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Abstract

This manuscript aims at illustrating significant refinements concerning the use of wavelets, when these latter are used in
the guise of continuous wavelet transforms (CWT) for identifying damage on transversally vibrating structural compo-
nents (e.g. beams, plates and shells). The refinements regard the presentation of wavelet-algorithms which are aimed at
significantly reducing those border distortions normally arising during a wavelet-damage detection procedure. The main
advantage of the algorithms is that they are self-contained, namely: (i) the wavelet transforms do not undergo any own
variation and their application follows the convolution laws established in the past; (ii) it is not necessary to design a spe-
cific boundary wavelet; (iii) no significant analytical treatment neither of the wavelets nor of the signal is required and,
finally, (iv) the algorithms can be adapted to different boundary conditions and different physical situations. Besides all
the specified advantages, the wavelet-damage detection procedure is still carried out by excluding historical data. The effec-
tiveness of the algorithms is shown through numerical and experimental examples. These latter are illustrated along with
reduced outliers of experimental estimation through a related consistent statistical procedure.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Damage detection based on changes of modal data or, more in general, vibration-based data, has become
one of the most attractive research topics in recent years (Dimarogonas, 1996; Salawu, 1997; Doebling et al.,
1998; Kim and Melhem, 2004). The attraction is mainly due to the possibility of identifying damaged locations
by putting aside the knowledge a-priori of the damaged zone. Although such a principle could also be
extended to existing NDTs (e.g. Ultrasonic, X-ray, etc. (Reese and Kawahara, 1993; Staszewski et al.,
2004)), such an extension is not straightforward for a number of technical and practical reasons. In particular,
the mentioned existing ND evaluating techniques should interest point-by-point the whole structure by
consuming times and sometimes using costly devices. Staszewski et al. (2004) illustrate an interesting brief
summary of these existing ND techniques.
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2008.02.015

* Tel.: +39 0832 297 801; fax: +39 0832 297 802.
E-mail address: arcangelo.messina@unile.it

mailto:arcangelo.messina@unile.it


A. Messina / International Journal of Solids and Structures 45 (2008) 4068–4097 4069
The investigation, or the so called damage monitoring and inspection, could, therefore, be based on modal
and related vibrational data but, in that case, the global nature of these techniques should be taken into
account. Indeed, modal data depend on the physical parameters of the structures under test but such depen-
dency could be considered in nature as macro rather than micro and, therefore, the related sensitivity would be
macro too. Such an apparent limitation must be sought within the frequency range where the modal data are
usually measured (low frequency: a few kHz); in such circumstances the boundary within which the modal
data begin to provide interesting sensitivities depends on several factors: the system under test, the measuring
devices and the amount of damage which deserves to be taken into account. Apart from these possible limi-
tations, which could be tackled and to a certain extent overcome when used in junction with the most modern
technology, the attractions offered by the techniques based on modal data deserve to be appropriately
investigated.

This work deals with the methods that try to detect the existence and location of damage through the pro-
cessing of dynamical shapes strictly related to the system under test (SUT). Therefore, the monitoring tech-
nique herein dealt with does not need a mathematical model of the system but it only needs measured
inherent data (i.e. dynamical shape). In this regard, several researchers have recently followed this approach
by using several approaches (e.g. Yuen, 1985; Pandey et al., 1991; Ratcliffe, 1997; Ratcliffe and Bagaria, 1998;
Wang and Deng, 1999; Hong et al., 2002; Gentile and Messina, 2002, 2003; Loutridis et al., 2004; Messina,
2004; Han et al., 2005; Yoon et al., 2005; Rucka and Wilde, 2006a,b; Trentadue et al., 2007) and among them
the application of wavelet analysis is one of the most investigated subjects. The present context regards the
wavelet analysis applied in the guise of CWT as established in Gentile and Messina (2003) and Messina (2004).

Certain dynamical shapes associated to a damaged transversally vibrating structural element (here a beam
as a non limiting simplicity) constitute the only information available to the analyst in order to carry out the
related inspection on the state of health of the system. In this respect, the analyst, once having carried out the
CWT of the measured dynamical shape through an appropriate numerical method, needs to look for local
abnormalities along the same transform in order to detect the damaged location. This approach is made
attractive by the availability of recent laser-technologies joined to accurate and fast scanning devices which
allow to measure point-by-point the dynamic shape of large areas (plates and shells) or lengths (beams).

Within the frame of the mentioned damage detecting approach, the motivation of the present work regards
a known phenomenon which can be termed as border distortion; this phenomenon consists of abnormal rises
of the continuous wavelet transforms occurring at the ends of certain transformed digital dynamical shapes.
This phenomenon, as discussed in Gentile and Messina (2003), depends on the boundary conditions and can
also be spread on the internal points of the monitored dynamic shape depending on the extent of the analyzing
wavelet (the different extent is an essential feature used to minimize the noise (Messina, 2004)); in Gentile and
Messina (2003) the phenomenon was also empirically discussed along with certain equivalences between con-
tinuous wavelet transforms (CWTs) and classical derivatives, whilst, Messina (2004) also investigated the cor-
relation between continuous wavelet transforms and digital differentiator filters along with the convolution
operation of FIR filters.

Because the identification of a damaged location depends on the abnormalities, anything causing abnor-
malities, but extraneous to the damage, is a potential source for a false indication. Moreover, the importance
of reducing the border distortion phenomenon is also due to the fact that the investigated area of the structural
element is effectively reduced by the presence of this phenomenon along with the extent of the analyzing wave-
let. In such a perspective the so called border distortion phenomenon must be reduced in some way.

The border distortion phenomenon is also mentioned in Rucka and Wilde (2006a,b) and there also exist
works which deal with border effect within the frame of regression analysis (e.g. Oh et al., 2001; Lee and
Oh, 2004; Oh and Lee, 2005) and classical works dealing with this specific subject (Strang and Nguyen,
1996; Misiti et al., 2006b). As far as the objectives of the present work are concerned, Rucka and Wilde
(2006a,b), Strang and Nguyen (1996) and Misiti et al. (2006b) are particularly relevant; in particular, Rucka
and Wilde (2006a,b) suggested an interesting and simple boundary treatment for overcoming the problem:
extrapolating cubic spline, based on three (Rucka and Wilde, 2006b) or four (Rucka and Wilde, 2006a) neigh-
bouring points, were essentially considered as the resolution key of the problem.

This work introduces two different methods aimed at reducing the so called border distortion phenomenon
which can be easily and immediately applied to real data; the methods are characterised by different levels of
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complexity and their successful behaviour can be interpreted in the light of the equivalencies between CWT
and differentiator FIR filters Messina (2004); all the analytical and experimental tests are based on a highly
redundant number of points (a few hundreds) in order to stay in line with the past investigations (Gentile
and Messina, 2003; Messina, 2004; Trentadue et al., 2007). The methods presented in this work are discussed
in comparison with those already proposed in the open literature whenever existing and, finally, it is believed
that all findings herein illustrated are applicable in all structures which allow a multi-grid measurability of
dynamical shapes.

2. The system under test and the border distortion

The system taken into account in the present work along with its nomenclature is schematically shown in
Fig. 1, where, the system under test (SUT) consists of a beam having clamped-free (CF) boundary condi-
tions. The boundary conditions, the material and further details will be specified when necessary. The ana-
lytical–numerical model simulating the damage in a cracked beam is developed in Gentile and Messina
(2002) (i.e. open symmetrical crack, without considering the effect of rotatory inertia). As far as experimental
dynamical shapes are concerned, the measurements obtained as illustrated in Trentadue et al. (2007) are
taken into account. In particular, as far as these latter data are concerned, it is stressed here that a slightly
improved method (Messina and Albanese, 2008) has been applied in order to extract dynamical shapes with-
out outliers.

2.1. Border distortion in CWTs

Based on the previous sections and on past studies (Messina, 2004) the CWT and its relevant filtered deriv-
ative are estimated through the following numerical convolution law:
DoðwðnÞ; aÞ ¼ hoðn; aÞ � wðnÞ ð1Þ

where Do is the filtered numerical derivative, being ‘‘o” the order of differentiation and w(n) the dynamical
shape containing damage information in the samples domain (n = 0, . . . ,N � 1). In particular, Do should be
intended as a low-passed oth derivative (dow/dno). The term ‘‘a” is the dilation parameter which, once settled
to an established natural number, designs the capability of ho(n) (the convolving filter) to deal with the noise
contained within w(n). The dilation will stretch (higher a values) or compress (lower a values) ho (n) in order to
reduce or amplify the noise, respectively; this behavior can also be seen in the Fourier transformed domain
(Messina, 2004). The number of taps of the filter ho(n) corresponds to Nf = 10a + 1. Finally, the convolving
numerical filters ho(n) depends on the vanishing moments of the chosen Gaussian wavelets (Mallat, 2001; Gen-
tile and Messina, 2003; Messina, 2004) with the related differentiation which is presented within its physical
domain (x 2 [0,L] of Fig. 1 in the present context) once Do (Eq. (1)) has been normalized by (N/L)o.

