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In this Letter we evaluate the renormalization constants and anomalous dimensions for the squark 
wave function and mass within supersymmetric QCD. These results complement the ones obtained in 
Harlander et al. (2009) [1] and thus provide further confirmation on the applicability of dimensional 
reduction to supersymmetric QCD at three-loop order. The three-loop anomalous dimension constitute 
important input to precision predictions of the supersymmetric mass spectrum as obtained from the 
evolution from the GUT to the TeV energy scale.

© 2011 Elsevier B.V. Open access under CC BY license.

1. Introduction

Supersymmetry (SUSY) (for a review see, e.g., Ref. [2]) has a number of appealing properties which classifies it as a promising extension 
of the Standard Model (SM). Among them are the possibility of gauge coupling unification, a dark matter candidate, and a solution to the 
hierarchy problem.

Although there is yet no clear evidence for the realization of SUSY in nature it is mandatory to be prepared both on the experimental 
and theoretical side. Currently there are several experimental groups who eagerly look for signatures of supersymmetry in the data 
provided by the CERN Large Hadron Collider (LHC). As far as theory is concerned it is on the one hand important to provide precise 
predictions for production cross sections involving SUSY particles. On the other hand there are a number of quantities which require 
higher order loop corrections. A prominent example is the prediction of the lightest Higgs boson mass which recently became available 
to three loops [3–5] resulting in an uncertainty which can nevertheless be of the order of about 1 GeV [5]. Another example where 
higher order corrections within a supersymmetric theory are very welcome are the renormalization group functions. They are crucial for 
the running from low to high energy scales and constitute an important input for the spectrum generators (see, e.g., Refs. [6–8]) which 
predict the SUSY spectrum on the basis of only a few assumptions at energies of about 1016 GeV.

The canonical choice for the regularization scheme used for higher order loop calculations is dimensional regularization (DREG). How-
ever, it is known since about 30 years that DREG breaks SUSY. As a way out dimensional reduction (DRED) has been formulated [9–11] 
which takes over most of the convenient features from DREG and is thus a viable alternative for practical multi-loop calculations. It is 
worth mentioning that DRED is equivalent to DREG for non-SUSY theories as has been shown in Refs. [12–18]. Furthermore it has been 
demonstrated in a number of papers [19–22,1,23] that DRED is consistent with SUSY QCD at the three-loop level. In this Letter we provide 
as new ingredients a further contribution by computing three-loop renormalization constants for the mass and mixing angle of squarks in 
the minimal subtraction scheme, which in the context of DRED is called DR.

The renormalization constants and the corresponding anomalous dimensions up to two-loop order has been computed in Ref. [24–27,5]. 
Three-loop corrections have been considered in Refs. [19–22,28] using relations between the beta functions of the gauge and Yukawa 
couplings and the anomalous dimensions of the symmetry breaking parameters that can be established in a softly broken supersymmetric 
theory [29–31]. In Ref. [1] the wave function renormalization constants of quarks, squarks, gluons, gluinos, ghosts and ε scalars and the
renormalization constants for the quark and gluino mass were calculated to three-loop order in the framework of SUSY QCD. In Ref. [1] 
also the β function for the strong coupling constant has been derived from all possible three-point functions. The fact that in each case 
the same expression has been obtained provides a check on the consistency of DRED with gauge invariance and supersymmetry. In this 
Letter the squark renormalization constants are computed to three loops using the component field approach. The main difficulty of this 
calculation in contrast to the renormalization constants for the gluino and quark masses is that the squark mass renormalization constant
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depends on the masses of the occurring particles in the loops although a renormalization scheme based on minimal subtraction is adopted.
Furthermore, there is an interplay of the renormalization of the ε scalar and the squark mass which will also be discussed in this Letter.

The remainder of the Letter is organized as follows: In the next section we derive formulae for the squark renormalization constants
and briefly outline the procedure used for the construction of the exact mass dependence. Furthermore, the renormalization of the ε
scalars is discussed in detail. Our results are presented in Section 3 and Section 4 contains the conclusions.

