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1 Introduction

Black holes offer excellent laboratories for testing the predictions of any purported quantum

theory of gravity such as string theory. In particular, one of the prime objectives of any

such theory is to provide a microscopic understanding of the Hilbert space of these objects

and thereby arrive at a first principle derivation of their thermodynamic properties which

can be written down heuristically in Einstein’s gravity. Furthermore, under gauge-gravity

duality, black objects are presumably holographically dual to thermal ensembles in a field

theory. If this is the case, at strong coupling, field theoretic phenomena in the presence of

such an thermal ensemble, can be modeled in terms of the physics of matter in the black

background. In particular, black solutions which obey the third law of thermodynamics,

having vanishing entropy at zero temperature (Nernst solutions), could be very useful in

understanding quantum critical phase transitions in the dual field theory. Hence, develop-

ing and exploring the solution spaces of black objects in actions arising as low-energy limits

of string theory — namely certain supergravities (SUGRA) — is of paramount import in

understanding non-perturbative aspects of string theory and potentially, strongly coupled

field theories.

The equations of motion (EOMs) of these supergravity actions are second-order non-

linear and hence enormously non-trivial to solve. For a special class of extremal black

solutions in 4D and 5D N = 2 gauged supergravity, considerable advances have been

made in the last half-decade (see cf. [2, 3, 8] and [10]). These solutions are amenable to
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a first order sum-of-squared-terms rewriting, which simplifies the problem to solving first

order equations. A natural generalization is to develop techniques to study non-extremal

black solutions. In particular, given the fact that a large class of extremal solutions are

known, we investigate methods of generating non-extremal solutions from extremal ones

which could be of great practical value.

Specifically, after a brief review of the action and the 4D EOMs in section 2, we

develop two first order first-order rewritings of this action for a class of non-extremal

electric and dyonic black states with electric fluxes, in section 3. In section 4, we deform

the parameter space of a class of extremal black solutions in asymptotically AdS5 spaces

(AAdS5) to obtain the non-extremal equivalent of a zero-entropy black Nernst brane in

the same space. In section 5 , we analyze the second order EOMs in 4D to identify certain

symmetries. We exploit these symmetries to compensate non-extremal deformations of the

metric with transformations of the parameters of the solution. The techniques developed

in each section are illustrated by generating example black solutions. Our formal results

are applicable to black solutions with flat, spherical or hyperbolic horizons. Finally in the

conclusion we discuss possible extensions and applications to 5D.

2 Equations of motion and extremal black objects

The main purpose of this note is to study black gravitational solutions of N = 2 gauged

supergravity. We consider Lagrangians of the form

S =

∫

dx4
√−g

(

R− 2gī∂µz
i∂µz̄j − fIJF

I
µνF

Jµν − 1

2
f̃IJF

I
µνF

J
ρσǫ

µνρσ − 2Vg(z, z̄)

)

,

(2.1)

where the zi are complex scalar fields, and the F I are abelian gauge fields. The structure

of the different pieces of the Lagrangian — namely fIJ , gī and Vg(z, z̄) — and the range

of the indices (i, I), can be found from very specific prescriptions (see appendix A), but

for the sake of generality, we make no assumptions at present.

For the action (2.1), Einstein’s equations read

Rµν − 2gī∂µz
i∂ν z̄

j = fIJ

(

2F I
µλF

J λ
ν − 1

2
gµνF

I
κλF

Jκλ

)

+ gµνVg(z, z̄). (2.2)

As we are interested in studying static solutions with purely radial dependence, we take

zi = zi(r), assume the line element is of the form

ds2 = −e2α(r)dt2 + e−2α(r)dr2 + e2β(r)dΩ2
k, (2.3)

with our ansatze for the gauge fields given explicitly in appendix B. The label k in (2.3)

denotes the assumed metric of the transverse spacial foliation with k = −1, 0, 1 standing

for hyperbolic, flat and spherical respectively. We will also use the alternative notation

a(r) = eα(r) b(r) = eβ(r) a(r)b(r) = eψ(r) (2.4)

for the warp factors whenever this makes the expressions more compact.
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Given the assumptions mentioned above, Einstein’s equations become

(

a2b2
)′′

= 2
(

k − 2b2Vg
)

, (2.5)

and
b′′

b
= −gī∂rz

i∂rz̄
j , (2.6)

where “ ′ ” denotes derivatives with respect to r. In addition to these, the following

first-order constraint must be fulfilled

− 1

2

(

a2(b2)′
)′
=

Vb
b2

+ b2Vg − k. (2.7)

