract framework.

4.1. Preliminaries

First some general facts concerning p(t)-homogeneous operators are given. Let an operator
A in H be p(t)-homogeneous with respect to a one-parameter family U = {Ut }t∈T of unitary
operators acting on H, cf. Definition 1.1. It follows from (1.7) and (1.8) that

p(t)p(g(t)) = 1, ∀t ∈ T, (4.1)

where the function of conjugation g(t) : T → T is determined by the formula

Ug(t) = U∗
t , ∀t ∈ T. (4.2)

Lemma 4.1. Let A be a p(t)-homogeneous operator with respect to a family U = {Ut }t∈T. Then
for all t ∈ T and all z ∈ C,

Ut

(
ker(A − zI)

) = ker
(
p(t)A − zI

)
. (4.3)

In particular, kerA is a reducing subspace for every Ut , t ∈ T. Furthermore, z ∈ σa(A) ⇔
zp(t)n ∈ σa(A), n ∈ Z, t ∈ T, a ∈ {p, r, c}.

If p(t) 	= 1 at least for one point t ∈ T, then the essential spectrum of A contains the point
z = 0.

Proof. In view of (4.1), p(t) 	= 0 for all t ∈ T. Using (1.8) one gets

Ut(A − zI) = (
p(t)A − zI

)
Ut = p(t)

(
A − z

p(t)
I

)
Ut (4.4)

that gives Ut(ker(A − zI)) ⊂ ker(p(t)A − zI). The reverse inclusion is obtained by using (4.1).
The property of kerA to be a reducing subspace for every Ut follows from (4.3) with z = 0 if
one takes into account that p(t) 	= 0.

The remaining assertions of the lemma immediately follow from (4.4). �
Lemma 4.2. Let A be a closed densely defined p(t)-homogeneous operator with respect to a
family U = {Ut }t∈T. Then also its adjoint A∗ is p(t)-homogeneous with respect to U.

Proof. Since A is p(t)-homogeneous one has UtA = p(t)AUt for all t ∈ T. As a unitary op-
erator Ut is bounded with bounded inverse, and therefore, the previous equality is equivalent to
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A∗U∗
t = p(t)U∗

t A∗ ⇔ UtA
∗ = p(t)A∗Ut , ∀t ∈ T, which means that A∗ is p(t)-homogeneous

with respect to U. �
In the case that A is symmetric the formula (4.3) in Lemma 4.1 shows how the unitary opera-

tors Ut , t ∈ T, transform the defect subspaces ker(A∗ − zI) of A.

Corollary 4.3. Let A in Lemma 4.2 be nonnegative and p(t)-homogeneous with respect to
U = {Ut }t∈T and let A0 be a nonnegative selfadjoint extension of A. Then (p(t)A0 + I )(A0 +
I )−1Ut(ker(A∗ + I )) = ker(A∗ + I ).

Proof. By Lemma 4.2 the adjoint A∗ of A is also p(t)-homogeneous and (4.3) implies that
Ut(ker(A∗ + I )) = ker(A∗ + 1/p(t)I ). Moreover, the equality

(
p(t)A0 + I

)
(A0 + I )−1 ker

(
A∗ + 1

p(t)
I

)
= ker(A∗ + I )

is always satisfied for a nonnegative self-adjoint extension A0 of A. �
For the next result recall that if A is a nonnegative operator (or in general a nonnegative

relation) in a Hilbert space H, then the Friedrichs extension AF and the Krein–von Neumann
extension AN of A can be characterized as follows (see [8] for the densely defined case and
[19,21,22] for the general case):

If {f,f ′} ∈ A∗, then {f,f ′} ∈ AF if and only if

inf
{‖f − h‖2 + (f ′ − h′, f − h): {h,h′} ∈ A

} = 0. (4.5)

If {f,f ′} ∈ A∗, then {f,f ′} ∈ AN if and only if

inf
{‖f ′ − h′‖2 + (f ′ − h′, f − h): {h,h′} ∈ A

} = 0. (4.6)

Lemma 4.4. Let A be a nonnegative densely defined p(t)-homogeneous operator with respect
to U. Then the Friedrichs extension AF and the Krein–von Neumann extension AN of A are also
p(t)-homogeneous with respect to U. Moreover, Ut(D(A

1/2
F )) ⊂ D(A

1/2
F ) and Ut(R(A

1/2
N )) ⊂

R(A
1/2
N ) for all t ∈ T.

Proof. By Lemma 4.2 A∗ is p(t)-homogeneous with respect to U. Hence, in view of (1.7) and
(1.8), an intermediate extension Ã of A is p(t)-homogeneous with respect to U if and only if

Ut : D(Ã) → D(Ã), ∀t ∈ T. (4.7)

To prove that AF is p(t)-homogeneous with respect to U, assume that f ∈ D(AF ). Then
g = Utf ∈ D(A∗) and there is a sequence hn ∈ D(A) attaining the infimum in (4.5). Then Uthn ∈
D(A), Uthn → Utf = g, and

(A∗Utf − AUthn,Utf − Uthn) = p
(
g(t)

)
(A∗f − Ahn,f − hn) → 0, (4.8)

so that g ∈ D(AF ) by (4.5). Therefore, Ut(D(AF )) ⊂ D(AF ) and AF is p(t)-homogeneous with
respect to U.
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To prove the p(t)-homogeneity of AN assume that f ∈ D(AN). Then again g = Utf ∈ D(A∗)
and there is a sequence hn ∈ D(A) attaining the infimum in (4.6). In particular, Ahn → A∗f ,
Uthn ∈ D(A), and

AUthn = p
(
g(t)

)
UtAhn → p

(
g(t)

)
UtA

∗f = A∗Utf = A∗g.

Moreover, (4.8) is satisfied. Therefore, (4.6) shows that g ∈ D(AN). This proves that
Ut(D(AN)) ⊂ D(AN) and thus AN is p(t)-homogeneous with respect to U.

Finally, recall that the domain D = D(A
1/2
F ), see (3.4), can be characterized as the set of

vectors f ∈ H satisfying

hn → f,
(
A(hn − hm),hn − hm

) → 0, m,n → ∞,

and the range R(A
1/2
N ) as the set of vectors g ∈ H satisfying

Ahn → g,
(
A(hn − hm),hn − hm

) → 0, m,n → ∞,

with hn ∈ D(A), see (4.5) and (4.6). The last statement is clear from these characterizations using
similar arguments as above with the sequence hn. This completes the proof. �

Let the operator A0 in (1.3) be p(t)-homogeneous with respect to U = {Ut }t∈T. Define a
family of self-adjoint operators on H by

Gt = (
p(t)A0 + I

)
(A0 + I )−1, t ∈ T. (4.9)

Clearly, Gt is positive and bounded with bounded inverse for all t ∈ T. Moreover, it follows from
(1.8) and (4.1) that (A0 + I )−1Ut = Ut(p(g(t))A0 + I )−1 and

GtUt = UtG
−1
g(t) = (Gg(t)Ug(t))

−1. (4.10)