2. Formalism

The calculations in this Letter are performed in the framework of SUSY QCD with nq = 5 massless quarks and a massive top quark (mt ).
The scalar super partners of the latter has two mass eigenstates (mt̃1

and mt̃2
) which may have different masses and thus a non-vanishing

mixing angle occurs. The super partners of the nq light quarks are assumed to have degenerate masses (mq̃) and vanishing mixing angle.
A generalization to a non-degenerate spectrum is possible in a straightforward way from the formalism for the top squark sector which is
discussed in detail in the following. The gluino mass is denoted by mg̃ .

Most of the formulae which we are going to present in the following can already be found in Ref. [5]. For completeness we repeat
the most important ones here and extend them to three loops. Unless stated otherwise all parameters in the following derivation are DR
quantities which depend on the renormalization scale μ. For the sake of compactness the latter is omitted. Bare quantities are marked by
a superscript “(0)”.

It is common to denote the left- and right-handed components of the top squark by t̃L and t̃R , respectively. The corresponding mass
matrix is given by

M2
t̃

=
(

m2
t + M2

Z ( 1
2 − 2

3 sin2 ϑW ) cos 2β + M2
Q̃

mt(At − μSUSY cotβ)

mt(At − μSUSY cotβ) m2
t + 2

3 M2
Z sin2 ϑW cos 2β + M2

Ũ

)
≡

( m2
t̃L

mt Xt

mt Xt m2
t̃R

)
(1)

with Xt = At −μSUSY cotβ . At is the soft SUSY breaking tri-linear coupling, and MŨ and M Q̃ are the soft SUSY breaking masses. With the
help of the unitary transformation(

t̃1
t̃2

)
= R†

t̃

(
t̃L

t̃R

)
, (2)

it is possible to diagonalize M2
t̃(m2

t̃1
0

0 m2
t̃2

)
= R†

t̃
M2

t̃
Rt̃, (3)

where the eigenvalues are the masses of the eigenstates t̃1 and t̃2. They read

m2
t̃1,2

= 1

2

[
m2

t̃L
+ m2

t̃R
∓

√(
m2

t̃L
− m2

t̃R

)2 + 4m2
t X2

t

]
. (4)

The unitary transformation can be parametrized by the mixing angle

Rt̃ =
(

cos θt − sin θt

sin θt cos θt

)
, (5)

with

sin(2θt) = 2mt(At − μSUSY cot β)

m2
t̃1

− m2
t̃2

. (6)

The renormalization constants connected to the top squark are extracted from the top squark propagator. At tree-level it is a diag-
onal 2 × 2 matrix which receives non-diagonal entries at loop-level. It is convenient to absorb the corresponding counterterms into a
renormalization constant for the mixing angle which we introduce via

θ
(0)
t = θt + δθt . (7)

In order to be able to write down the renormalized top squark propagator we define the renormalization constants as follows: The wave
function renormalization constant defined through(

t̃(0)
1

t̃(0)
2

)
= Z 1/2

t̃

(
t̃1
t̃2

)
(8)

can be parametrized by a universal factor Z̃ 1/2
2 and the renormalization constant for the mixing angle

Z 1/2
t̃

= Z̃ 1/2
2

(
cos δθt sin δθt

− sin δθt cos δθt

)
. (9)

This equation follows from Eq. (2) and (t̃(0)
L , t̃(0)

R )T = Z̃ 1/2
2 (t̃L, t̃R)T . Furthermore, the renormalized mass matrix can be parametrized as

follows
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(
(m(0)

t̃1
)2 0

0 (m(0)

t̃2
)2

)
→

(
m2

11 Zm11 m2
12 Zm12

m2
21 Zm21 m2

22 Zm22

)
≡ M, (10)

where we require that the off-diagonal elements in the renormalized mass matrix vanish. As a consequence, the counterterm δθt takes
care of the divergences in the self-energy contribution where a t̃1 transforms into a t̃2 or vice versa. This can be seen in the explicit
formulae given below. The diagonal elements of Eq. (10) can be identified with the renormalization of the masses(

m(0)

t̃i

)2 = m2
ii Zmii = m2

t̃i
Zmt̃i

. (11)