As far as the border distortion phenomenon is concerned, such a phenomenon arises from the application
of Eq. (1). In particular, if the dynamical shape w(n) is sufficiently smooth at the ends the border distortion can
also be absent or minimum. Conversely, if the dynamical shape contains non-smooth ends, Eq. (1) causes the
presence of abnormal rises in Do(w(n); a). Such abnormalities can also be extended to the internal points of the
beam thus causing false indication in damage identification or shading real damage condition close to borders.
Fig. 1. Nomenclature and geometry of the system under test.
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In this work, two methods significantly reducing such a phenomenon, further than aimed at eventually reduc-
ing the number of partitions which inefficiently sometimes are requested to investigate a whole system, are
presented.

Based on Fig. 1, the border distortion will be analyzed firstly by taking into account mode shapes of an
undamaged beam subjected to CC, SS and FF boundary conditions. The data, unless otherwise specified,
regard beams having Young’s module E = 6.9 GPa, density q = 1360 kg/m3, thickness h = 16 mm, length
L = 570 mm, damage p=h/2; d = 1 mm and, finally, a number of measuring points N = 500 over mode shapes
normalized by assuming unitary the absolute maximum value. Finally, when an analytical mode shape is cor-
rupted by noise this latter is simulated through a Gaussian model having null mean and standard deviation r
through a specified signal to noise ratio SN[dB] = 20 log10(j wjmax/r).
3. Border distortion in CWTs: reduction methods

Figs. 2–4 are able to clearly illustrate and, therefore, quantitatively recall the above mentioned phenomenon
of border distortion.

The reason why all Figs. 2–4 take into account 2nd, 3rd and 4th derivatives can be found in literature (Gentile
and Messina, 2002; Rucka and Wilde, 2006a,b). Different investigations have pointed out the importance of
Fig. 2. Border distortion for the first mode shape of an undamaged CC beam (114.02 Hz; based on classical Euler–Bernoulli beam model);
influence of different dilation parameters from the second up to the fourth derivative on mode shapes free of noise (bold line: exact derivative).



Fig. 3. Border distortion for the third mode shape of undamaged CC and SS beams (616.16 and 452.69 Hz, respectively; based on classical
Euler–Bernoulli beam model); influence of the dilation parameter from the second up to the fourth derivative on mode shapes free of noise
(bold line: exact derivative).
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making use of derivatives beyond the second which was initially suggested by Pandey et al. (1991). This was
noticed by Gentile and Messina (2002) who extended the investigation up to the third derivative and after, Rucka
and Wilde (2006a,b) and Di Sante et al. (2008) identified damaged locations by also using the fourth derivative.

As is clear in Figs. 2 and 3, a different influence of the dilation parameters on mode shapes, when the modes
are characterized by beams subjected to different boundary conditions, exists. It is interesting to notice how
the longer the analyzing wavelet (higher a) is the more the inner points are influenced by the border
distortions.

Fig. 4 illustrates the case of mode shapes contaminated by a 60 dB noise. The noise, as is known (Messina,
2004), is controlled by the magnitude of the dilation parameter and here it is confirmed that such a control is
effective up to the fourth order of differentiation.

Based on the above mentioned figures, in spite of the excellent behaviour provided by the CWT for obtain-
ing high order derivatives with controlled noise, it is clear that the advantages obtained by ponderously using
dilation parameters could be paid by heavy border distortions.

Moreover, relevant limitations of CWT, in identifying damaged sites, can also exist depending on the num-
ber of measured points (Gentile and Messina, 2003; Messina, 2004). However, in this latter respect, because
the objective of this manuscript is to deal with self-contained methods (i.e. basic characteristics of the CWT



Fig. 4. Border distortion for the third mode shape of an undamaged FF beam (616.16 Hz; based on classical Euler–Bernoulli beam model);
influence of the dilation parameter from the second up to the fourth derivative on mode shapes contaminated by noise (S/N = 60 dB; bold line:
exact derivative).
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are not influenced), the relevant dependence of the methods on the number of measured points belongs to the
discussions already established in the past.

A method which avoids the border distortion, regardless of the dilation parameter, would evidently be wor-
thy of interest. Indeed, such a method would leave the analysts free from ineffective partitions (whenever pos-
sible) as well as allowing straightforward numerical analysis to be carried out on relevant experimental data by
simply changing the dilation parameter.

The solution to such a problem is herein attempted by resorting to the inherent significance of Eq. (1). In
particular, the border distortion is evidently caused by the convolution supporting Eq. (1) along with its sub-
stantial mathematical treatment (the derivative). When the end of a finite domain is encountered the convo-
lution estimates the changing shape and, therefore, high values of CWT can be developed. Therefore, based on
these causes, a resolution of the border distortion phenomenon can be: to extend the original signal outside its

original domain. In spite of such a mentioned simplicity (in principle), many methods effectively solving the
problem cannot be counted. Rucka and Wilde (2006a,b) used an extrapolation based on spline through three
or four boundary points whilst general mathematical suggestions, non immediately suitable within the present
context, can be found in Strang and Nguyen (1996) and Misiti et al. (2006b). In the next sections two methods,
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based on the principle of extending the original domain, are presented and compared with what currently
exists in the literature. Both methods are able to work with practical measured data.

3.1. Method 1: isomorphisms

This method consists of adding an additional virtual beam to the ends of the measured points. In such a
position, the method consists of adding to the left-side and to the right-side of the original data another set
of data which are already available from the a-priori measuring process. The only practical disadvantage
of the present method is that the original set of data will be tripled (minus two points in this work). Moreover,
it is underlined that the present method needs a certain participation of the analyst as the method is ineffective
when established differential orders are used respect to certain boundary conditions.

In order to present the method, let us define a finite function f(x): [a,b] ? R(Fig. 5); this function should be
intended as the dynamical shape subject to be analysed because potentially containing structural information.

Based on Fig. 5, let us define Rotation as an isomorphism or global transformation of f(x) resulting from a
sequence of rigid body motions. This global transformation consists of the sequence ‘‘g1(x), g2(x), g3(x), g4(x)”
providing g4(x), which, constitutes a herein so-called Rotation; these functions are obtained by translations
and out-of-plane rotations. Such a global Rotation can be obtained by sequentially cascading the following
operations:
g1ðxÞ ¼ f ð�xÞ out-of-plane rotationð�180� j yÞ
g2ðxÞ ¼ �g1ðxÞ out-of-plane rotationðþ180� j xÞ
g3ðxÞ ¼ g2ðx� 2 � bÞ translationðþ2 � b j xÞ
g4ðxÞ ¼ g3ðxÞ þ 2 � f ðbÞ translationðþ2 � f ðbÞ j yÞ

ð2Þ
yielding the following explicit expression for the virtual function added to the right-side of f(x):
g4ðxÞ ¼ grðxÞ ¼ �f ð2 � b� xÞ þ 2f ðbÞ; ð3Þ

the virtual function gr(x) has the following inherent property in x = b (the number of apexes in (4) represent
the order of derivation, ‘‘+” means the right derivative and ‘‘�‘‘ stays for the left derivative):
grðxÞ ¼ f ðxÞ
grðxÞ

0þ ¼ f ðxÞ0�

grðxÞ
00þ ¼ �f ðxÞ00�

grðxÞ
000þ ¼ f ðxÞ000�

ð4Þ
i.e. along with the continuity in x = b, all the odd differentiator orders are coincident, conversely all the even
differentiator orders have opposite sign. This property is, therefore, assigned to the so-called Rotation which
has been carried out in order to preserve the first derivative in x = b.
Fig. 5. Sequence (or isomorphism) of functions obtaining the Rotation.
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Another Rotation of f(x) can be carried out in order to join another virtual function at the left-side of the
original function. This further Rotation leads, by carrying out similar sequences to the previously mentioned,
to the following function:
g4ðxÞ ¼ glðxÞ ¼ �f ð2 � a� xÞ þ 2f ðaÞ; ð5Þ

which is still characterized by an analogue set of properties (4) in x = a.