Since ‖u‖−2 = ‖(A0 + I )−1u‖, the identity (A0 + I )−1Ut = GtUt (A0 + I )−1 implies that
‖Utu‖−2 � ‖Gt‖‖u‖−2 for all u ∈ H. Hence, the operators Ut can be continuously extended
to bounded operators Ut in H−2(A0) and, furthermore,

(A0 + I )−1Utψ = GtUt (A0 + I )−1ψ (4.11)

for all ψ ∈ H−2(A0) and t ∈ T. The equality (4.2) shows that Ut has a bounded inverse which
satisfies U−1

t = Ug(t). The operator Ut can be characterized also as the dual mapping (adjoint)
of Ug(t) with respect to the form defined in (1.2). In fact, using (1.2), (1.8), (4.2), and (4.11), it is
seen that the action of the functional 〈Utψ, ·〉 on the elements u ∈ H2(A0) is determined by the
formula

〈Utψ,u〉 = (
(A0 + I )u,GtUth

) = (
Ug(t)

(
p(t)A0 + I

)
u,h

)
= (

(A0 + I )Ug(t)u,h
) = 〈ψ,Ug(t)u〉, (4.12)

where h = (A0 + I )−1ψ .
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Now consider a singular element ψ ∈ H−2(A0), cf. (1.3). The assumption that ψ is ξ(t)-
invariant with respect to U, i.e. Utψ = ξ(t)ψ for all t ∈ T (see Definition 1.2), implies some
relations between ξ(t), p(t), and g(t).

Proposition 4.5. Let the operator A0 in (1.3) be p(t)-homogeneous with respect to the family U

and let ψ ∈ H−2(A0) \ H be ξ(t)-invariant with respect to U. Then for all t ∈ T one has

ξ(t)ξ
(
g(t)

) = 1 (4.13)

and, moreover, |ξ(t)| = 1 if p(t) = 1 and min{1,p(t)} < |ξ(t)| < max{1,p(t)} if p(t) 	= 1.

Proof. It follows from (1.9) and (4.11) that ψ ∈ H−2(A0) \ H is ξ(t)-invariant with respect to U

if and only if

GtUth = ξ(t)h, ∀t ∈ T, (4.14)

where h = (A0 + I )−1ψ . This together with (4.10) implies that

h = (Gg(t)Ug(t))(GtUt )h = ξ(t)Gg(t)Ug(t)h = ξ(t)ξ
(
g(t)

)
h,

which proves (4.13). Moreover, (4.14) shows that |ξ(t)|‖h‖ = ‖GtUth‖. In particular, if
p(t) = 1, then Gt = I and |ξ(t)|‖h‖ = ‖Uth‖ = ‖h‖ that gives |ξ(t)| = 1.

In the case where p(t) 	= 1 the formula for Gt in (4.9) with an evident reasoning leads
to the estimates α(t)‖h‖ = α(t)‖Uth‖ < ‖GtUth‖ < β(t)‖Uth‖ = β(t)‖h‖, where α(t) =
min{1,p(t)} and β(t) = max{1,p(t)}. This completes the proof. �
4.2. p(t)-homogeneous self-adjoint extensions of Asym

Let Asym be defined by (1.4). This means that Asym is a nonnegative symmetric operator with
finite defect numbers.

Lemma 4.6. If p(t) 	= 1 at least for one point t ∈ T, then an arbitrary p(t)-homogeneous self-
adjoint extension of the symmetric operator Asym is nonnegative.

Proof. Assume that z is a negative eigenvalue of a p(t)-homogeneous self-adjoint extension A

of Asym and that p(t) 	= 1 for t ∈ T. Then, according to Lemma 4.1, there exists infinite series
of negative eigenvalues zp(t)n (n ∈ Z) of A that contradicts to the assumption of finite defect
numbers of Asym. Hence, A is a nonnegative extension of Asym. �
Lemma 4.7. Let A0 be p(t)-homogeneous and let ψj be ξj (t)-invariant with respect to U, j =
1, . . . , n. Then the symmetric operator Asym defined by (1.4) and its adjoint A∗

sym are also p(t)-
homogeneous with respect to U.

Proof. It follows from (1.4) and (4.12) that

〈ψj ,Utu〉 = 〈Ug(t)ψj , u〉 = ξj

(
g(t)

)〈ψj ,u〉 = 0
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for every u ∈ D(Asym). Thus Ut : D(Asym) → D(Asym) and hence by (1.8) Asym is p(t)-
homogeneous: UtAsym = p(t)AsymUt . By Lemma 4.2 also the adjoint A∗

sym is p(t)-homogeneous
with respect to U. �

In view of (1.9) and (4.12) the ξj (t)-invariance of ψj is equivalent to the relation

ξj (t)〈ψj ,u〉 = 〈ψj ,Ug(t)u〉, ∀u ∈ H2(A0), ∀t ∈ T, (4.15)

where the linear functionals 〈ψj , ·〉 are defined by (1.2). The next theorem shows that the
preservation of (4.15) for the extended functionals 〈ψex

j , ·〉 is closely related to the existence
of p(t)-homogeneous self-adjoint extensions of Asym transversal to A0.

Theorem 4.8. Let A0 be p(t)-homogeneous, let ψ1, . . . ,ψn be ξj (t)-invariant with respect to U,
and let 〈ψex

j , f 〉 be defined by (2.4). Then the relations

ξj (t)
〈
ψex

j , f
〉 = 〈

ψex
j ,Ug(t)f

〉
, 1 � j � n, ∀t ∈ T, (4.16)

are satisfied for all f ∈ D(A∗
sym) if and only if the corresponding self-adjoint operator A∞

defined by (3.3) is p(t)-homogeneous with respect to U.

Proof. Denote

Ξ(t) =

⎛⎜⎜⎝
ξ1(t) 0 . . . 0

0 ξ2(t) . . . 0
...

...
. . .

...

0 0 . . . ξn(t)

⎞⎟⎟⎠ . (4.17)

Then detΞ(t) 	= 0, t ∈ T, by Proposition 4.5, since ψi is ξj (t)-invariant with respect to U. By
using (2.5) in Lemma 2.2 the relations (4.16) can be rewritten as follows:

Ξ(t)Γ0f = Γ0Ug(t)f, ∀f ∈ D
(
A∗

sym

)
, ∀t ∈ T. (4.18)

Since D(A∞) = kerΓ0, (4.18) immediately implies that Ut(D(A∞)) ⊂ D(A∞), cf. (4.2). Thus
the equalities (4.16) ensure p(t)-homogeneity of A∞ with respect to U.

