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We prove an inequality for the spectral radius of products of

non-negative matrices conjectured by Zhan. We show that for

all n × n non-negative matrices A and B, ρ(A ◦ B) � ρ((A ◦ A)(B ◦
B))1/2 � ρ(AB), in which ◦ represents the Hadamard product.
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We denote by Aij the entry of a matrix A in position (i, j), and by ◦ the Hadamard product of

two matrices of the same size, that is, the entrywise product (A ◦ B)ij = AijBij . We are concerned

with entrywise positive and entrywise non-negative matrices, which we refer to as positive and non-

negative matrices, denoted by A > 0 and A� 0, respectively.

The spectral radius ρ(A) of a square complex matrix A is the largest modulus of the eigenvalues of

A. The spectral radius is not submultiplicative: ρ(AB) � ρ(A)ρ(B) does not hold in general, not even

for non-negativematrices. A counterexample is given by the pair (see, e.g. [2, Section 5.6, Problem 19])

A =
(
0 0

1 0

)
, B =

(
1 1

0 1

)
. (1)

Of course, ρ(Am) = ρ(A)m for all square complex A and allm = 1, 2, . . .
On the other hand, for non-negative A and B, the spectral radius is submultiplicative with re-

spect to the Hadamard product: ρ(A ◦ B) � ρ(A)ρ(B) ([3, Observation 5.7.4]). This can be generalised

to Hadamard products (and powers) of several matrices as follows [1]: for non-negative matrices
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A1, A2, . . . , An and non-negative αi such that
∑

i αi � 1, ρ(A
◦α1

1 ◦ · · · ◦ A◦αn
n ) � ρ(A1)

α1 · · · ρ(An)
αn , in

which A◦α denotes the entrywise power.

Zhan has conjectured [4] that for pairs of square non-negative matrices, the spectral radius of

the Hadamard product is always bounded above by the spectral radius of the (conventional) matrix

product.

The purpose of this note is to prove Zhan’s conjecture, and a little more:

Theorem 1. For n × n non-negative matrices A and B,

ρ(A ◦ B) � ρ((A ◦ A)(B ◦ B))1/2 � ρ(AB).

Before proving the theorem, we note that there is no reasonable lower bound on ρ(A ◦ B) in terms

of ρ(AB). The pair A and B in (1) shows that ρ(A ◦ B) can be zero while ρ(AB) is not. In fact, this can

happen even when A and B both have non-zero spectral radius. For example, with

A =
(
1 x

0 1

)
, B =

(
1 0

y 1

)
,

A, B and A ◦ B all have spectral radius 1, while AB =
(
1 + xy x

y 1

)
. Since det(AB) = 1 and Tr(AB) =

2 + xy, the spectral radius of AB can be arbitrarily large.

Our proof of Theorem 1 is based on the following representation for the spectral radius of a positive

matrix, which is essentially the power method:

Lemma 1. For A ∈ Mn such that A > 0, ρ(A) = limm→∞(TrAm)1/m.

Proof. By Perron’s theorem [2, Theorem 8.2.11], the spectral radius of a positive matrix A is a simple

and strictly dominant eigenvalue of A; that is,ρ = |λ1| > |λ2| � · · · � |λn|. Thus, (TrAm)1/m = ρ(1 +
(λ2/ρ)m + · · · + (λn/ρ)m)1/m, which tends to ρ asm goes to infinity. �

It suffices to prove Theorem 1 for positive A and B. Because of the continuity of the spectral radius,

the theorem follows for non-negative A and B as well.

Proof of Theorem1 forpositiveA andB.Weprove that the following inequalities hold for anypositive

integer k:

Tr((A ◦ B)2k) � Tr
(
((A ◦ A)(B ◦ B))k

)
� Tr((AB)2k). (2)

Taking the (2k)th root, taking the limit k → ∞, and invoking the lemma the theorem follows from

(2).

The left-hand side Tr((A ◦ B)2k) can be written as a 2k-fold sum:

Tr((A ◦ B)2k) = ∑
i1,i2,...,i2k

(Ai1i2Bi1i2) (Ai2i3Bi2i3) · · · (Ai2ki1Bi2ki1)

= ∑
i1,i2,...,i2k

(
Ai1i2Bi2i3 · · · Ai2k−1i2kBi2ki1

)

×
(
Bi1i2Ai2i3 · · · Bi2k−1i2kAi2ki1

)
. (3)

Alternation of the A and B factors in the last line is intentional.

The expression (3) is an inner product between two vectors in Rn2k+ , one with entries Ai1i2Bi2i3 · · ·
Ai2k−1i2kBi2ki1 , and the other with entries Bi1i2Ai2i3 · · · Bi2k−1i2kAi2ki1 . One sees that these two vectors

have the same sets of entries (as can be seen by performing a cyclic permutation on the indices

i1, i2, . . . , i2k). Thus, in particular, both vectors have the same Euclidean norm. Applying the Cauchy-

Schwarz inequality then gives
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Tr((A ◦ B)2k) �
∑

i1,i2,...,i2k

(
Ai1i2Bi2i3 · · · Ai2k−1i2kBi2ki1

)2

= ∑
i1,i2,...,i2k

A2
i1i2

B2i2i3 · · · A2
i2k−1i2k

B2i2ki1

= Tr(((A ◦ A)(B ◦ B))k). (4)

This proves the first inequality of the theorem.

Now consider Tr((AB)2k), which can be written as a 4k-fold summation:

Tr((AB)2k) = ∑
i1,i2,...,i2k
j1,j2,...,j2k

(Ai1i2Bi2i3 · · · Ai2k−1i2kBi2kj1)

×(Aj1j2Bj2j3 · · · Aj2k−1j2kBj2ki1).

The crucial observation is that if we take all terms of this sum for which i1 = j1, i2 = j2,…, i2k = j2k ,

thenwe obtain the right-hand side of (4). The remaining terms are of course all positive. Therefore, we

find that Tr((AB)2k) is an upper bound on (4). This proves the second inequality of the theorem. �
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