As far as the present context is concerned, another global transformation is considered relevant: the Turn-

over. Such a global transformation essentially consists of making a turnover of the original function around y-
axis and its relevant edge (x = a or b). Such a global transformation can, by referring to x = a, be obtained by
sequentially cascading the following two operations:
g1ðxÞ ¼ f ð�xÞ out-of-plane rotationð�180� j yÞ
g2ðxÞ ¼ g1ðx� 2 � aÞ translationðþ2 � a j xÞ

ð6Þ
which provides the following left virtual function:
g2ðxÞ ¼ glðxÞ ¼ f ð2 � a� xÞ ð7Þ

and, similarly, for the right-side:
g2ðxÞ ¼ grðxÞ ¼ f ð2 � b� xÞ ð8Þ

Eqs. (7) and (8) illustrate a dual set of properties with respect to Eqs. (4). Indeed, Eqs. (7) and (8), show how

the Turnover at x = a and b, along with the continuity of the functions, causes all the even differentiator orders
to be coincident, conversely all the odd differentiator orders have opposite sign.

In conclusion, the method being dealt with in essentially consists of extending the original function with
itself through two global transformation: Rotation and/or Turnover.

Before carrying out relevant numerical tests observations are worthy of note. Firstly, both the presented global
transformations, Rotation and Turnover, must be considered dual for the inherent mentioned properties (i.e. (4)
and its dual to (4) regarding the Turnover). Both the transformations can be straightforwardly obtained by a
numerical point of view. For example, the extension at the right-side of an original row-set of data (i.e. the
‘‘mode”) can be easily obtained by two numerical instructions (MATLAB language Ver. 7.3 (Rel.2006b)):
Rotation : right mode ¼ �fliplrðmodeð1 : N � 1ÞÞ þ 2 �modeðNÞ;
Turnover : right mode ¼ fliplrðmodeð1 : N � 1ÞÞ;

ð9Þ
representing, Eq. (9), the numerical version of Eqs. (3) and (8). In Misiti et al. (2006b), the function ‘‘wextend”

contains the Turnover through the ‘sym’ option, but the Rotation does not exist or at least it does not exist as in
(9) even though it could be considered present only in part with the ‘asym’ option in the function ‘‘wextend”.
Finally, it should also be taken into account that the Rotation (9) gets two own positive characteristics: (i) a
smooth extension of order 0 (function continuity) and 1 (first derivative continuity) is naturally obtained along
with the continuity of all the subsequent odd order of derivative; (ii) the smooth extension of order 0 and 1 is
strongly stable against data containing noise and, therefore, it should be preferred when compared to other
smooth extensions based on extrapolating methods which try to estimate boundary derivatives (e.g. option
‘spd’ or ‘sp1’ in ‘‘wextend” function (Misiti et al. (2006b)), local and/or global interpolating procedures,
etc.) and for which the results could be unreliable with respect to an expected smooth extension.

Numerical tests based on extensions based on Rotation and Turnover follow on specific classical (C,F,S)
boundary conditions in order to investigate how much the border distortion phenomenon is affected by these
type of extensions.

The following Figs. 6–8 illustrate cases of classical boundary conditions identical on both the edges; this
choice has been taken into account for the sake of brevity but it should not be considered a limitation because
both the Rotation and Turnover can be singularly applied on each edge.

In particular, Fig. 6 illustrates the case of a beam with boundary conditions CC extended by Turnover (T)
at both the edges (the graph on the top). The left-graphs of Fig. 6 illustrate the derivatives through the scale
parameter a = 4 (the length of the analyzing wavelet is 8% of L), whilst the right-graphs illustrate the
derivatives through the scale parameter a = 20 (the length of the analyzing wavelet is 40% of L). Both the



Fig. 6. Border distortion for the first mode shape of an undamaged CC beam (114.02 Hz; based on classical Euler–Bernoulli beam model);
influence of Turnover–Turnover (Ref. Fig. 2).
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mentioned graphs contain the exact derivative (bold line) overlapping the approximate one (estimated through
the CWT); these latter are displayed with a thinner line. This particular case (CC) effectively is not character-
ized by a heavy border distortion because the edges are ‘‘quasi-smoothly” connected with the outside space;
however, in spite of this fact the Turnover extension provides a slight benefit. Such a benefit is clearer by com-
paring the second derivatives between Figs. 2 and 6; however, it should also be recognized that some benefits
on the border distortion phenomenon are also obtained for the third derivative.

It is stressed that for this particular boundary condition (CC), the continuity in x = 0, L is guaranteed up to
the second derivative by the geometric boundary conditions imposed at the edges: nil first derivative. Indeed,
this latter condition, along with the inherent properties of the Turnover extension, guarantees the continuity up
to the second derivative and permits a reduction of the border distortion phenomenon through a CWT based
on a Gaussian 2 (i.e. second derivative). The Rotation extension, for the specific case of clamped edge, would
provide worse results than classical CWT (Figs. 2–4). This statement can be observed in Fig. 7.

Fig. 7 is the counterpart of Fig. 3 (classical CWT). The bold line is the exact derivative, the dashed line is
the classical CWT (identical to the solid thinner line of Fig. 3) and, finally, the solid thinner line is the CWT of
the extended signal.



Fig. 7. Border distortion for the third mode shape of undamaged CC and SS beams (616.16 and 452.69 Hz, respectively; based on classical
Euler–Bernoulli beam model); influence of Turnover–Rotation (Ref. Fig. 3).
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In Fig. 7 the extension is not the same at the edges. Indeed, the left edge is subjected to a Turnover extension
whilst the right edge undergoes a Rotation extension (top-graphs). At the left edge of the CC beam an
improvement of the border distortion can be noticed; but, at the right edge of the same beam the extension
(Rotation) provides worse results on the border distortion phenomenon on all the derivatives. This would sug-
gest that a slight benefit, in the case of the clamped edge and even though naturally slight, can be obtained for
the second derivative through the Turnover extension only.

The graphs in the right column of Fig. 7 illustrate an excellent reduction of the border distortion phenom-
enon on simply supported (SS) edges when the Rotation is used in the place of the Turnover extension. It
should also be noticed, in this latter case, that the border distortion is definitely absent up to the fourth deriv-
ative. Worthy of attention is the fact that all the relevant considerations of Fig. 7 regard an analyzing wavelet
having a remarkable length (60% of L).

As a conclusive test, regarding the influence of noise along with extensions, Fig. 8 is, finally, taken into
account. Fig. 8 is displayed by following the identical conventions of Fig. 6. The mode shape w(n) contains
an amount of noise which is characterized by a S/N = 60 dB and, as is clear from the top-graph, Rotation

extension has been applied on both the edges. The performance offered by the Rotation extension is generally



Fig. 8. Border distortion for the third mode shape of an undamaged FF beam (616.16 Hz; based on classical Euler–Bernoulli beam
model); influence of Rotation–Rotation (Ref. Fig. 4).
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excellent against noise at the edges. This can be decisively argued by also comparing Fig. 8 with its counterpart
(Fig. 4).

It is clear that the stability offered at the edges by Turnover and Rotation extensions, in the presence or not
of noise, is due to the fact that estimations of boundary derivative are not taken into account because the
method is only based on the replicate of an original signal dependent on the particular boundary condition
encountered. In this respect, the suggested method has a decisively higher performance than methods based
on estimations of boundary derivatives (e.g. option ‘spd’ or ‘sp1’ in ‘‘wextend” function or extrapolating
spline); this is true especially in real cases where the noise over a high number of space-sampled points could
provide unreliable results in expected smooth extended data.

In order to conclude the above presented analysis, Table 1 recaps the quality of reduction of the border
distortion phenomenon dependent on the particular classical boundary condition taken into account. Table
1 shows that a classical boundary condition has its own isomorphism (Turnover or Rotation) which can assist
in order to tackle the border distortion.