Conversely, assume that A∞ is p(t)-homogeneous with respect to U. According to (3.3), (4.2),
and (4.7) this is equivalent to

−RΓ̂0Ug(t)f = Γ̂1Ug(t)f, ∀f ∈ D(A∞), ∀t ∈ T. (4.19)

Using (4.9), (4.13), and (4.14) it is seen that

Ug(t)hj = p(t)Gg(t)Ug(t)hj + (
I − p(t)Gg(t)

)
Ug(t)hj

= p(t)
hj + (

1 − p(t)
)
(A0 + I )−1Ug(t)hj , (4.20)
ξj (t)



S. Hassi, S. Kuzhel / Journal of Functional Analysis 256 (2009) 777–809 795
where hj = (A0 + I )−1ψj , j = 1, . . . , n. This expression and relations (2.6), (4.12) yield the
following equalities for all f = u + ∑

j=1 αjhj ∈ D(A∗
sym) and t ∈ T:

Γ̂0Ug(t)f = p(t)Ξ−1(t)Γ̂0f, Γ̂1Ug(t)f = Ξ(t)Γ̂1f + (
1 − p(t)

)
G�(t)Γ̂0f, (4.21)

where G�(t) is the transpose of the matrix G(t) = ((hi,Uthj ))
n
i,j=1. Now with f ∈ D(A∞) sub-

stituting these expressions into (4.19), using (3.3), and taking into account that Γ̂0(D(A∞)) = Cn,
one concludes that the p(t)-homogeneity of A∞ is equivalent to the matrix equality

Ξ(t)R − p(t)RΞ−1(t) = (
1 − p(t)

)
G�(t), ∀t ∈ T. (4.22)

Finally, employing (2.7) and (4.21) it is easy to see that equality (4.22) is equivalent to
(4.18). Therefore, the extended functionals 〈ψex

j , ·〉 satisfy the relations (4.16). Theorem 4.8 is
proved. �
Remark 4.9. In the particular case where p(t) = tβ and ξ(t) = tθ with β, θ ∈ R, another condi-
tion for the preservation of ξ(t)-invariance for 〈ψex

j , ·〉 has been obtained in [5, Lemma 1.3.2].

Corollary 4.10. A self-adjoint extension Ã of Asym transversal to A0 is p(t)-homogeneous if
and only if Ã is defined by (3.3) and the entries rij of R in (3.3) satisfy the following system of
equations for all t ∈ T:

βij (t)rij = (
1 − p(t)

)
(hj ,Uthi), βij (t) =

(
ξi(t) − p(t)

ξj (t)

)
, 1 � i, j � n. (4.23)

Proof. Since ker Γ̂0 = D(A0), formula (3.3) describe all self-adjoint extensions of Asym
transversal to A0 when the parameter R = (rij )

n
i,j=1 runs the set of all Hermitian matrices.

Hence, Ã = A∞ for some choice of R in (3.3). The proof of Theorem 4.8 shows that A∞ is
p(t)-homogeneous if and only if R is a solution of (4.22) that does not depend on t ∈ T. Rewrit-
ing (4.22) componentwise one gets (4.23). �
Remark 4.11. In the case that p(x) ≡ 1, the right-hand side of (4.23) vanishes and (4.23) reduces
to βij (t)rij = 0, 1 � i, j � n. Moreover, by Proposition 4.5 βii(t) ≡ 0 and, therefore, the entries
rii cannot be uniquely determined from (4.23). This implies the existence of infinitely many
1-homogeneous self-adjoint extensions of Asym transversal to A0.

Example 4.12. Let α > 0 and let Ã be defined by

Ãα = A∗
sym � D(Ãα), D(Ãα) = D(Asym) +̇ ker

(
A∗

sym + αI
)
.

Then for all α > 0, Ãα is a 1-homogeneous self-adjoint extensions of Asym transversal to A0.

4.3. Uniqueness of p(t)-homogeneous admissible large coupling limits of (1.3)

Let the operator A0 be p(t)-homogeneous and let the singular elements ψj appearing in (1.3)
be ξj (t)-invariant with respect to U.
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If all ψj belong to H−1(A0), then the extended functionals 〈ψex
j , ·〉 are determined by conti-

nuity onto D(A∗
sym) and they automatically possess the property of ξj (t)-invariance (4.16), since

Ut �D(A0) can be extended by continuity onto H1(A0). In this case, the set of admissible large
coupling limits consists of a unique element (the Friedrichs extension AF , see Corollary 3.7) and
this operator is p(t)-homogeneous.

If H−1(A0) does not contain all ψj , then admissible large coupling limits A∞ of (1.3) are not
determined uniquely. In this case, the natural assumption of ξj (t)-invariance for the extended
functionals 〈ψex

j , ·〉 can be used to select a unique operator A∞. By Theorem 4.8 the ξj (t)-
invariance of 〈ψex

j , ·〉 is equivalent to the p(t)-homogeneity of the corresponding operator A∞
defined by (3.3). Therefore, instead of assumption of ξj (t)-invariance one can use the require-
ment of p(t)-homogeneity imposed on the set of admissible large coupling limits A∞ of (1.3) to
achieve their uniqueness.

Theorem 4.13. Assume that the singular elements ψj in (1.3) are H−1(A0)-independent and the
system of equations (4.23) has a unique solution R = (rij )

n
i,j=1 that does not depend on t ∈ T.

Then there exists a unique p(t)-homogeneous admissible large coupling limit A∞ of (1.3) and
it coincides with the Krein–von Neumann extension AN of Asym.

Proof. Let R = (rij )
n
i,j=1 be a unique solution of (4.23) and let A∞ be the corresponding self-

adjoint extension of Asym determined by (3.3).
Since (4.23) has a unique solution, p(t) 	= 1 for at least one point t ∈ T (see Remark 4.11).

In this case, Lemma 4.6 and relation (3.3) imply that A∞ is a nonnegative extension of Asym

transversal to A0. Then also AF and AN are transversal extensions of Asym; cf. the proof of
Theorem 3.10. These extensions are also p(t)-homogeneous (see Lemmas 4.7, 4.4).

Since elements ψj in (1.3) form an H−1(A0)-independent system, Corollary 3.8 gives that
any self-adjoint extension of Asym transversal to A0 is an admissible large coupling limit of (1.3)
and A0 = AF . The unique solution of (4.23) allows one to select a unique p(t)-homogeneous
self-adjoint extension A∞ of Asym transversal to A0 = AF . Obviously, it coincides with the
Krein–von Neumann extension AN . �

The next statement concerns to the general case.

Theorem 4.14. Let AF and AN be transversal, let the operator S defined in (3.10) be p(t)-
homogeneous for some choice of H̃ satisfying conditions (3.12), and assume that for every βij (t)

in (4.23) there exists at least one point tij ∈ T such that βij (tij ) 	= 0. Then there exists a unique
p(t)-homogeneous admissible large coupling limit of (1.3).

Proof. Let Ã be the Krein–von Neumann extension of S. The second part of the proof of The-
orem 3.10 shows that Ã is an admissible large coupling limit of (1.3). By Lemma 4.4, Ã is
p(t)-homogeneous. Its uniqueness follows from the fact that condition βij (tij ) 	= 0 ensures in
view of (4.23) the uniqueness of p(t)-homogeneous self-adjoint extensions of Asym transversal
to A0. �

The next statement contains conditions for the p(t)-homogeneity of the symmetric operator
S defined by (3.10) in Lemma 3.5 which appear to be useful in applications.
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Proposition 4.15. Let A0 be p(t)-homogeneous, let the singular elements ψj in (1.3) be ξj (t)-
invariant with respect to U, and let Y = (A0 + I )(H � H̃). Then:

(i) S is p(t)-homogeneous if and only if Y is invariant under Ut , t ∈ T, and(
h′,Ut h̃

⊥) = 0, ∀h′ ∈ H′, ∀h̃⊥ ∈ H � H̃, ∀t ∈ T0 = {
t ∈ T: p(t) 	= 1

}
. (4.24)

(ii) If GtUt , t ∈ T, is self-adjoint, then S with H̃ = H′ is p(t)-homogeneous if and only if (4.24)
holds.