In order to formulate the renormalization conditions it is convenient to consider the renormalized inverse top squark propagator given
by

iS −1(p2) = p2(Z 1/2
t̃

)† Z 1/2
t̃

− (
Z 1/2

t̃

)†[M − Σ
(

p2)]Z 1/2
t̃

(12)

where

Σ
(

p2) =
(

Σ11(p2) Σ12(p2)

Σ21(p2) Σ22(p2)

)
, (13)

stands for the matrix of the squark self energy. In the DR scheme the renormalization conditions read

S −1
i j

(
p2)∣∣

pp = 0, (14)

where “pp” stands for the “pole part”.
In order to obtain explicit formulae for the evaluation of the renormalization constants it is convenient to define perturbative expan-

sions of the quantities entering Eq. (14). Up to three-loop order we have

Zk = 1 +
(

αs

4π

)
δZ (1)

k +
(

αs

4π

)2

δZ (2)

k +
(

αs

4π

)3

δZ (3)

k + O
(
α4

s

)
,

δθt =
(

αs

4π

)
δθ

(1)
t +

(
αs

4π

)2

δθ
(2)
t +

(
αs

4π

)3

δθ
(3)
t + O

(
α4

s

)
,

Σi j =
(

αs

4π

)
Σ

(1)
i j +

(
αs

4π

)2

Σ
(2)
i j +

(
αs

4π

)3

Σ
(3)
i j + O

(
α4

s

)
, (15)

where i, j ∈ {1,2} and k ∈ {2,mt̃1
,mt̃2

}. Inserting these equations into (12) one can solve Eq. (14) iteratively order-by-order in αs . At
one-loop order one gets

{
Σ

(1)
ii − m2

t̃i

(
δ Z̃ (1)

2 + δZ (1)
mt̃i

) + p2δ Z̃ (1)
2

}∣∣
pp = 0, i = 1,2,{

Σ
(1)
12 − δθ

(1)
t

(
m2

t̃1
− m2

t̃2

)}∣∣
pp = 0. (16)

The terms proportional to p2 in the first equation of (16) are used to compute the wave function renormalization constant which is
independent of all occurring masses. Thus they can be set to zero and one obtains

δ Z̃ (1)
2 = − 1

p2
Σ

(1)
11

(
p2)∣∣

pp = − 1

p2
Σ

(1)
22

(
p2)∣∣

pp. (17)

Once δ Z̃ (1)
2 is known Eq. (16) is used to obtain δZ (1)

mt̃i
keeping the mass dependence in Σ

(1)
ii (see below for more details). The second

equation of (16) is used to obtain the renormalization constant of the mixing angle via

δθ
(1)
t = Σ

(1)
12

m2
t̃1

− m2
t̃2

∣∣∣∣
pp

. (18)

Proceeding to two loops we obtain the equations

[
Σ

(2)
ii + δ Z̃ (1)

2 Σ
(1)
ii − m2

t̃i

(
δ Z̃ (2)

2 + δ Z̃ (1)
2 δZ (1)

mt̃i
+ δZ (2)

mt̃i

) + δ Z̃ (2)
2 p2 + (−1)(i+1)δθ

(1)
t

(−2Σ
(1)
12 + δθ

(1)
t

(
m2

t̃1
− m2

t̃2

))]∣∣
pp = 0,

i = 1,2, (19)[−δθ
(2)
t

(
m2

t̃1
− m2

t̃2

) − δθ
(1)
t δ Z̃ (1)

2

(
m2

t̃1
− m2

t̃2

) − δθ
(1)
t δZ (1)

mt̃1
m2

t̃1
+ δθ

(1)
t δZ (1)

mt̃2
m2

t̃2

+ δθ
(1)
t Σ

(1)
11 − δθ

(1)
t Σ

(1)
22 + δ Z̃ (1)

2 Σ
(1)
12 + Σ

(2)
12

]∣∣
pp = 0, (20)

which are solved for Z̃ (2)
2 , δZ (2)

m˜ and δθ
(2)
t using the same strategy as at one-loop level.
ti
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Fig. 1. Sample diagrams contributing to Σ11 at one, two and three loops. The symbols t , t̃i , g , g̃ and ε denote top quarks, top squarks, gluons, gluinos, and ε scalars,
respectively.