Table 1
Boundary conditions and quality of reduction of border distortion

BC Order (o) of derivative Turnover Rotation

Poor Good Excellent Poor Good Excellent

C 2 � �
3 � �
4 � �

F 2 � �
3 � �
4 � �

S 2 � �
3 � �
4 � �
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Based on the above presented analysis the border distortion phenomenon would seem to be completely
solved through Table 1. Unfortunately this is true only in part because (i) the boundary conditions are very
often uncertain in practical measurements and, finally, (ii) the measurements, in several real situations, are not
exactly carried out between the edges for practical reasons and for the need to investigate only a part of the
whole structure. In such cases, the above illustrated method can have inherent limitations in reducing border
distortion phenomenon. In this respect, the following method (self-minimization) has been devised for tackling
the above mentioned sui generis applications.
3.2. Method 2: self-minimization

The principle on which the present method is based still consists of extending the original data; however,
the extension is not performed in only one step but in a number of adaptive steps where the first step provides
an extension of the first approximation. The subsequent adapting steps have the objective of correcting the
extension of the first approximation. The first step tries to extrapolate at the edges of the beam a set of data
guaranteeing the continuity and tackling the border distortion phenomenon due to (1). As has been done with
method 1, the subsequent discussions deal with extensions of length L.

The extension based on the first approximation can be in principle done through several extrapolating
numerical methods which in nature can be global (the characteristics of the shape at the edges is estimated
by taking into account the whole domain of the beam) or local (the characteristics of the shape at the edges
is estimated by taking into account some points placed at the edges). What, however, should be accepted is the
fact that, depending on geometries and on the amount of noise contained in the original data, the first approx-
imation can be far from providing a smooth extension; in this case the rises occurring at the edges by (1) can be
due to a non-smooth extension. Therefore, the problem is to find a method which corrects the first approxi-
mation by searching for a smoother extension at the edges. The method should also be able to work in the
presence of noise with a certain robustness.

The present method aims at correcting the extension of the first approximation by minimizing an objective
function which depends on the result of convolution (1). In other words, what is minimized are improper rises
at the edges by trying to keep useful rises which can be an indication of real damage. In order to illustrate the
present method Fig. 9 should be taken into account.

Fig. 9, sketches the original dynamical shape w(n) in the samples domain between n1 and n2. The func-
tions pl(n) and pr(n) are, respectively, the left and the right polynomial extending w (n) outside its original
domain [n1,n2]. The polynomial discrete values placed outside domain [n1,n2] can be assessed once func-
tion values and derivatives of w(n) at the edges are known or have been estimated in some way. For
example, both the above mentioned polynomials, if a third order is assumed, will have the following expli-
cit expressions (centred in [�1/2,1/2] without losing any generality) when boundary derivatives have been
predicted:



Fig. 9. Nomenclature referred to the self-minimization method.
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plðcl
j; nÞ ¼ a3n3 þ a2n2 þ a1nþ a0; ð10Þ

prðcr
jnÞ ¼ b3n3 þ b2n2 þ b1nþ b0; ð11Þ

ða3; b3Þ ¼ ðcl
3; c

r
3Þ � y3=6;

ða2; b2Þ ¼ ðcl
2; c

r
2Þ � y2=2� ðcl

3; c
r
3Þ � y3=4;

ða1; b1Þ ¼ ðcl
1; c

r
1Þ � y1 þ ðcl

3; c
r
3Þ � y3=8� ðcl

2; c
r
2Þ � y2=2;

ða0; b0Þ ¼ ðcl
0; c

r
0Þ � y0 � ðcl

3; c
r
3Þ � y3=48þ ðcl

2; c
r
2Þ � y2=8� ðcl

1; c
r
1Þ � y1=2;
with the imposed conditions at n = 1/2, �1/2; the superior and inferior sign regards the left and right polyno-
mial, respectively, yj (j = 0,1,2,3) mean the values of w, first, second and third derivative, respectively, at the
corresponding edges of left and right polynomials. Based on Eqs. (10) and (11) the need to resort a method for
estimating derivatives at the edges (i.e. y1,y2,y3) is clear. Due to the natural difficulty of making such an esti-
mation, pl(n) and pr(n) should be considered as a first approximation at the first step (when the non-dimen-
sional coefficients (cl

j; c
r
j for j = 0, 1, 2, 3 are settled to 1); on the other hand, the corrective coefficients

should be accordingly changed in order to accommodate an effective smooth extension up to the requested
order.

In the presence of noise, for general shapes and different boundary conditions, the estimation of the deriv-
atives is even more difficult. In this work, a global method has been chosen in order to evaluate the first
approximation for the derivatives of pl(n) and pr(n) at the boundaries. The mentioned global method essen-
tially consists of estimating the derivatives through polynomials which globally fit the original data; this is
done through curve fitters available in MATLAB Ver. 7.3 (Rel.2006b) along with the tact of centring and scal-
ing the abscissa values (the degree of global polynomial fitting could be thus chosen also very high without
substantially noticing ill conditioning problems).

Once both left and right polynomials (pl(n),pr(n)) are established as the first approximation and are joined
to the original set of data, the minimization process can be finally performed. In order to show such minimi-
zation procedure, which, constitutes the core of the method, Fig. 9 should be again taken into consideration
along with the following points:
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(i) the border distortion phenomenon involves a larger domain of interest when higher scales are used; (ii)
as far as the length influenced by border distortion phenomenon is concerned, it is approximately 1/2 the
length of the analyzing wavelet (neglecting a certain influence coming from the order of the Gaussian wavelet);
(iii) a couple of local polynomials (pl(n), pr(n)) having smoother extensions at the boundaries than the first
approximation should exist; (iv) the rises due to border distortion phenomenon occur close to boundaries
at both inner and outer points (e.g. Figs. 2–4 and 6–8).

Therefore, based on the above mentioned points (i–iv), if the first approximation is not retained sufficient,
the border distortion phenomenon is tackled by solving the following problem:
min
c

F ðcl
j; c

r
jÞ

subject to

�105
6 cl

j 6 105 8j
�105

6 cr
j 6 105 8j

8>>>><
>>>>:

ð12Þ
where the objective function F in (12), with the nomenclature referred to Fig. 9, has expression (13).
In (13) any fraction of integer number is intended numerically rounded to its nearest integer. Eqs. (12) and

(13) show a minimization procedure which looks for a set of non-dimensional coefficients cl;r
j with j = 0, 1, 2, 3

having the initial guess point settled at 1 for any j.
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i ¼ 0; . . . ;N � 2;

j ¼ N � 1; . . . ; 2 � N � 1;

k ¼ 2 � N ; . . . ; 3 � N � 2;

plðcl
j; nÞ ¼ a3ðcl

jÞn3 þ a2ðcl
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jÞn2 þ b1ðcr
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jÞ ð13Þ
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Based on Eqs. (10) and (11) these coefficients have an immediate interpretation because they are non-
dimensional and multiply the derivative and the function values assumed at the borders; for example, the value
‘‘1” corresponds to accept the first approximation, whilst the value zero can settle established nil boundary
conditions. It should also be noticed that the value function can be corrected due to the fact that it is estab-
lished by the fitting polynomials.

In such a statement of the problem (12) and (13) the order of the differentiation, o in Eq. (1), must be
coincident with the order of the polynomial (i.e. third order if o = 3). This coincidence is due to the need
to satisfy the principle on which the objective function (13) is based. In particular, if Do corresponds to
D3, Eq. (1) provides the third derivative and, therefore, being the extrapolating polynomial (pl(n), pr(n)) of
third order, the result of Eq. (1) is constant at a convenient distance from the borders (	middle of the
outside domains [(0,N � 2) and (2N, 3N � 2)]). These constant values are subtracted from the rises imme-
diately outside the beam and here assumed as N e

l ¼ N e
r 
 Nf =4 (sum of differential rises are so obtained

and placed at numerator of (13)). Moreover, in (13) the differential rises are referred to the norm of CWT
regarding the inner central points in [n1,n2]; in this respect the points immediately inner and close to the
boundaries (N i

l ¼ Ni
r 
 Nf =3) are excluded in order to avoid comparisons with unstable values due to bor-

der distortions. Numerator and denominator of Eq. (13) can finally be compared to the relevant number
of points present in the domain of interest in order to minimize a ratio of densities as has been done in
the following numerical evaluations.
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In conclusion, Eqs. (12) and (13) correct the polynomials of the first approximation by minimizing the rises
of Do immediately outside [n1,n2] with respect to the constant derivative placed within the extensions but far
away from the boundaries.