(iii) If Y is a linear span of some singular elements ψj in (1.3), then S is p(t)-homogeneous if
and only if (4.24) holds.

Proof. (i) The definition (3.10) shows that ker(S∗ + I ) = H � H̃. Hence, if S is p(t)-
homogeneous with respect to U then GtUt (H � H̃) = H � H̃ by Corollary 4.3. According to
(4.11) the subspace H � H̃ is invariant under GtUt if and only if Y = (A0 + I )(H � H̃) is in-
variant under the operator Ut , t ∈ T. Thus, if S is p(t)-homogeneous with respect to U then Y is
invariant under Ut , t ∈ T.

By Lemma 4.7, A∗
sym is p(t)-homogeneous with respect to U. Since S is an intermediate

extension of Asym its p(t)-homogeneity is equivalent to the relation Ug(t)(D(S)) ⊂ D(S), t ∈ T,
see (4.7).

The definition of S in (3.10) implies that

Ug(t)f ∈ D(S) ⇔ (
(AF + I )Ug(t)f, h̃⊥) = 0, ∀h̃⊥ ∈ H � H̃. (4.25)

Now let f = h′ + u ∈ D(S) be decomposed as in Lemma 3.5, see (3.13), (3.14). It follows
from (4.20) that

(AF + I )Ug(t)f = (
A∗

sym + I
)
Ug(t)f = (

1 − p(t)
)
Ug(t)h

′ + (A0 + I )Ug(t)u.

By taking (4.12) into account one obtains(
(AF + I )Ug(t)f, h̃⊥) = (

1 − p(t)
)(

Ug(t)h
′, h̃⊥) + (

(A0 + I )Ug(t)u, h̃⊥)
= (

1 − p(t)
)(

h′,Ut h̃
⊥) + 〈Utψ,u〉. (4.26)

If Y is invariant under Ut , t ∈ T, then 〈Utψ,u〉 = 0 for all f = h′ + u ∈ D(S). Now (4.25) and
(4.26) show that S is p(t)-homogeneous if and only if Y is invariant under Ut and (4.24) holds.

(ii) Since A0 and AF are p(t)-homogeneous, the symmetric restriction S0 := AF ∩A0 and its
adjoint S∗

0 are also p(t)-homogeneous, see Lemma 4.2. It follows from (3.15) that f ∈ D(S0) if
and only if f ∈ D(A0) and(

(A0 + I )f,h′) = 0, ∀h′ ∈ H′ = H ∩ H1(A0).

Hence, ker(S∗
0 +I ) = H′ and GtUt H′ = H′ for all t ∈ T by Corollary 4.3. Similarly GtUt H = H

for all t ∈ T, since Asym is p(t)-homogeneous. Therefore, if GtUt is self-adjoint, then H and H′
are reducing subspaces for the operators GtUt and consequently GtUt H′′ ⊂ H′′ is satisfied for
all t ∈ T. Then, according to (4.11), Y = (A0 + I )H′′ is invariant under Ut . Now the claim
follows from part (i) with H̃ = H′ and H � H̃ = H′′.
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(iii) If Y has a basis formed by some ξj (t)-invariant singular elements ψj , then Y is invariant
under Ut , see (1.9). So, the statement is reduced to (i). �
4.4. The case of rank one singular perturbations

In the case of rank one singular perturbations A0 + b〈ψ, ·〉ψ , where A0 is p(t)-homogeneous
and ψ is ξ(t)-invariant, the system (4.23) takes the form(

ξ2(t) − p(t)
)
r = ξ(t)

(
1 − p(t)

)
(h,Uth)

(
h = (A0 + I )−1ψ

)
, ∀t ∈ T. (4.27)

Proposition 4.16.

(1) If (4.27) has no solutions r ∈ R, then there is only one p(t)-homogeneous extension A0 =
AF = AN and any self-adjoint extension of Asym different from A0 has a negative eigenvalue.

(2) If (4.27) has at least two solutions r1, r2 ∈ R, then all self-adjoint extensions of Asym are
p(t)-homogeneous.

(3) If (4.27) has a unique solution r ∈ R, then the symmetric operator Asym associated with
A0 + b〈ψ, ·〉ψ possesses exactly two p(t)-homogeneous extensions: the Friedrichs AF and
the Krein–von Neumann AN extensions. One of them coincides with A0, another one is
the unique p(t)-homogeneous admissible large coupling limit A∞ of A0 + b〈ψ, ·〉ψ . More
precisely, A0 = AF and A∞ = AN if ψ ∈ H−2(A0) \ H−1(A0); A0 = AN and A∞ = AF if
ψ ∈ H−1(A0).

Proof. In the case of rank one perturbations, an arbitrary self-adjoint extension A(	= A0) of the
symmetric operator Asym = A0 � {u ∈ D(A0): 〈ψ,u〉 = 0} is transversal to A0. This means that
there is a one-to-one correspondence between the set of solutions r ∈ R of (4.27) and the set of
p(t)-homogeneous self-adjoint extensions A(	= A0) of Asym.

By Lemmas 4.4, 4.7 the symmetric operator Asym and its Friedrichs AF and Krein–von Neu-
mann AN extensions are p(t)-homogeneous. Therefore, if (4.27) has no solutions, then AN =
AF = A0 that justifies assertion (1).

Two different solutions of (4.27) may appear only in the case where ξ2(t) = p(t) and (1 −
p(t))(h,Uth) = 0 for all t ∈ T. But these equalities are equivalent to the fact that any r ∈ R is a
solution of (4.27). Therefore, an arbitrary self-adjoint extension of Asym is p(t)-homogeneous.
Assertion (2) is proved.

Finally, assume that (4.27) has a unique solution. It follows from Corollary 4.10 that the
set of all p(t)-homogeneous extensions of Asym is exhausted by the Friedrichs AF and the
Krein–von Neumann AN extensions. One of them coincides with A0, another one is the unique
p(t)-homogeneous admissible large coupling limit A∞. To complete the proof it suffices to use
Theorem 4.13 for ψ ∈ H−2(A0) \ H−1(A0) and Corollary 3.7 for ψ ∈ H−1(A0). �
Example 4.17. One point interaction in Rn (n = 1,2,3). Consider the singular rank one per-
turbation −	 + b〈δ, ·〉δ(x), where A0 = −	 (D(A0) = W 2

2 (Rn)) is the Laplace operator in
H = L2(R

n) and the associated symmetric operator Asym = −	 � {u(x) ∈ W 2
2 (Rn): u(0) = 0}.