Similarly, at three-loop order we have

[
(−1)i+1{(δθ(1)

t

)2(
δ Z̃ (1)

2

(
m2

t̃1
− m2

t̃2

) + δZ (1)
mt̃1

m2
t̃1

− δZ (1)
mt̃2

m2
t̃2

− Σ
(1)
11 + Σ

(1)
22

)
+ δθ

(1)
t

(
2δθ

(2)
t

(
m2

t̃1
− m2

t̃2

) − 2δ Z̃ (1)
2 Σ

(1)
12 − 2Σ

(2)
12

) − 2δθ
(2)
t Σ

(1)
12

} + δ Z̃ (1)
2

(
Σ

(2)
ii − δZ (2)

mt̃i
m2

t̃i

) − δ Z̃ (2)
2 δZ (1)

mt̃i
m2

t̃i
+ δ Z̃ (2)

2 Σ
(1)
ii

− δ Z̃ (3)
2 m2

t̃i
+ δ Z̃ (3)

2 p2 − δZ (3)
mt̃i

m2
t̃i

+ Σ
(3)
ii

]∣∣
pp = 0, i = 1,2, (21)[

δθ
(1)
t

(−δ Z̃ (1)
2 δZ (1)

mt̃1
m2

t̃1
+ δ Z̃ (1)

2 δZ (1)
mt̃2

m2
t̃2

+ δ Z̃ (1)
2 Σ

(1)
11 − δ Z̃ (1)

2 Σ
(1)
22 − δ Z̃ (2)

2

(
m2

t̃1
− m2

t̃2

) − δZ (2)
mt̃1

m2
t̃1

+ δZ (2)
mt̃2

m2
t̃2

+ Σ
(2)
11 − Σ

(2)
22

)
+ δθ

(2)
t

(−δ Z̃ (1)
2

(
m2

t̃1
− m2

t̃2

) − δZ (1)
mt̃1

m2
t̃1

+ δZ (1)
mt̃2

m2
t̃2

+ Σ
(1)
11 − Σ

(1)
22

) − δθ
(3)
t

(
m2

t̃1
− m2

t̃2

) + δ Z̃ (1)
2 Σ

(2)
12 + δ Z̃ (2)

2 Σ
(1)
12 + Σ

(3)
12

+ 2

3

(
δθ

(1)
t

)3(
m2

t̃1
− m2

t̃2

) − 2
(
δθ

(1)
t

)2
Σ

(1)
12

]∣∣∣∣
pp

= 0. (22)

Sample diagrams contributing to Σ11 up to three loops can be found in Fig. 1; the contributions to Σ12 and Σ22 look very similar.
Once the quantities Σ11, Σ12 and Σ22 are known to three-loop order it is possible to extract the renormalization constants for the squark
wave function and mass and the mixing angle from Eqs. (21) and (22).

As compared to the corresponding self-energy contributions for fermions or gauge bosons, which after proper projection only lead to
logarithmically divergent integrals, the quantities in the above equations have mass dimension two. As a consequence the renormalization
constants of the squark masses and the mixing angles depend on the occurring masses, even in a minimal subtraction scheme like DR. At
three-loop order an exact evaluation of the corresponding integrals is not possible. It is nevertheless possible to reconstruct the complete
dependence on the occurring masses using repeated asymptotic expansions and in addition some knowledge about the structure of the
final result. The latter can be induced from the known results at one- and two-loop order. Besides the polynomial dependence inverse
powers of first (second) order in m2