Based on this latter principle, Eqs. (12) and (13) offer substantially two different choices: (i) the order of
differentiation (o) in Eqs. (12), (13) and (1) can be 2, 3 or even 4, but, in such eventuality left and right poly-
nomials (pl(n),pr(n)) must be second, third and fourth degree, respectively (Eqs. (10) and (11) must be accord-
ingly re-adapted in the cases); (ii) Eqs. (12) and (13) can be based on an established order of differentiation (for
example: Do = D4) in order to tackle the border distortion phenomenon at the boundaries and, lower order of
differentiation (as for the example: Do = D3 or D2) can be assessed by Eq. (1). This latter choice is supported
by the fact that if a high order differentiation is enforced to be continuous there is ground for expecting con-
tinuity at lower order of differentiations (therefore, reductions of the border distortion phenomenon). Numer-
ical comparisons, based on the evaluation of Do through (1), have shown how the latter choice (ii) is more
accurate than the former (i).

In spite of the different choices offered by the above illustrated method, the higher sensitivity of higher order
differentiations on the noise naturally contained in the measurements and, therefore, the need to use larger
scales must also be considered. This can limit the choice to work with unconditionally high differentiator
orders. In conclusion, the combination to work with D3 in (12) and (13) and evaluate D2 through (1) or to
work with D4 in (12) and (13) and evaluate D3 and D2 through (1) has been retained an acceptable choice
for showing the performance of the method as can be seen in the next sections.

4. CWT and self-minimization on undamaged beams

In this section, a number of simulations showing the performance of the self-minimization method, aimed
at reducing the border distortion phenomenon, are shown. The simulations regard undamaged beam in order
to illustrate both the capability of the method to contain the performance of the method based on isomor-
phism and to show the stability of the method to perform well compared to basic shapes. Finally, the several
simulations carried out will also be able to illustrate the fundamental potentiality of the method.

Table 2 illustrates the results of a number of simulations where D3 has been used to carry out the minimi-
zation whilst Eq. (1) has been used to estimate the second derivative; the performance of the method can be
seen by looking at the 10th column where the maximum error committed on the second derivative is provided.
The maximum error is evaluated by taking into account the maximum of a point by point error evaluation
which in this work is always assessed through Eq. (14) (when the exact derivative is available).
Table
Perfor

a (ol,o

4 (5,5)
20 (5,5
30 (5,5
50 (5,5
4 (10,1
20 (10
30 (10
50 (10

a Est
Error½%� ¼ dow
dxo estimated

� dow
dxo exact

����
���� � 100

dow
dxo

Max

exact
� dow

dxo

Min

exact

�����
, ����� ð14Þ
This 10th column shows two numbers; those in parenthesis regard the error committed by the estimation
(CWT2) without correcting the first approximation through the self-minimization.
2
mance method 2 on CC-I beam (noise free); bounded; minimization based on D3

r) pl(n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

0.0000 0.0000 0.7953 0.6295 0.0000 0.0000 0.7953 0.6294 0.02(204) 55
) 0.0000 �0.0002 0.7951 0.6282 �0.0001 �0.0003 0.7951 0.6281 0.44(22.2) 48
) �0.0005 �0.0017 0.7942 0.6250 �0.0005 �0.0017 0.7942 0.6250 0.99(18.9) 36
) �0.0088 �0.0185 0.7879 0.6110 �0.0089 �0.0186 0.7879 0.6109 2.71(17.6) 25
0) 0.9988 1.0003 0.9999 1.0001 0.9990 1.0017 0.9999 1.0001 0.18(0.18) 19

,10) 1.0000 1.0000 0.9999 0.9993 1.0000 1.0000 0.9999 0.9993 0.44(0.44) 9
,10) 1.0000 1.0000 0.9997 0.9972 1.0000 1.0000 0.9997 0.9972 0.99(0.99) 9
,10) 1.0000 1.0000 0.9979 0.9872 1.0000 1.0000 0.9979 0.9872 2.71(2.71) 10

imation of second derivative through scale equal to a.
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The first column of Table 2 illustrates the scales used in the several simulations. In the first column, the
order of the global polynomials aimed at fitting modes are also indicated. These fitting polynomials provide
values and derivatives for the left and right polynomials in the first approximation (10) and (11). The first four
rows of Table 2 regard polynomial fitters of fifth order whilst the remaining four lines concern polynomial
fitters of 10th order. Table 2 also lists the corrective coefficients (10) and (11) corresponding to the final opti-
mum solution. Finally, the last column reports the CPU time in seconds needed by a laptop equipped with a
‘‘Pentium 4” processor and O.S. Windows XP/512MB-RAM to achieve the solution. The following tables,
apart from a few clear changes, will be presented with the same conventions.

Table 2 concerns the first mode of a CC beam whose relevant boundary conditions in the classical-beam
theory are value and first derivative nil.
Fig. 10. Performance of self-minimization with a = 30 and ol = or = 10 (ref. Table 2). Noise free.
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Table 2 evidently shows that the estimation of the second derivative, through a CWT2(1) along with the
self-minimization, is superior or equal to the same evaluation based on the first approximation. It is interesting
to notice that an extension based on the first approximation can provide extremely high errors (204%, 22%,
19%) compared to the extremely low errors obtainable through the self-minimization (0.02%, 0.44%, 0.99%).

Table 2 also shows that the minimization algorithm achieves the solution faster when the global polynomial
fitters are of 10th order (	10 s in cases of practical interest: a 	 20, 30); this happens because the guess point
(first approximation) is closer to the optimum solution. Indeed, the relevant coefficients regarding both the
Table 3
Performance method 2 on CC-I beam (noise free); unbounded; minimization based on D3

a (ol,or) pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

4 (5,5) 0.0000 0.0000 0.7953 0.6294 0.0000 0.0000 0.7953 0.6293 0.02(204) 78
20 (5,5) �0.0001 �0.0004 0.7950 0.6278 �0.0001 �0.0003 0.7950 0.6280 0.44(22.2) 54
30 (5,5) �0.0004 �0.0015 0.7943 0.6254 �0.0007 �0.0021 0.7940 0.6246 0.99(18.9) 56
50 (5,5) �0.0085 �0.0181 0.7881 0.6112 �0.0092 �0.0190 0.7878 0.6107 2.71(17.6) 43
4 (10,10) 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 0.18(0.18) 8
20 (10,10) 1.0000 1.0000 0.9999 0.9993 1.0000 1.0000 0.9999 0.9993 0.44(0.44) 14
30 (10,10) 1.0000 1.0000 0.9997 0.9972 1.0000 1.0000 0.9997 0.9972 0.99(0.99) 15
50 (10,10) 1.0000 1.0000 0.9979 0.9872 1.0000 1.0000 0.9979 0.9872 2.71(2.71) 14

a Estimation of second derivative through scale equal to a.

Table 4
Performance method 2 on CC-I beam (noise free); bounded with c0 = c1 = 0; minimization based on D3

a (ol,or) pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

4 (5,5) 0.00 0.00 0.7953 0.6296 0.00 0.00 0.7953 0.6296 0.02(8.39) 23
20 (5,5) 0.00 0.00 0.7953 0.6290 0.00 0.00 0.7953 0.6290 0.44(9.93) 21
30 (5,5) 0.00 0.00 0.7951 0.6277 0.00 0.00 0.7951 0.6277 0.99(10.9) 18
50 (5,5) 0.00 0.00 0.7936 0.6213 0.00 0.00 0.7936 0.6213 2.71(12.5) 15
4 (10,10) 0.00 0.00 1.0000 1.0003 0.00 0.00 1.0000 1.0004 0.02(0.02) 25
20 (10,10) 0.00 0.00 1.0000 0.9994 0.00 0.00 1.0000 0.9994 0.44(0.44) 9
30 (10,10) 0.00 0.00 0.9997 0.9973 0.00 0.00 0.9997 0.9973 0.99(0.99) 19
50 (10,10) 0.00 0.00 0.9979 0.9873 0.00 0.00 0.9979 0.9873 2.71(2.71) 9

a Estimation of second derivative through scale equal to a.