The operator A0 is t−2-homogeneous with respect to the set of scaling transformations U =
{Ut }t∈(0,∞) in L2(R

n), where Utf (x) = tn/2f (tx). Furthermore, the singular element ψ = δ is
t−n/2-invariant (cf. [5]).
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If n = 1, then δ(x) ∈ H−1(A0) = W−1
2 (R), Eq. (4.27) has a unique solution and by

Proposition 4.16 the free Laplace operator −	 coincides with the Krein–von Neumann ex-
tension AN of Asym. The Friedrichs extension AF has the form AF = −d2/dx2 � {u(x) ∈
W 2

2 (R \ {0}) ∩ W 1
2 (R): u(0) = 0}.

If n = 2, then (4.27) has no solutions and there exists the unique nonnegative self-adjoint
extension −	 = AN = AF of Asym.

If n = 3, then δ(x) ∈ W−2
2 (R3) \ W−1

2 (R3), Eq. (4.27) has a unique solution and −	 = AF .
The Krein–von Neumann extension AN has the form

ANf (x) = −	u(x) − u(0)
e−|x|

|x| , D(AN) =
{
f = u(x) + u(0)

e−|x|

|x| : u ∈ W 2
2

(
R3)}.

Another description of the Krein–von Neumann extension of Asym obtained with the aid of
the Fourier transformation can be founded in [12].

5. Operator realizations in the case of singular perturbations with symmetries

In this section, operator realizations AB of (1.3) given by formulas (2.8), (2.9) are studied
under the condition that the unperturbed operator A0 and the singular elements ψj in (1.3) are,
respectively, p(t)-homogeneous and ξj (t)-invariant with respect to U.

5.1. p(t)-Homogeneous operator realizations

Theorem 5.1. Let an admissible large coupling limit A∞ of (1.3) be chosen to be p(t)-
homogeneous. Then the operator AB defined by (2.8) is p(t)-homogeneous if and only if the
relations

ξi(t)ξj (t) = p(t), ∀t ∈ T,

hold for all indices 1 � i, j � n corresponding to non-zero entries bij of B.

Proof. By Lemma 4.7, the operator A∗
sym is p(t)-homogeneous. Hence, in view of (4.7), AB is

p(t)-homogeneous if and only if Ug(t) : D(AB) → D(AB), ∀t ∈ T. By (2.8), this relation can be
rewritten as

BΓ0Ug(t)f = Γ1Ug(t)f, ∀t ∈ T, ∀f ∈ D(AB). (5.1)

Since the admissible large coupling limit A∞ is p(t)-homogeneous, the boundary operator
Γ0 satisfies (4.18). Therefore, BΓ0Ug(t)f = BΞ(t)Γ0f . On the other hand, relations (2.7) and
(4.21) lead to the equality

Γ1Ug(t)f = p(t)Ξ−1(t)Γ1f, ∀f ∈ D
(
A∗

sym

)
. (5.2)

The last two equalities and (2.8) show that the relation (5.1) is equivalent to the matrix
equality Ξ(t)BΞ(t) = p(t)B, t ∈ T. Rewriting this componentwise, one obtains the equalities
ξi(t)ξj (t)bij = p(t)bij , 1 � i, j � n. �
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Corollary 5.2. If there exists a point t0 ∈ T such that p(t0) 	= 1 and relations ξi(t0)ξj (t0) = p(t0)

hold for all indices 1 � i, j � n corresponding to non-zero entries bij of B, then: (i) the point
λ = 0 belongs to the essential spectrum of AB and λ ∈ σ(AB) ⇔ λp(t0)

n ∈ σ(AB), n ∈ Z; (ii) the
operator AB is nonnegative if and only if the matrix B is Hermitian.

Proof. If the matrix B satisfies the conditions above, then AB is p(t)-homogeneous with respect
to the family U0 := {Ut ∈ U: t ∈ {t0, g(t0)}}. Now, to establish (i), it suffices to use Lemma 4.1
with A = AB.

Obviously, the matrix B is Hermitian if and only if the operator AB defined by (2.8) is self-
adjoint. Using Lemma 4.6 and Theorem 5.1 one derives (ii). �
Proposition 5.3. Assume that the singular elements ψj in (1.3) form a H−1(A0)-independent
orthonormal system in H−2(A0), the system (4.23) has a unique solution R, and a p(t)-
homogeneous admissible large coupling limit A∞ of (1.3) is chosen. Then a self-adjoint operator
realization AB of (1.3) is nonnegative if and only if det(BR + E) 	= 0 and 0 � −(BR + E)−1B �
−R−1, where E stands for the identity matrix.

Proof. By Theorem 4.13, the Krein–von Neumann extension AN of Asym coincides with a p(t)-
homogeneous admissible large coupling limit A∞ and it is defined by (3.3), where R is the
solution of (4.23). Furthermore, the Friedrichs extension AF coincides with A0. Combining these
observations with [33, Theorem 3] the statement follows. For completeness some of the details
are repeated here.

By (3.21) a self-adjoint operator AB is nonnegative if and only if −1 ∈ ρ(AB) and

0 � CB � CN, (5.3)

where CB = (AB + I )−1 − (A0 + I )−1 and CN = (AN + I )−1 − (A0 + I )−1 are self-adjoint
operators in H = ker(A∗

sym + I ).
It follows from (2.7) and (2.8) that

D(AB) = {
f ∈ D

(
A∗

sym

)
: BΓ̂1f = −(BR + E)Γ̂0f

}
. (5.4)

Relations (2.5) and (5.4) imply −1 ∈ ρ(AB) ⇔ D(AB) ∩ H = {0} ⇔ det(BR + E) 	= 0. Since
the elements ψj are orthonormal in H−2(A0), the corresponding vectors hj in (2.3) form an
orthonormal basis of H. In that case, the domain D(AB) can be also presented as D(AB) = {f ∈
D(−	∗

sym): CBΓ̂1f = Γ̂0f }, where CB is the matrix representation of CB with respect to the

basis {hj }n1. Comparing this with (5.4) one gets CB = −(BR + E)−1B.
Similar reasonings for the operator AN defined by (3.3) give det R 	= 0 (since −1 ∈ ρ(AN))

and CN = −R−1 . By substituting the obtained expressions for CB and CN into (5.3) one com-
pletes the proof. �
Remark 5.4. A description of nonnegative self-adjoint operator realizations of (1.3) given above
is based on the specific form of boundary operators Γi . A general approach to the description of
nonnegative self-adjoint extensions of a symmetric operator has been proposed recently in [12].
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5.2. The Weyl function and the resolvent formula

Let (Cn,Γ0,Γ1) be the boundary triplet of A∗
sym constructed in Lemma 2.2 and let A∞ be a

self-adjoint extension of Asym defined by (3.3).
The γ -field γ (z) and the Weyl function M(z) associated with the boundary triplet (Cn,Γ0,Γ1)

are defined by

γ (z) = (Γ0 � Hz)
−1, M(z) = Γ1γ (z), z ∈ ρ(A∞), (5.5)

see [16,17]. Here Hz = ker(A∗
sym − zI), z ∈ C, denote the defect subspaces of Asym. The map-

pings Γi are defined by (2.5) and M(z) is an n × n-matrix function.

