Figure shows the absolute change in the D_{mean} for the anal sphincter (left y-axis) and relative change in the V_{450} for the rectal wall (right y-axis) expressed as a function of the relative increase in the homogeneity index HI of the dose distribution in the PTV. The mean, the integral, and the coverage doses, as well as the MUs to the OAR and the PTV from DVH- and energy-optimized 2- and 3-beam plans are summarized in the table below. For comparable PTV coverage, the energy optimized plan in the 2-beam case results in lower OAR dose by 6.6%, while the deposited energy to the OAR is lower by 18.5%. Similarly, in the 3-beam scenario the energy optimized plan results in mean and integral dose reduction to the OAR by 9.8% and 26% respectively. The plan MUs in the 2- and 3-beam scenarios differ by less than 2%.

Materials and Methods: A DVH-based quadratic objective function is compared to a total energy minimization objective function. A digital phantom-patient. The phantom is built from four 10x10x10 cm3 cubical volumes of interest (VOIs). The central VOI has a density of 1.0 g/cm3 and includes a cylindrical (3 cm in diameter, 3 cm in length) target (PTV). The other three VOIs (on top and two sides of the central cube) an organ at risk (OAR) with three different densities: 0.8 (OAR$_{0.2}$), 0.2 (OAR$_{0.5}$), and 0.5 (OAR$_{0.8}$) g/cm3. Two sets of deliverable plans are generated with DVH and energy-based optimization schemes: a) a 2-beam plan with 2 IMRT segments, and b) a 3-beam plan with 3 IMRT segments. In the 2-beam plan the PTV is irradiated with an AP beam through OAR$_{0.8}$ and an orthogonal beam through OAR$_{0.2}$. In the 3-beam plan an additional orthogonal beam through OAR$_{0.5}$ is added. DVH and energy optimizations were performed for both sets of plans, aiming to deliver a 100 cGy to 95% of the PTV, while minimizing the dose to the OAR as much as possible.

Results: The mean, the integral, and the coverage doses, as well as the MUs to the OAR and the PTV from DVH- and energy-optimized 2- and 3-beam plans are summarized in the table below. For comparable PTV coverage, the energy optimized plan in the 2-beam case results in lower OAR dose by 6.6%, while the deposited energy to the OAR is lower by 18.5%. Similarly, in the 3-beam scenario the energy optimized plan results in mean and integral dose reduction to the OAR by 9.8% and 26% respectively. The plan MUs in the 2- and 3-beam scenarios differ by less than 2%.

Materials and Methods: A DVH-based quadratic objective function is compared to a total energy minimization objective function. A digital phantom-patient. The phantom is built from four 10x10x10 cm3 cubical volumes of interest (VOIs). The central VOI has a density of 1.0 g/cm3 and includes a cylindrical (3 cm in diameter, 3 cm in length) target (PTV). The other three VOIs (on top and two sides of the central cube) an organ at risk (OAR) with three different densities: 0.8 (OAR$_{0.2}$), 0.2 (OAR$_{0.5}$), and 0.5 (OAR$_{0.8}$) g/cm3. Two sets of deliverable plans are generated with DVH and energy-based optimization schemes: a) a 2-beam plan with 2 IMRT segments, and b) a 3-beam plan with 3 IMRT segments. In the 2-beam plan the PTV is irradiated with an AP beam through OAR$_{0.8}$ and an orthogonal beam through OAR$_{0.2}$. In the 3-beam plan an additional orthogonal beam through OAR$_{0.5}$ is added. DVH and energy optimizations were performed for both sets of plans, aiming to deliver a 100 cGy to 95% of the PTV, while minimizing the dose to the OAR as much as possible.

Results: The mean, the integral, and the coverage doses, as well as the MUs to the OAR and the PTV from DVH- and energy-optimized 2- and 3-beam plans are summarized in the table below. For comparable PTV coverage, the energy optimized plan in the 2-beam case results in lower OAR dose by 6.6%, while the deposited energy to the OAR is lower by 18.5%. Similarly, in the 3-beam scenario the energy optimized plan results in mean and integral dose reduction to the OAR by 9.8% and 26% respectively. The plan MUs in the 2- and 3-beam scenarios differ by less than 2%.

Materials and Methods: A DVH-based quadratic objective function is compared to a total energy minimization objective function. A digital phantom-patient. The phantom is built from four 10x10x10 cm3 cubical volumes of interest (VOIs). The central VOI has a density of 1.0 g/cm3 and includes a cylindrical (3 cm in diameter, 3 cm in length) target (PTV). The other three VOIs (on top and two sides of the central cube) an organ at risk (OAR) with three different densities: 0.8 (OAR$_{0.2}$), 0.2 (OAR$_{0.5}$), and 0.5 (OAR$_{0.8}$) g/cm3. Two sets of deliverable plans are generated with DVH and energy-based optimization schemes: a) a 2-beam plan with 2 IMRT segments, and b) a 3-beam plan with 3 IMRT segments. In the 2-beam plan the PTV is irradiated with an AP beam through OAR$_{0.8}$ and an orthogonal beam through OAR$_{0.2}$. In the 3-beam plan an additional orthogonal beam through OAR$_{0.5}$ is added. DVH and energy optimizations were performed for both sets of plans, aiming to deliver a 100 cGy to 95% of the PTV, while minimizing the dose to the OAR as much as possible.

Results: The mean, the integral, and the coverage doses, as well as the MUs to the OAR and the PTV from DVH- and energy-optimized 2- and 3-beam plans are summarized in the table below. For comparable PTV coverage, the energy optimized plan in the 2-beam case results in lower OAR dose by 6.6%, while the deposited energy to the OAR is lower by 18.5%. Similarly, in the 3-beam scenario the energy optimized plan results in mean and integral dose reduction to the OAR by 9.8% and 26% respectively. The plan MUs in the 2- and 3-beam scenarios differ by less than 2%.