Table 5
Performance method 2 on CC-I beam; ol = or = 10; bounded; minimization based on D3

a, a2 pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

S/N = 40 dB
20 1.4629 5.6845 0.5709 6.3983 2.0100 2.7863 �2.1034 2.1118 112(44.6) 31
30 2.4229 �10.1230 1.3633 �4.2013 0.9905 1.0768 1.2494 0.2254 32.9(48.8) 37
50 0.4220 1.0158 1.1089 �2.5736 �0.0546 �0.0070 2.5963 �0.2593 3.15(60.5) 35
50, 20 = = = = = = = = 6.90(44.6) 33

S/N = 60 dB
20 1.8787 1.1663 0.9801 0.8807 2.0119 2.7893 0.8749 0.2729 11.2(4.46) 22
30 0.8884 0.9776 1.0019 1.0971 1.0241 1.1125 1.0078 1.4869 3.42(4.88) 18
50 0.7310 0.9843 1.0073 1.1383 0.1917 0.1949 1.0553 1.7705 2.65(6.06) 36
50, 20 = = = = = = = = 1.05(4.46) 37

a Estimation of second derivative.
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extending polynomials are 	1 when the 10th order is used, whilst, when the fifth order is taken into account
the coefficients undergo a more remarkable change. In this latter respect the first two coefficients (c0,c1) should
be taken into account: the minimization algorithm makes these coefficients close to zero consistent with the
boundary conditions of a CC beam.

Table 2 cannot graphically show an interesting feature: the maximum error never occurred at the border
within the domain of interest. Therefore, the border distortion phenomenon was correctly tackled by the
self-minimization method. In this regard, Fig. 10 illustrates two cases numerically described in Table 2 and
from which the total absence of border distortion phenomenon can be observed. Fig. 10 illustrates these
two simulations by arranging the relevant cases in two different columns. In particular, by mentioning the
graphs of Fig. 10 as elements in a two-dimensional matrix, graphs 10(1,1),(1,2) illustrate mode shapes extended
at left and right by pl(n) and pr(n), respectively. The solid thin lines correspond to the polynomials corrected as
Fig. 11. Performance of self-minimization with (a = a2 = 50), (a = 50; a2 = 20) and ol = or = 10 (Ref. Table 5). Noise: S/N = 40 dB.
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achieved at the optimum solution, whilst, the dashed lines are the left and right polynomials evaluated on the
basis of the values of the first approximation.

Graphs 10(4,1),(4,2) illustrate the point by point percentage errors (14) without minimization (dashed line)
and with minimization (solid line). Graphs 10(3,1),(3,2) illustrate exact evaluations (thicker lines) estimations
without minimization (dashed lines) and, finally estimations with minimization (solid line) of the second
derivative.

Graphs 10(2,1),(2,2) illustrate the third derivative working through Eqs. (12) and (13) in its achieved final
optimum solution. In these graphs, the dot-dash lines delimit the true length of the beam whilst the dashed
line delimits the domains regarding N i

l ¼ Ni
r 
 Nf =3 (inner points) and N e

l ¼ Ne
r 
 Nf =4 (outer points). In

particular, the outer points are illustrated through thick lines which, along with the circles shown in graphs
10(2,1), (2,2), regard the points on which the differential rises are evaluated in (13).

Fig. 10 clearly shows the ability of the self-minimization method to eliminate the border distortion. Fig. 10
also shows how a visually judicable good fit (dashed line in graph 10(1,1)) is unreliable for reducing border dis-
tortion (graph 10(4,1)). This latter statement can become even worse in the presence of noise as will become
more evident in what follows.

Table 3 illustrates a set of simulations identical to those of Table 2 with an unique difference: the algorithm
used in finding the optimum solution is based on unbounded variables or, as it is commonly said, the algo-
rithm is based on an unconstrained formulation (Gill et al., 1995; The MathWorks, 2006b). It is interesting
to notice, by comparing Tables 2 and 3, the robustness of the objective function (13) for reducing the border
distortion phenomenon regardless of the algorithm used. In particular, it should be noticed that identical solu-
tions were found. However, apart from the mentioned robustness, the unconstrained formulation provides a
slightly slower performance for obtaining the optimum solution aimed at reducing the border distortion and,
finally, does not allow the introduction of ad hoc constraints on the involved variables (cj): for example settling
part of the variables at zero, or at an established value, in the case of known boundary conditions. In this
latter respect, Table 4 is of interest.

Table 4 illustrates a set of simulations identical to those of Table 2 with a unique difference: the first two
coefficients (c0,c1) are settled (constrained) to zero. In such a situation, the velocity of the algorithm is higher
even in the case where a global curve fitter of order five is used; in passing, the excellent respective symmetry
among the corrective coefficients is worth mentioning; this is evidently caused by the symmetric boundary con-
ditions (i.e. CC) along with the symmetry of the analyzed dynamical shape. Based on the mentioned reasons
all the following tests regard constrained formulations.

Table 5 illustrates the performances of the self-minimization method in the presence of noise (two cases:
S/N = 40 and 60 dB). The 10th column shows the excellent behaviour of method 2 in reducing the border
distortion phenomenon especially when it is complemented with its graphical counterpart (Fig. 11). In partic-
ular, Table 5 illustrates two cases where the minimization provides worse results than the first approximation
(112(44.6),11.2(4.46)). For this the formulation (12) and (13) should not be blamed. Indeed, both the cases
Table 6
Performance method 2 on CC-I beam; ol = or = 14; bounded; minimization based on D3

a, a2 pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

S/N = 40 dB
20 3.1928 0.2839 �0.5746 0.0724 0.5937 0.4496 0.1373 0.0808 112(578) 26
30 5.2807 �0.5059 �1.3708 �0.0475 0.2924 0.1737 �0.0817 0.0086 32.9(710) 34
50 0.8845 0.0503 �1.1158 �0.0292 �0.0133 �0.0003 �0.1694 �0.0099 3.15(1000) 37
50, 20 = = = = = = = = 7.00(578) 37

S/N = 60 dB
20 3.1798 0.2879 1.1704 �0.2762 0.5947 0.4505 2.5357 �0.0178 11.2(57.8) 30
30 0.9462 0.1926 1.2106 �0.3856 0.2973 0.1771 2.9232 �0.0972 3.38(71.1) 30
50 0.9436 0.1122 1.2240 �0.4095 0.0584 0.0320 3.0580 �0.1154 2.65(100) 42
50, 20 = = = = = = = = 1.10(57.8) 42

a Estimation of second derivative.
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occurred with the scale a = 20 which is not sufficiently high to reduce the noise and provide an extended deriv-
ative which is smooth enough at the ends. In such circumstances, the shape is too corrupted by noise to allow
the algorithm to find a smooth extension; therefore higher scales must assist the algorithm in smoothing the
ends, as is, indeed, the case with a = 30, 50. Once the smooth extension is carried out through the minimiza-
tion (12) and (13) any scale can be used to detect the damage through (1); the fourth cases in Table 5, indeed,
minimize through D3 based on scale a = 50 and assess the second derivative (D2) through scale a2 = 20. Both
these simulations, based on S/N = 40 dB, are illustrated in Fig. 11 where the border distortion phenomenon is
highly controlled by the minimization. The convention regarding lines is identically referred to Fig. 10.

Table 6 illustrates a set of simulations identical to those of Table 5 with a unique difference: the global poly-
nomial curve fitter, providing the estimation of the first approximation, is of 14 rather than 10th order. As is
clear from Table 6, a higher order for the global polynomial curve fitter is not a sufficient condition to ensure a
Fig. 12. Performance of self-minimization with (a = a2 = 50), (a = 50; a2 = 20) and ol = or = 14 (ref. Table 6). Noise: S/N = 40 dB.
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better smoothing extension. Indeed, the first approximation provides rises at the borders containing percent-
age errors of several hundreds (higher than the case corresponding to use the 10th order in Table 5). However,
the self-minimization, regardless of the first approximation estimations, always converges at the identical
‘‘smooth” solution obtained in the case of 10th order as can be seen by comparing the 10th columns of Tables
5 and 6. Fig. 12, basing on the same graphical nomenclature of Fig. 11, shows the performance relative to the
self-minimization method for two cases of Table 6 (Max Error [%] = 3.15(1000),7.00(578)). Fig. 12 still shows
the ability of the self-minimization to remove the border distortion phenomenon and even move the maximum
error far away from the borders.
Table 7
Performance method 2 on CC-I beam; ol = or = 10; bounded with c0 = c1 = 0; minimization based on D3

a, a2 pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

S/N = 40 dB
20 0.00 0.00 1.0639 �3.0462 0.00 0.00 3.3716 �1.0178 16.5(34.7) 12
30 0.00 0.00 1.1089 �2.5336 0.00 0.00 2.7050 �0.3497 3.57(40.2) 13
50 0.00 0.00 1.1407 �2.8051 0.00 0.00 2.5953 �0.2601 3.15(56.6) 19
50, 20 = = = = = = = = 7.01(34.7) 19

S/N = 60 dB
20 0.00 0.00 1.0057 1.1741 0.00 0.00 1.0953 2.3112 1.65(3.47) 10
30 0.00 0.00 1.0095 1.1497 0.00 0.00 1.0683 1.8733 1.18(4.22) 13
50 0.00 0.00 1.0107 1.1509 0.00 0.00 1.0621 1.7983 2.65(5.62) 16
50, 20 = = = = = = = = 1.07(3.47) 16

a Estimation of second derivative.