Theorem 5.5. The operator A∞ is p(t)-homogeneous if and only if for at least one point z = z0 ∈
C \ R (and then for all non-real points z) the Weyl function M(z) satisfies the relation

p(t)M(z) = Ξ(t)M
(
p(t)z

)
Ξ(t), ∀t ∈ T, (5.6)

where Ξ(t) is defined by (4.17).

Proof. Let fz ∈ Hz, z ∈ C. Then Lemma 4.1 and relation (4.1) imply

Ug(t)fz ∈ ker

(
A∗

sym − z

p(g(t))
I

)
= ker

(
A∗

sym − p(t)zI
) = Hp(t)z. (5.7)

Putting f = fz ∈ Hz in (5.2), using (5.7), and observing that M(z)Γ0fz = Γ1fz, z ∈ C
(see (5.5)), one can rewrite (5.2) as follows:

M
(
p(t)z

)
Γ0Ug(t)fz = p(t)Ξ−1(t)M(z)Γ0fz. (5.8)

If the identity (5.6) holds for some non-real z = z0, then (5.8) implies that

Γ0Ug(t)f = Ξ(t)Γ0f (5.9)

for all f = fz0 ∈ Hz0 . Since M∗(z) = M(z) [16] and hence, (5.6) holds for z0, the re-
lation (5.9) is also true for f = fz0 ∈ Hz0 . Moreover, (5.9) holds for all f ∈ D(Asym)

since Γ0f = Γ0Ug(t)f = 0 by (1.4). Consequently, (5.9) is true on the domain D(A∗
sym) =

D(Asym) +̇ Hz0 +̇ Hz0 . By Theorem 4.8 this provides the p(t)-homogeneity of A∞.
Conversely, assume that A∞ is p(t)-homogeneous. In this case, (5.9) holds for all f ∈

D(A∗
sym) (see (4.18)). But then, for all non-real z and all fz ∈ Hz,

M
(
p(t)z

)
Ξ(t)Γ0fz

(5.9)= M
(
p(t)z

)
Γ0Ug(t)fz

(5.7)= Γ1Ug(t)fz

(5.2)= p(t)Ξ−1(t)Γ1fz=p(t)Ξ−1(t)M(z)Γ0fz

that justifies (5.6). Theorem 5.5 is proved. �
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Let AB be a self-adjoint realization of (1.3) defined by (2.8). Then the resolvents of AB and
A∞ are connected via Krein’s formula

(AB − zI)−1 = (A∞ − zI)−1 + γ (z)
(
B − M(z)

)−1
γ (z)∗, z ∈ ρ(AB) ∩ ρ(A∞). (5.10)

The explicit form of M(z) can be found as follows. By (2.7) it is easy to see that the Weyl
functions M(z) and M̂(z) associated with the boundary triplets (2.5) and (2.6), respectively, are
connected via the linear fractional transform

M(z) = −(
R + M̂(z)

)−1
, z ∈ C \ R. (5.11)

The boundary triplet (2.6) is one of the most used boundary triplets and the corresponding Weyl
function M̂(z) is studied well. In particular, if the singular elements ψj in (1.3) form an orthonor-
mal system in H−2, then (see [16, Remark 4])

M̂(z) = (z + 1)PH
[
I + (z + 1)(A0 − zI)−1]PH.

By combining this relation with (5.11) one gets an explicit form for M(z).

Example 5.6. A point interaction for p-adic Schrödinger type operator. Let p be a fixed prime
number and let Qp be the field of p-adic numbers. The operation of differentiation is not defined
in the p-adic analysis of complex-valued functions defined on Qp and the Vladimirov operator
of the fractional p-adic differentiation

Dαf (x) = pα − 1

1 − p−1−α

∫
Qp

f (x) − f (y)

|x − y|1+α
p

dμ(y), α > 0,

is used as an analog of it (see [27] for details). Here | · |p and dμ(y) are, respectively, the p-adic
norm and the Haar measure on Qp. The operator Dα is positive and self-adjoint in the Hilbert
space L2(Qp) of complex-valued square integrable functions on Qp. p-Adic Schrödinger-type
operators with potentials V (x) : Qp → C are defined as Dα + V (x).

Denote T = {t = pn: n ∈ Z} and consider a family U = {Ut }t∈T of unitary operators
Utf (x) = t−1/2f (tx) acting in L2(Qp). Obviously, Ut satisfies (1.7) with the function of con-
jugation g(t) = 1/t , cf. (4.2). It follows from [28] that UtD

α = tαDαUt , t ∈ T. Hence, Dα is
tα-homogeneous with respect to U.

Since Dα is a p-adic pseudo-differential operator its domain of definition D(Dα) need not
contain functions continuous on Qp and, in general, it may happen that the formal expression

Dα + b〈δ, ·〉δ(x), b ∈ R, (5.12)

and the associated symmetric operator Asym = Dα � {u(x) ∈ D(Dα): u(0) = 0} are not defined
on D(Dα). It is known [35] that the domain D(Dα) consists of continuous functions on Qp

and the Dirac delta function δ(x) is well defined on H2(D
α) = D(Dα) if and only if α > 1/2.

Furthermore, δ(x) is
√

t-invariant with respect to U and δ(x) ∈ H−2(D
α) \ H−1(D

α) if 1/2 <

α � 1, while δ(x) ∈ H−1(D
α) if α > 1.
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It follows from [27, Lemma 3.7] and [35, Lemma 2.1] that

h(x) = (
Dα + I

)−1
δ =

∞∑
N=−∞

p−1∑
j=1

p−N/2[pα(1−N) + 1
]−1

ψNj0(x),

where the functions ψNj0(x) (N ∈ Z, j = 1, . . . ,p − 1) form a part of the p-adic wavelet basis
{ψNjε(x)} recently constructed in [28].

Eq. (4.27) takes the form(
t − tα

)
r = √

t
(
1 − tα

)
(h,Uth), ∀t ∈ T. (5.13)

A simple analysis shows that (5.13) has no solutions r ∈ R for α = 1. In that case the initial
operator D1 is a unique nonnegative self-adjoint extension of Asym, see Proposition 4.16. If α 	= 1
(α > 1/2), then (5.13) has a unique solution r ∈ R that determines a unique tα-homogeneous
admissible large coupling limit A∞ of (5.12) by the formula (cf. (3.3))

A∞f (x) = Dαu(x) + u(0)

r
h(x), D(A∞) =

{
f = u(x) − u(0)

r
h(x): u ∈ D

(
Dα

)}
.

In view of Proposition 4.16, the operator A∞ coincides with the Krein–von Neumann
(Friedrichs) extension of Asym for 1/2 < α < 1 (respectively for α > 1).