t̃1
− m2

t̃2
occur in the two-loop contributions to Zmt̃i

(δθt ). Thus we expect that in δZ (3)
mt̃i

at most

1/(m2
t̃1

− m2
t̃2

)2 and in δθ
(3)
t at most 1/(m2

t̃1
− m2

t̃2
)3 terms appear. Asymptotic expansion leads to results where these denominators are

expanded in a geometric series. If sufficient terms are evaluated it is straightforward to properly reconstruct the inverse mass differences.
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Using asymptotic expansion for several different hierarchies it is possible to check that the final result is independent of the actual
choice. In our calculation we have chosen the external momentum as the largest scale in order to avoid infrared divergences1 and the
ε-scalar mass as the smallest. As far as the squark masses, the gluino and the top quark mass is concerned any hierarchy can be chosen.
We decided to consider the three choices

q2 � m2
t̃2

� m2
q̃ � m2

t̃1
� m2

g̃ � m2
t � m2

ε,

q2 � m2
g̃ � m2

q̃ � m2
t̃2

� m2
t̃1

� m2
t � m2

ε,

q2 � m2
g̃ � m2

q̃ � m2
t̃2

� m2
t � m2

t̃1
� m2

ε . (23)

We have checked that in all cases we obtain the same results for Zmt̃i
and δθt . Note that in the last hierarchy the top quark mass is even

larger than the corresponding squark mass which is allowed since the mass dependence in the DR counterterms has no physical meaning.
In each hierarchy of Eq. (23) six mass ratios appear. Some of the expansions are simple and can be truncated after a few terms. E.g.,

all terms with inverse contributions in q2 can immediately be set to zero. Similarly, all mass ratios where one has a top squark mass in
the denominator and mt , mg̃ or mq̃ in the numerator only low-order expansion terms appear in the final result. This has been checked
by increasing the expansion depth and verifying that the higher order terms are zero. Due to the occurrence of 1/(m2

t̃1
− m2

t̃2
) terms in

the exact result several terms in mt̃1
/mt̃2

have to be kept in the expressions for the self energies in order to be able to reconstruct the

geometric series. In practice we compute terms up to (mt̃1
/mt̃2

)8 and check that after including two more powers in the top squark mass
ratio the final result does not change.

At this point some comments on the treatment of the ε scalar mass, mε , are in order. In practice there are two renormalization
schemes for mε which are frequently used, the DR and on-shell scheme. In the latter one requires that the renormalized mass vanishes in
each order in perturbation theory whereas in the DR prescription only the pole parts are subtracted by the renormalization constant. We
will present our results in a first step for DR ε scalar mass and afterwards discuss the difference to the on-shell scheme.

In the DR scheme it is important to keep mε different from zero since the renormalization group equations for the squark masses and
mε are coupled. A non-vanishing ε-scalar mass in intermediate steps is also required for the computation of the anomalous dimensions in
the DR′ scheme [32] (see below) which was constructed in order to disentangle the running of mε from the one of the squark parameters.

After the calculation of the bare self energies we renormalize all occurring parameters in the DR scheme. For our three-loop calculation
we need the counterterms for αs , mt , mg̃ , mt̃i

, θt and mε to two-loop order and the one for mq̃ to one-loop approximation. Furthermore,
also the QCD gauge parameter has to be renormalized to two loops since it appears in the results for the wave function anomalous
dimensions. All relevant counterterms can be found in the Mathematica file provided together with Ref. [1] and in Ref. [5]. The two-
loop corrections for the ε-scalar mass renormalization is provided in Ref. [33].

For the calculation of the three-loop integrals we make use of several computer programs which work hand-in-hand in order to
reduce the manual interaction to a minimum. All Feynman diagrams are generated with the program qgraf [34]. The generated files are
manipulated by a perl program [1], which implements the prescriptions of Ref. [35], in order to obtain the correct prefactors due to
the Majorana character of the gluino. Afterwards the output is transformed to FORM [36] notation with the help of q2e and exp [37,38].
exp furthermore applies the asymptotic expansion (see, e.g., Ref. [39]) in the hierarchies specified in Eq. (23). As a result only one-scale
integrals up to three loops appear which can be evaluated with the packages MINCER [40] and MATAD [41]. Let us mention that we
implemented the DRED Feynman rules for SUSY QCD as given in Ref. [42,1].