Table 8
Performance method 2 on FF-III beam (noise free); bounded; minimization based on D3

a (ol,or) pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

4 (5,5) 0.6764 0.3873 �0.0016 �0.1010 0.6764 0.3873 �0.0018 �0.1066 0.25(2615) 55
20 (5,5) 0.6763 0.3852 �0.0284 �0.3932 0.6763 0.3852 �0.0284 �0.3932 4.06(237) 34
30 (5,5) 0.6760 0.3827 �0.0460 �0.4803 0.6760 0.3827 �0.0460 �0.4803 6.57(179) 34
50 (5,5) 0.6769 0.3857 �0.0373 �0.4651 0.6769 0.3857 �0.0373 �0.4651 12.8(152) 30
4 (10,10) 1.0008 1.0125 0.0443 0.2458 1.0008 1.0125 0.0443 0.2457 0.26(10.3) 49
20 (10,10) 1.0006 1.0071 0.6822 0.8921 1.0006 1.0072 0.6815 0.8918 4.06(5.99) 19
30 (10,10) 1.0001 1.0005 1.1035 1.0895 1.0001 1.0005 1.1034 1.0895 6.57(5.85) 21
50 (10,10) 1.0015 1.0084 0.8953 1.0552 1.0015 1.0083 0.8956 1.0553 12.8(12.8) 21

a Estimation of second derivative through scale equal to a.

Table 9
Performance method 2 on FF-III beam (noise free); bounded with c2 = c3 = 0; minimization based on D3

a (ol,or) pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

4 (5,5) 0.6764 0.3873 0.00 0.00 0.6764 0.3873 0.00 0.00 0.11(2581) 28
20 (5,5) 0.6735 0.3828 0.00 0.00 0.6735 0.3828 0.00 0.00 2.31(188) 17
30 (5,5) 0.6634 0.3732 0.00 0.00 0.6634 0.3732 0.00 0.00 5.05(113) 11
50 (5,5) 0.5995 0.3336 0.00 0.00 0.5995 0.3336 0.00 0.00 12.8(67.0) 4
4 (10,10) 1.0008 1.0125 0.00 0.00 1.0008 1.0125 0.00 0.00 0.11(7.75) 17
20 (10,10) 0.9965 1.0008 0.00 0.00 0.9965 1.0008 0.00 0.00 2.31(2.31) 7
30 (10,10) 0.9815 0.9756 0.00 0.00 0.9815 0.9756 0.00 0.00 5.05(5.05) 8
50 (10,10) 0.8870 0.8722 0.00 0.00 0.8870 0.8722 0.00 0.00 12.8(12.8) 7

a Estimation of second derivative through scale equal to a.
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Table 7 contains the simulations of Table 5 but constrains the first two coefficients (c0,c1) to zero. The self-
minimization still shows an excellent performance in reducing maximum errors in the whole domain of interest
even in the presence of noise and forcing known boundary conditions. As in the case of Table 4, the compu-
tational effort is significantly reduced; however, in this case the symmetry among respective left–right coeffi-
cients cannot be seen due to the presence of noise.

Tables 8–10 illustrate the potential of the self-minimization when the third mode of a completely free beam
(FF) is taken into account. These tables, similarly arranged as the previous respective tables, show the capa-
bility of method 2 to significantly reduce error estimations in the presence or in the absence of noise. With
respect to these latter mentioned performances, Table 11 is worth mentioning. Table 11 takes into account
the cases of Table 10 but constrains the last two coefficients (c2,c3) to zero. These constraints are consistent
with the boundary conditions of a completely free beam requiring two natural conditions (global moment
(y00) and shear (y000) nil). Firstly, the last cases do not seem to be in line with an improved first approximation
(Max Error [%] = 25.4(3.16), 25.6(2.24)); rather, the minimization outwardly provides a deterioration of the
first approximation. However, this is effectively outward with respect to the real performance of the method,
because the minimization is based on D3 through a scale a = 50. In such a circumstance, because one of the
boundary conditions regards D3 (global shear nil), the minimization algorithm tries to change value and first
derivative at the ends and introduces extremely small steps at the junctions which are mitigated by the large
scale used (a = 50 means a wavelet having the extension of the domain of interest); these small steps are, how-
ever, raised by the inferior scale a2 = 20 through Eq. (1). This interpretation is corroborated by the remaining
simulations showing an identical maximum error between first approximation and self-minimization. Due to
Table 10
Performance method 2 on FF-III beam; ol = or = 10; bounded; minimization based on D3

a, a2 pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

S/N = 40 dB
20 1.0012 0.9996 1.5359 1.2972 0.9976 0.9538 2.0543 1.4140 32.7(17.45) 24
30 1.0020 1.0185 0.4153 0.7008 1.0002 0.9982 0.9431 0.7172 15.01(18.38) 28
50 1.0017 1.0139 0.6019 0.7655 1.0047 1.0395 0.3481 0.4963 12.57(21.03) 31
50, 20 = = = = = = = = 5.30(17.45) 32

S/N = 60 dB
20 1.0007 1.0064 0.7903 0.9449 1.0003 1.0020 0.9960 0.9928 6.93(7.139) 25
30 1.0003 1.0021 1.0231 1.0411 1.0002 1.0003 1.0654 1.0172 7.41(7.40) 19
50 1.0017 1.0102 0.8257 1.0110 1.0016 1.0104 0.7928 0.9522 12.76(12.76) 20
50, 20 = = = = = = = = 5.33(7.14) 20

a Estimation of second derivative.

Table 11
Performance method 2 on FF-III beam; ol = or = 10; bounded with c2 = c3 = 0; minimization based on D3

a, a2 pl (n) pr(n) Max Errora [%] CPU time [s]

c0 c1 c2 c3 c0 c1 c2 c3

S/N = 40 dB
20 0.9970 1.0071 0.00 0.00 1.0014 1.0288 0.00 0.00 3.16(3.16) 10
30 0.9807 0.9781 0.00 0.00 0.9858 1.0067 0.00 0.00 4.96(4.96) 9
50 0.8868 0.8737 0.00 0.00 0.8893 0.8993 0.00 0.00 12.6(12.6) 7
50, 20 = = = = = = = = 25.4(3.16) 7

S/N = 60 dB
20 0.9966 1.0014 0.00 0.00 0.9970 1.0035 0.00 0.00 2.24(2.24) 7
30 0.9814 0.9759 0.00 0.00 0.9819 0.9786 0.00 0.00 4.97(4.97) 8
50 0.8869 0.8724 0.00 0.00 0.8872 0.8749 0.00 0.00 12.8(12.8) 8
50, 20 = = = = = = = = 25.6(2.24) 8

a Estimation of second derivative.



Fig. 13. Damage hidden by border distortion phenomenon; Lc = 0.95�L, S/N = 53.98 dB; third mode shape of a FF beam; extension by
zero padding.