Let (Cn,Γ0,Γ1) be the boundary triplet of A∗
sym constructed in Lemma 2.2 so that kerΓ0 =

D(A∞). By Theorem 2.3, self-adjoint operator realizations of (5.12) in L2(Qp) have the form
Abf = Ab(u + ch) = Dαu − ch, ∀u ∈ D(Dα), where the parameter c = c(u, b) ∈ C is uniquely
determined by the relation bu(0) = −c[1 + br]. Since ξ2(t) = t 	= tα = p(t) (α 	= 1), Theo-
rem 5.1 shows that Ab is tα-homogeneous if and only if b = 0 or b = ∞.

Let α > 1. It follows from [7] that the Weyl function associated with (Cn,Γ0,Γ1) has the
form

M(z) = − 1

(p − 1)
∑∞

N=−∞
p−N

pα(1−N)−z

.

By virtue of Theorem 5.5, M(z) satisfies the relation tα−1M(z) = M(tαz), ∀t ∈ T. This sim-
plifies the spectral analysis of Ab , see [7] for details.

Example 5.7. A general zero-range potential in R. A one-dimensional Schrödinger operator
corresponding to a general zero-range potential at the point x = 0 can be given by the expression

A0 + b11〈δ, ·〉δ(x) + b12〈δ′, ·〉δ(x) + b21〈δ, ·〉δ′(x) + b22〈δ′, ·〉δ′(x),

where A0 = −d2/dx2 (D(A0) = W 2
2 (R)) acts in H = L2(R), δ′(x) is the derivative of the Dirac

δ-function (with support at 0).
In this case, Asym = −d2/dx2 � {u(x) ∈ W 2

2 (R): u(0) = u′(0) = 0} and the corresponding
Friedrichs and Krein–von Neumann extensions are transversal (see, e.g., [10]). The functions

h′(x) = (A0 + I )−1ψ1 = 1
{

e−x, x > 0,
x h′′(x) = (A0 + I )−1ψ2 = −(signx)h′(x),
2 e , x < 0,
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where ψ1 = δ(x) and ψ2 = δ′(x), form an orthogonal basis of H = ker(A∗
sym + I ) such that

H′ = H ∩ H1(A0) = 〈h′(x)〉 and H′′ = H � H′ = 〈h′′(x)〉.
Define U = {Ut }t∈[0,∞) as a collection of the space parity operator U0f (x) = f (−x) (f (x) ∈

L2(R)) and the set of scaling transformations Utf (x) = √
tf (tx), t > 0. In this case, A0 is p(t)-

homogeneous with respect to U, where p(0) = 1 and p(t) = t−2 if t > 0. The elements ψj (j =
1,2) are ξj (t)-invariant, where ξ1(0) = 1, ξ1(t) = t−1/2 (t > 0) and ξ2(0) = −1, ξ2(t) = t−3/2

(t > 0). Furthermore, for such a choice of U, T0 = {t ∈ [0,∞): p(t) 	= 1} = (0,∞) and

(h′,Uth
′′) = t1/2

∞∫
−∞

h′(x)h′′(tx) dx = 0, ∀t ∈ T0.

Let us put H̃ = H′. Then Y = (A0 + I )H′′ = 〈ψ2〉 and part (iii) of Proposition 4.15 implies
that the corresponding operator S defined by (3.10) is p(t)-homogeneous. Calculating βij (t) in
(4.23) for ξ1(t), ξ2(t), and p(t) as given above, it is easy to see that βij (0) 	= 0 if i 	= j and
βii(t) 	= 0 for all t > 0. In this case, by Theorem 4.14 there exists a unique p(t)-homogeneous
admissible large coupling limit A∞.

To identify A∞ it suffices to determine the entries rij of R in (3.3) with the aid of (4.23): for

t = 0, (4.23) takes the form
( 0 2r12

−2r21 0

) = 0 and, hence, r12 = r21 = 0; on the other hand, for
t > 0 calculating both sides of (4.23) leads to

t−3/2(t − 1)

(
r11 0
0 −r22

)
= (

1 − t−2)( √
t

2(1+t)
0

0
√

t
2(1+t)

)

and thus r11 = 1/2, r22 = −1/2. Substituting the coefficients rij in (2.4) results in the well-
known extensions of δ(x) and δ′(x) onto D(A∗

sym) = W 2
2 (R \ {0}) (see [5]):

〈δex, f 〉 = f (+0) + f (−0)

2
,

〈
δ′

ex, f
〉 = −f ′(+0) + f ′(−0)

2
.

The corresponding operator A∞ is the restriction of −d2/dx2 to D(A∞) = {f (x) ∈
W 2

2 (R \ {0}): −f (−0) = f (+0), −f ′(−0) = f ′(+0)} and A∞ is transversal to the singular
perturbations AB of A0 that are determined by (2.9).

It follows from Theorem 5.1 that AB is t−2-homogeneous with respect to the scaling transfor-
mations Ut (t > 0) if and only if B = ( 0 b12

b21 0

)
. In that case AB = A∗

B (i.e., b21 = b12) ⇔ AB � 0
(by Corollary 5.2).

6. Schrödinger operators with singular perturbations ξ(t)-invariant with respect to
scaling transformations in RRR3

It is well known (see, e.g., [5,13]) that the Schrödinger operator A0 = −	 (D(	) =
W 2

2 (R3)), is t−2-homogeneous with respect to the set of scaling transformations U = {Ut }t∈(0,∞)

(Utf (x) = t3/2f (tx)) in L2(R
3). It is clear that Ut satisfies (1.7) with the function of conjugation

g(t) = 1/t .
The elements Ut of U possess the additional multiplicative property Ut1Ut2 = Ut2Ut1 = Ut1t2

that enables one to describe all measurable functions ξ(t) for which there exist ξ(t)-invariant
singular elements ψ ∈ W−2(R3).
2
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Theorem 6.1. Let ξ(t) be a real measurable function defined on (0,∞). Then ξ(t)-invariant
singular elements ψ ∈ W−2

2 (R3) \ L2(R
3) exist if and only if ξ(t) = t−α , where 0 < α < 2.

Proof. Let ψ ∈ W−2
2 (R3)\L2(R

3) be ξ(t)-invariant with respect to U. Since Ut1Ut2 = Ut2Ut1 =
Ut1t2 , equality (1.9) gives ξ(t1)ξ(t2) = ξ(t1t2) (ti > 0) that is possible only if ξ(t) = 0 or ξ(t) =
t−α (α ∈ R) [24, Chapter IV]. Furthermore, Proposition 4.5 enables one to restrict the set of
possible functions ξ(t) as follows: ξ(t) = t−α , where 0 < α < 2.

To complete the proof of Theorem 6.1 it suffices to construct t−α-invariant singular elements
for 0 < α < 2.