Once the renormalization constants are available we compute the corresponding anomalous dimension with the help of

γX = μ2

X

dX

dμ2
, (24)

where the quantity X is either a mass parameter or the mixing angle

X ∈ {
m2

t̃1
,m2

t̃2
,m2

q̃,mg̃,mt ,m2
ε, θt

}
. (25)

In practice the derivation in Eq. (24) is taken after exploiting the relation between the bare and the renormalized quantity. Since bare
parameters do not depend on μ the derivative acts only on the renormalization constant. In the case of the top quark and the gluino the
latter are mass independent and thus the derivative w.r.t. μ can be rewritten into a derivative w.r.t. αs . For the other parameters, however,
one has to take into account the mass dependence of the Z factors. Let us as an example consider the anomalous dimension of mt̃i

which

leads to the following chain of equations2

γmt̃i
= − μ2

Zmt̃i

d

dμ2
Zmt̃i

= − μ2

Zmt̃i

[dZmt̃i

dαs

dαs

dμ2
+

∑
X

dZmt̃i

dX

dX

dμ2

]
= −

[
πβ

d

dαs
(log Zmt̃i

) +
∑

X

XγX
d

dX
(log Zmt̃i

)

]
, (26)

where β(αs) is the anomalous dimension of the strong coupling and X runs over the parameters listed in Eq. (25).
In the next section we provide results for various anomalous dimensions. For this purpose it is convenient to introduce the following

expansion

γX = −αs

π

∑
n�0

(
αs

π

)n

γ
(n)
X . (27)

1 Note that there are still massless gluons and light quarks in the theory.
2 In the subscript for the anomalous dimensions we write mt̃ instead of m2

˜ , etc.

1 t1
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3. Results

In a first step we have computed the three-loop corrections to the squark wave function renormalization constant Z̃2 (which is mass
independent). In the following we present results for the anomalous dimensions γmt̃1

, γmt̃2
, γmq̃

and γθt up to three-loop order which all

have a non-trivial mass dependence. The corresponding results for the renormalization constants can be found in Mathematica format
on the internet page [33].

At one-loop order we obtain the following results

m2
t̃1
γ

(0)
mt̃1

= C F

[
m2

g̃ + 1

8
(1 − c4t)

(
m2

t̃1
− m2

t̃2

) + m2
t − mg̃mt s2t

]
, (28)

θtγ
(0)
θt

= C F c2t

[
− mg̃mt

m2
t̃1

− m2
t̃2

+ s2t

4

]
, (29)

where the abbreviations cnt = cos(nθt) and snt = sin(nθt) have been introduced and C F = (N2
C − 1)/(2NC ) is the Casimir operator of the

fundamental representation of SU(NC ). In Eq. (28) we have given the result for γmt̃1
. The one for γmt̃2

is obtained by interchanging mt̃1

and mt̃2
and replacing θt by −θt .

The two-loop coefficients read

m2
t̃1
γ

(1)
mt̃1

= C A C F

{
3

4
m2

ε + 11

4
m2

g̃ + 3

32
(1 − c4t)

(
m2

t̃1
− m2

t̃2

) + 3

4
m2

t − 3

2
mg̃mt s2t

}

+ C2
F

{
−3

2
m2

g̃ − 1

16
(1 − c4t)

(
m2

t̃1
− m2

t̃2

) − 1

2
m2

t + mg̃mt s2t

}

− C F T f

{
nq

[
1

2
m2

ε + 3

2
m2

g̃ + m2
q̃ + 1

16
(1 − c4t)
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]
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2
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2
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2
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]}
, (30)

θtγ
(1)
θt

= C F T f

{
nq

[
mg̃mt

m2
t̃1

− m2
t̃2

c2t − 1

8
c2t s2t

]
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[
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{
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F

{
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8
c2t s2t

}
, (31)

where C A is the Casimir operator of the adjoint representation of SU(NC ) and T F = 1/2 the trace normalization. nt counts the top squark
flavours and nq counts the mass-degenerate squark flavours and at the same time the massless quarks. In practice we have nt = 1 and
nq = 5, however, it is nevertheless convenient to keep the labels arbitrary.