Table 12
Performance method 2 on CC,FF,SS-III beam; ol = or = 10; a=50; a2 = 20; bounded with cj = 0; minimization based on D4

BC S/N pl (n) pr(n) Max
Errora [%]

CPU
time [s]

c0 c1 c2 c3 c4 c0 c1 c2 c3 c4

CC Noisy
free

0.00 0.00 0.9486 0.8473 0.2954 0.00 0.00 0.9486 0.8473 0.2954 2.60(7.03) 21

c0 = c1 = 0 60 dB 0.00 0.00 0.9507 0.8548 0.3046 0.00 0.00 0.9578 0.8680 0.3144 2.58(6.80) 21
40 dB 0.00 0.00 0.9704 0.9276 0.4165 0.00 0.00 1.0503 1.1151 0.7652 3.20(5.0) 23

FF Noisy
free

0.9847 0.9888 0.00 0.00 �2.0914 0.9847 0.9886 0.00 0.00 �2.0943 2.31(2.31) 16

c2 = c3 = 0 60 dB 0.9846 0.9888 0.00 0.00 �1.7776 0.9850 0.9917 0.00 0.00 �1.4725 2.24(2.24) 22
40 dB 0.9841 0.9903 0.00 0.00 �0.7533 0.9879 1.0201 0.00 0.00 �0.4035 3.16(4.35) 20

SS Noisy
free

0.00 1.0082 0.00 0.9781 1.0491 0.00 1.0082 0.00 0.9781 1.0490 1.75(1.80) 14

c0 = c2 = 0 60 dB 0.00 1.0083 0.00 0.9593 0.9310 0.00 1.0118 0.00 0.9213 0.8083 1.83(2.60) 16
40 dB 0.00 1.0086 0.00 0.8164 0.4562 0.00 1.0449 0.00 0.6045 0.2601 2.81(9.79) 19

a Estimation of second derivative.
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the peculiarity shown by this latter case, Table 12 is finally provided. Table 12 takes into account three clas-
sical boundary conditions when the minimization is carried out through D4 and corrective coefficients are nul-
lified depending on the respective adopted boundary conditions. Table 12 clearly shows stability with respect
to any classical boundary condition and different levels of noise. The self-minimization provides an inferior or
equal maximum percentage error compared to the first approximation; as far as the computational effort is
concerned it is on average similar among the cases. It should be noticed that in the case of Table 12 the min-
imization is carried out on D4, which, is an order of differentiation higher than anyone involved at the ends of
the classical boundary conditions taken into account (CC, FF,SS).
5. Damaged beams, isomorphism and self-minimization on experimental and numerical tests

In this section, a number of simulations, showing the performance of both isomorphism and the self-min-
imization methods, aimed at reducing the border distortion phenomenon in damaged beams, are shown.

A first simulation is based on the code introduced in Gentile and Messina (2002); namely, damage is intro-
duced close to the right end of a completely free beam (Lc = 0.95�L) and the third mode shape, corrupted by
noise (S/N = 53.98 dB), is taken into account. Such a mode shape is shown with a bold line in the graph placed
Fig. 14. Damage revealed by using isomorphism (Rotation–Rotation) (Ref. Fig. 13).
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at the top of Fig. 13. This mode shape is extended by zero padding, which, for the application of (1) is equiv-
alent to having no extension. The remaining nine graphs placed in Fig. 13 illustrate the influence of the scale
on the second, third and fourth derivative obtained through convolution (1). These nine graphs also show a
certain difficulty in identifying damage placed at 0.95�L. In particular, when scale a = 8 is used a certain peak
seems to be indicative of damage; however, it should be recognised that the corresponding peaks are confused
by the rises of the CWT2,3,4 at the ends. The peaks even disappear with higher scales (a = 12, 16) when trials
aimed at reducing the noise are carried out.

Fig. 14 is arranged identically to Fig. 13, but now the extension is based on a rotation isomorphism at both
ends. As is clear from Fig. 14 the damage condition is not hidden by any border distortion phenomenon.
Indeed, the peak detecting the damaged condition is clearly detected at any level of scale. Similarly to
Fig. 14, the graphs on the left of Fig. 15 show the second derivative estimated through the self-minimization
method based on D3 in comparison with the classical second derivative without any extension (these latter on
Fig. 15. Performance of self-minimization in the presence of boundary damage with ol = or = 10; third mode shape of a FF beam (Ref.
Fig. 13); bounded; minimization based on D3.
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the right of Fig. 15); clearly the self-minimization method preserves the damage state at any level of scale sim-
ilarly to that of the rotation isomorphism.

Fig. 16 takes into account an experimental case described in Trentadue et al. (2007) and specifically the case
depicted in Figs. 10 and 11 within the same reference. Firstly, it should be noticed that Fig. 16 does not show
any false damaged condition as was established by an outlier contained in the original figures (Trentadue
et al., 2007). This was possible by adopting the suggestions illustrated by Messina and Albanese (2008) in
order to extract slightly improved dynamical shapes. Apart from this latter slight improvement it should be
recognised as in Fig. 16, that the isomorphism eliminates an uncontrolled rise at the ends (right end, Figs.
10 and 11 in Trentadue et al. (2007)) and a false damaged condition (left-end, Figs. 10 and 11 in Trentadue
et al. (2007)); moreover, the damage closer to the left-end (nc = 57; Figs. 10 and 11 in Trentadue et al. (2007))
is more clearly detected as a real damaged condition through the second derivative rather than as a border
distortion phenomenon. Before closing the discussion concerning Fig. 16, it should be noticed that a Rotation
isomorphism was adopted at both the ends whilst, as discussed in Section 3.1, a Turnover transformation was
judged to be more accurate for a clamped end. In truth, a turnover was tried but the rotation was able to pro-
Fig. 16. CWT of an experimental dynamical shape (Figs. 10 and 11, Trentadue et al. (2007)) through convolution and R–R isomorphism.
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vide a better result. This is not an unexpected behaviour because we are faced with an uncertain boundary
condition; indeed, as is accurately explained in Trentadue et al. (2007), practical reasons did not allow the
extension of the measurements up to the clamped or quasi-clamped end, and therefore, the measured ends
results an uncertain boundary condition. In order to challenge the previously mentioned experimental case,
the self-minimization method should not show difficulty to well perform a reduction of the border distortion
phenomenon. In this respect, Fig. 17 should be taken into account. The minimization process (12) and (13) is
in this case based on D4 and the convolution (1) is carried out by adopting increasing scales from a2,3 = 8 up to
16 with step 4. Fig. 17 clearly shows for both second and third derivative the absence of any false damage
indication and border distortion phenomenon within the whole domain of interest.

In order to complete the comparison between isomorphism and self-minimization, Fig. 18 is finally pro-
vided to compare with Fig. 14. The minimization process (12) and (13) regarding Fig. 18 is based on D4

and the convolution (1) is carried out by adopting increasing scales from a2,3 = 8 up to 16 with step 4.
Fig. 17. Performance of self-minimization with ol = or = 10; experimental dynamical shape (Figs. 10 and 11, Trentadue et al. (2007));
bounded; minimization based on D4.



Fig. 18. Performance of self-minimization in the presence of boundary damage with ol = or = 10; third mode shape of a FF beam (Ref.
Fig. 13); bounded; minimization based on D4.
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Fig. 18 still clearly shows for both second and third derivative the absence of any false damage indication and
a strong reduction in the border distortion phenomenon within the whole domain of interest which allows the
detection of a damaged condition at 0.95�L.

6. Conclusions

In this work, two different methods aimed at challenging the known phenomenon of border distortion con-
cerning the use of wavelets, when these latter are used in the guise of continuous wavelet transforms (cwt) for
identifying damage on transversally vibrating structural components (e.g., beams, plates and shells), have been
introduced. Both the methods have been theoretically discussed and their performances have been accurately
tested against several numerical and experimental tests in the presence or absence of noise. All the simulations
have shown the robustness of both methods.
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The first method (based on isomorphism) should always be preferred to the second one (method 2 or self-
minimization) due to its straightforward application and extreme robustness against any level of noise; the
method is also characterized by a negligible computational effort. Moreover, the great advantage of method
1 which is aimed at avoiding any extrapolating techniques should not be neglected. A table suggesting the use
of method 1, in relation to specific classical-beam boundary conditions, has also been provided.

The second method can decisively assist in all cases where uncertain boundary conditions and poor results
are obtained by the above mentioned Rotation and Turnover transformations. In particular, the presence of
uncertain boundary conditions or more complicated structural components (as plates an shells) can occur
in practice; in this respect the classical geometrical and/or natural boundary conditions (C,F, S) adopted in
the relevant sections of this manuscript should be able to guide the choice of the analyst between methods
1 and 2.

The robustness of method 2 against noise (even with S/N = 40 dB) and different geometric cases and several
boundary conditions has also been tested. Method 2 offers different chances to the analyst: the minimization
can be carried out on high differentiation orders in order to ensure continuity at lower differential orders and,
therefore, reductions in the border distortion and false damage detections can be expected; different use of
scales is also possible in the sense that large scales can smooth the differentiations and ensure a stronger reduc-
tion in the border distortion but clearer details can be recovered by convolving the extended signal with lower
scales. All these performances can be carried out regardless of the particular boundary conditions involved.
However, the computational effort accompanying this method cannot be neglected. Indeed, on average all
the simulations involved a computational effort of few 10ths of a second per beam.

In spite of the fact that the negative influence of the phenomenon regarding the border distortion has been
recognized in the past, it has never received appropriate specific attention; in this respect this is the first work
dealing with the phenomenon which introduces two methods showing interesting performances and covering
the majority of real cases occurring in practice.
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