Fix m(w) ∈ L2(S
2), where L2(S

2) is the Hilbert space of square-integrable functions on the
unit sphere S2 in R3, and determine the functional ψ(m,α) ∈ W−2

2 (R3) by the formula

〈
ψ(m,α),u

〉 = ∫
R3

m(w)

|y|3/2−α(|y|2 + 1)

(|y|2 + 1
)̂
u(y)dy

(
y = |y|w ∈ R3), (6.1)

where û(y) = 1
(2π)3/2

∫
R3 eix·yu(x) dx is the Fourier transformation of u(·) ∈ W 2

2 (R3).
It is easy to verify that

̂(Ug(t)u)(y) = ̂(U1/tu)(y) = 1

(2πt)3/2

∫
R3

eiy·xu(x/t) dx = Ut û(y) = t3/2û(ty). (6.2)

Using (6.1) and (6.2), one obtains 〈ψ(m,α),Ug(t)u〉 = t−α〈ψ(m,α),u〉 for all u ∈ W 2
2 (R3). By

(4.15) this means that the functional ψ(m,α) is t−α-invariant with respect to U. Theorem 6.1 is
proved. �

A more detailed study of functionals that are t−α-invariant with respect to scaling trans-
formations and the results of [38] lead to the conclusion that the collection Lα of all t−α-
invariant singular elements ψ ∈ W−2

2 (R3) \ L2(R
3) can be described as follows: Lα = {ψ =

ψ(m,α) : m(w) ∈ L2(S
2), m(w) 	= 0}.

Let us consider the formal expression

−	 +
n∑

i,j=1

bij 〈ψj , ·〉ψi, bij ∈ C, n ∈ N, (6.3)

where all singular elements ψj are assumed to be t−α-invariant with respect to scaling transfor-
mations for a fixed α, i.e., ψj = ψ(mj ,α). The symmetric operator Asym = −	sym associated
with (6.3) takes the form

−	sym = −	 �D(	sym), D(	sym) = {
u(x) ∈ W 2

2

(
R3): 〈ψj ,u〉 = 0, 1 � j � n

}
, (6.4)

where 〈ψj ,u〉 are defined by (6.1).
Comparing (1.2) and (6.1), one sees that the functions hj = (A0 +I )−1ψ(mj ,α) in (2.3) have

the form

hj (x) =
(

mj(w)

3/2−α 2

)∨
(x) =

(
mj(w)

3/2−α 2

)∧
(x), (6.5)
|y| (|y| + 1) |y| (|y| + 1)
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where the symbol ∨ denotes the inverse Fourier transformation.
A simple analysis of (6.5) shows that hj ∈ L2(R

3) \ W 1
2 (R3) for 1 � α < 2 and hj ∈ W 1

2 (R3)

for 0 < α < 1. In the latter case, Corollary 3.7 and Lemma 4.4 imply that the Friedrichs extension
−	F is a unique t−2-homogeneous admissible large coupling limit of (6.3).

Proposition 6.2. Let 1 < α < 2. Then the Krein–von Neumann extension −	N of −	sym is a
unique t−2-homogeneous admissible large coupling limit of (6.3).

Proof. If 1 < α < 2, then all the elements ψj in (6.3) are W−1
2 (R3)-independent. Let us show

that the system (4.23) has a unique solution R = (rij )
n
i,j=1 that does not depend on t > 0. Since

the both parts of (4.23) are equal to zero for t = 1, one can suppose that t > 0 and t 	= 1.
It follows from (6.2) and (6.5) that

Uthi(x) = Ut

(
mi(w)

|y|3/2−α(|y|2 + 1)

)∧
(x) =

(
U1/t

mi(w)

|y|3/2−α(|y|2 + 1)

)∧
(x)

= t2−α

(
mi(w)

|y|3/2−α(|y|2 + t2)

)∧
(x).

Hence,

(hj ,Uthi) = t2−α

∫
R3

mi(w)mj (w)

|y|3−2α(|y|2 + t2)(|y|2 + 1)
dy

= (mi,mj )L2

∞∫
0

t2−α

|y|1−2α(|y|2 + t2)(|y|2 + 1)
d|y|

= cα

tα − t2−α

t2 − 1
(mi,mj )L2 ,

where cα = ∫ ∞
0

|y|3−2α

|y|2+1
d|y| and (mi,mj )L2 = ∫

S2 mi(w)mj (w)dw is the scalar product in

L2(S
2). Substituting the expression for (hj ,Uthi) into (4.23) one gets a unique solution R =

(rij )
n
i,j=1, where rij = −cα(mi,mj )L2 . By Theorem 4.13, the obtained solution determines

a unique t−2-homogeneous admissible large coupling limit A∞ of (6.3) that coincides with
−	N . �
Remark 6.3. If α = 1, then (4.23) has no solution, there are no t−2-homogeneous admissible
large coupling limits of (6.3), and the Friedrichs −	 = −	F and the Krein–von Neumann −	N

extensions of −	sym are not transversal.

Corollary 6.4. For a fixed 1 < α < 2 assume that ψj = ψ(mj ,α) in (6.3) form an orthonormal
system in W−2(R3) and self-adjoint operator realizations AB = −	B of (6.3) are defined by
2
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(2.8) with kerΓ0 = D(−	N). Then −	B is nonnegative if and only if det(βαB − E) 	= 0 and
0 � βαB[βαB − E]−1 � E, where

βα =
[ ∞∫

0

|y|3−2α

|y|2 + 1
d|y|

][ ∞∫
0

1

|y|1−2α(|y|2 + 1)2
d|y|

]−1

. (6.6)

Proof. Since ψ(mj ,α) are orthonormal in W−2
2 (R3) the functions hj (x) determined by (6.5)

are orthonormal in L2(R
3). This means that

(mi,mj )L2 = 0 (i 	= j) and (mi,mi)L2

∞∫
0

1

|y|1−2α(|y|2 + 1)2
d|y| = 1.

The obtained relations allow one to rewrite the unique solution R = −cα((mi,mj )L2)
n
i,j=1 of

(4.23) in a more explicit form: R = −βαE, where βα is defined by (6.6). Using Proposition 5.3
one completes the proof. �

Note that the delta function δ(·) belongs to L3/2. For this reason, the expression (6.3) where
all ψj ∈ L3/2 can be considered as a generalization of the classical one-point interaction −	 +
b〈δ, ·〉δ. In that case the parameter βα in Corollary 6.4 can be easily calculated: β3/2 = 2.

Theorem 6.5. Let α = 3/2. Then for any self-adjoint operator realization AB = −	B of (6.3)
defined by (2.8), the following statements are true:

(i) if −	B is nonnegative, then the wave operators W± = limt→±∞ e−it	Bei	t exist and are
unitary operators in L2(R

3);
(ii) if −	B is nonnegative and the singular elements ψj = ψ(mj ,3/2) in (6.3) form an or-

thonormal system in W−2
2 (R3), then the S-matrix

S(−	B,−	) = FW ∗+W−F−1

(F is the Fourier transformation in L2(R
3)) of the Schrödinger equation iut = −	Bu co-

incides with the boundary value S(−	B,−	)(δ) (δ ∈ R) of the contractive operator-valued
function

S(−	B,−	)(z) = (E − 2izB)(E + 2izB)−1, z ∈ C+, (6.7)

analytic in the upper half-plane C+.

Proof. The statements follow from [34, Theorem 3.3] and [33, Section 4].

Remark 6.6. In [33] the expression (6.7) was obtained by using the Lax–Phillips scattering
scheme. Another description of S(−	B,−	)(z) in terms of the Krein’s resolvent formula was
obtained in [1]. In that paper, the stationary scattering theory approach has been used.
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