Let us now come to the three-loop results. The anomalous dimensions for the top squark masses are given by

m2
t̃1
γ

(2)
mt̃1

= C3
F

{
3m2

g̃ + 1
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(
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F C A
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− 9
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+ C F T 2
f
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8 8 16 16
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+ C A C F T f
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1
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[
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, (32)

where ζ3 is Riemann’s zeta function with the value ζ3 = 1.2020569 . . . . The three-loop expression for γθt reads

θtγ
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[
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+ C A C F T f

{
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[
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(
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[
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(
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(
1

32
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8
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. (33)

At that point a brief comment on degenerate top squarks is in order. In the expressions for γmt̃i
the limit mt̃2

→ mt̃1
can be taken

naively. Furthermore one has to nullify the mixing angle. The quantity γθt is not defined in the mass-degenerate case which is reflected
by the fact that the limit mt̃2

→ mt̃1
does not exist in Eqs. (29), (31) and (33).

In order to compare with the results in the literature we have to transform our results to the anomalous dimensions for the quantities
M Q̃ , MŨ and At as given in Eq. (1). This is conveniently achieved with the help of Eq. (3) which is differentiated w.r.t. μ2. The resulting
equations are then solved for the γM Q̃

, γMŨ
and γAt . We have compared the resulting one-, two- and three-loop expressions with the

results in the literature [24,26,22] and found complete agreement. Note that the method used in Ref. [22] is based on a relation of the
anomalous dimensions to an all-order expression in the so-called NSVZ scheme [43] whereas in this work a diagrammatic approach has
been used to evaluate the three-loop corrections. We refrain from providing explicit results for γM Q̃

and γMŨ
which, however, can be

found in the Mathematica file [33]. Note that we have γM Q̃
= γMŨ

which is expected since electroweak effects are neglected [29]. This
serves as a welcome check for our calculation. The result for γAt is proportional to the gluino mass and is thus quite compact. Up to
three-loop order it is given by

μ2
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d
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At = γAt = mg̃
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(
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3
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2
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)]}
. (34)

For completeness let us also provide the result for mass-degenerate squarks which is given by

m2
q̃γ

(0)
mq̃

= C F m2
g̃, (35)
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, (36)
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− C A C F T f

{
nq

[
3

2
m2

ε + 15

8
m2

q̃ + 9m2
g̃ζ3

]
+ nt

[
3

2
m2

ε + 15

16
m2

t̃1
+ 15

16
m2

t̃2
− 15

8
m2

t + 9m2
g̃ζ3

]}

+ C2
F T f

{
nq

[
3

8
m2

ε − 27

4
m2

g̃ + 3

4
m2

q̃ + 9m2
g̃ζ3

]
+ nt

[
3

8
m2

ε − 27

4
m2

g̃ + 3

8
m2

t̃1
+ 3

8
m2

t̃2
− 3

4
m2

t + 9m2
g̃ζ3

]}
. (37)

One observes that all terms which do not involve nt can be obtained from γm˜ by setting mt̃ = mt̃ , mt = 0 and θt = 0.

t1 2 1
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Table 1
Numerical values for the DR′ parameters for μ = M Z using the numbers in Eq. (39) as in-
put and solving the system of differential equations with one-, two- or three-loop anomalous
dimensions in the squark sector.

1 loop 2 loops 3 loops

mt̃1
(GeV) 1425 1416 1378

mt̃2
(GeV) 1677 1670 1632

θt 0.658 0.659 0.656
mq̃ (GeV) 1580 1573 1535

When applying the anomalous dimensions derived in this Letter one has to consider the combined set of differential equations of all
DR parameters appearing on the r.h.s. of the above results. This concerns in particular the unphysical ε-scalar mass which means that
although mε is set to zero at one scale it is different from zero once this scale is changed. A way out from this situation is to renormalize
the ε scalar mass on-shell. We have computed the resulting anomalous dimensions and provide the results in Ref. [33]. Alternatively one
could shift the squark masses by a finite term which is chosen such that the ε scalar decouples from the system of differential equations.
The resulting renormalization scheme is called DR′ scheme and has been suggested in Ref. [32]. In our approximation the finite shift is
needed up to two loops which is given by [32,44]

m2
f̃
→ m2

f̃
− αs

π

1

2
C F m2

ε +
(

αs

π

)2

C F m2
ε

(
1

4
T f (nq + nt) + 1

4
C F − 3

8
C A

)
, (38)

where f = t or f = q.3 We have checked that after inserting this shift in γmt̃1
, γmt̃2

and γmq̃
the parameter mε drops out from the

resulting anomalous dimension. Again we refrain from listing explicit results, however, provide the analytic expressions in [33].
All results presented above can be found in Mathematica format on the webpage [33]. In addition we provide the results for the

anomalous dimensions γM Q̃
, γMŨ

and γAt and the renormalization constants for the squark masses and the mixing angle in the top

squark system. The Mathematica file contains furthermore the result for γmt̃1
, γmt̃2

and γmq̃
for on-shell ε scalar masses and in the DR′

scheme.
Let us finally perform a simplified analysis in order to exemplify the numerical impact of the three-loop corrections. In our example

we fix the following values of the DR′ parameters at the scale μ = μG = 1016 GeV

mt̃1
= 400 GeV, mt = 67 GeV, θt = 0.1, αs = 0.0425, mt̃2

= mg̃ = mq̃ = 600 GeV, (39)

and use the anomalous dimensions obtained in this Letter and in Ref. [1] to compute the corresponding values for μ = M Z . Since our
aim is to study the numerical importance of the three-loop anomalous dimensions in the squark sector we neglect all threshold effects.
Furthermore, we use for the running of αs , mg̃ and mt always the three-loop approximation whereas in the case of the squark masses
and θt the loop-order is varied from one to three.

The values of mt = mt(μG) and αs = αs(μG) in Eq. (39) are chosen such that three-loop running leads to mt(M Z ) = 170 GeV and
αs(M Z ) = 0.118. The results for mt̃1

, mt̃2
, θt and mq̃ at the scale μ = M Z can be found in Table 1.

We observe a small change in the mixing angle by about 0.4%. As far as the squark masses are concerned one observes a moderate shift
of a few GeV when going from one to two loops. After switching on the three-loop terms, however, the squark masses are decreased by
about 40 GeV which is approximately an order of magnitude larger than the two-loop corrections. Nevertheless it corresponds to a shift
in the masses of about 3% which is a reasonable amount for a three-loop SUSY QCD term. Our observation coincides with the findings of
Ref. [22] where also relatively large three-loop corrections for the squarks have been identified.

4. Conclusions

In this Letter the renormalization constants for the squarks and the corresponding mixing angle have been computed to three-loop
order within supersymmetric QCD. Thus, all anomalous dimensions of the physical parameters are now available to order α3

s and can thus
be used to relate their mass values at the GUT and electroweak or TeV scale.

Our calculation has been performed using dimensional reduction for the regularization of the divergent loop integrals which is realized
with the help of massive ε scalars. As far as the renormalization of the ε scalar mass is concerned we have evaluated our results for three
different schemes: DR, DR′ and on-shell. Our results agree with Ref. [22] which supports the consistency of DRED with SUSY QCD since in
Ref. [22] the results have been obtained without a diagrammatic calculation.

A simplified numerical analysis shows that the three-loop corrections to the squark masses are numerically important (see also [22])
and thus should be included in the spectrum generators which incorporate the running from the GUT to the electroweak scale.

All renormalization constants and anomalous dimensions computed in this Letter can be downloaded from the URL [33] in Mathe-
matica format.
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