In the previous expressions we introduced the potential

Vb = f IJ
(

QI − f̃IKPK
)(

QJ − f̃JKPK
)

+ fIJP
IP J , (2.8)

with f IJ the inverse of fJK . This potential encodes all the contributions coming from

the gauge field’s electric QI and magnetic P I charges (see appendix B). In addition

to (2.5), (2.6) and (2.7) we have the equations of motion for the scalars:

∂r
(

a2b2gk̄∂rz̄
j
)

= a2b2∂k (gī) ∂rz
i∂rz̄

j +
∂kVb
b2

+ b2∂kVg. (2.9)

Clearly, it is rather complicated to solve the equations above in general. There exist,

however, powerful techniques that are applicable for certain subclasses of solutions such as

extremal black solutions and BPS black states. In the following we will concentrate mainly

on solutions which are asymptotically AdS4.
1

Let us start by discussing extremal black solutions in AdS4, these are solutions whose

near-horizon geometry is described by an AdS2 ×Σk metric, where Σ1 = S2 and Σ0 = R
2.

On this kind of backgrounds, b(r) takes up a constant value, denoted by σ, encoding the

entropy of the solution while for the other warp factor we have

a =
r

l2
, (2.10)

where l2 corresponds to the AdS2 radius. Inserting this geometry into (2.6) and (2.7) we

find that the scalars become constants whose values are determined by

∂kVb = −σ4∂kVg. (2.11)

Therefore they depend only on the values of the fluxes and charges of the system.2

Meanwhile, the two parameters that specify the metric can be extracted from the

algebraic relations

k =
Vb
σ2

+ σ2Vg

(

σ

l2

)2

=
Vb
σ2

− σ2Vg, (2.12)

1These solutions are specially relevant for AdS4/CFT3 holography.
2This is the well-known attractor mechanism (see cf. [12, 14, 21])
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derived from (2.5) and (2.6). For the case of black branes, i.e. solutions with flat horizon

topology (k = 0) the equations (2.11) yield the simple relations

l22 = − 1

2Vg
σ4 = −Vb

Vg
, (2.13)

which relate the geometric parameters to the potentials in a transparent way.

We turn our attention now to the asymptotic behavior. We want the metric to approach

AdS4 at ifinity i.e.

a
r→∞−−−→ b

r→∞−−−→ r

l4
. (2.14)

Once again by inserting this into the equations of motion, we find that the scalars take up

constant values which now are determined by

∂kVg = 0, (2.15)

in other words, the scalar fields must flow towards critical points of the Vg potential at

infinity. While the only geometric parameter, the AdS radius, reads

l 24 = − 3

Vg
. (2.16)

Therefore, if for certain given quantum numbers we wish to find an extremal black

hole/brane, first we need to show that both (2.11) and (2.15) have compatible solutions

that give rise to sensible physical parameters (e.g. positive AdS-radii) and then we must

find solutions of the equations of motion a(r), b(r) and zi(r) that interpolate between the

two AdS geometries.

The procedure described above is in general challenging, but in the context of N = 2

gauged supergravity, there is a large class of extremal black branes that can be described

by a simpler set of first order equations equations [3, 8]. As a matter of fact, interpolating

solutions corresponding to these equations are characterized by the relation

a2b2 = r

(

r

l 24
+

σ

l2

)

, (2.17)

with the scalar field solutions constructed as combinations of harmonic functions ([16, 17]).

3 First-order flow equations for non-extremal branes

As mentioned at the end of the previous section, being able to provide a first order de-

scription for the system of interest makes the problem of finding solutions much more

tractable. Given that for N = 2 gauged supergravity models, extremal configurations

can be described by first-order equations, it is natural to wonder whether non-extremal

configurations can be found in a similar fashion. Fortunately it is in fact possible to find

first order descriptions for non-extremal configurations ([2, 3, 13] and [6]). Unfortunately,

these descriptions are generically non-trivial to construct and can be set up only for certain

subclasses of black objects. In the following, we construct two new first-order rewritings

for non-extremal black branes: one for generating classes of electric black branes and the

other for dyonic solutions.
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3.1 Electric black brane rewriting

Consider the line element,

dx2 = −e2α(r)dt2 + e2ν(r)dr2 + e2β(r)
(

dx2 + dy2
)

. (3.1)

The first rewriting that we find in this section is valid for solutions supported by electric

charges and fluxes. Inserting the line element (3.1) and our gauge ansatz (appendix B)

into the 4D N = 2 gauged supergravity action (2.1), yields the one-dimensional effective

lagrangian density

L = e2β+α−ν
(

(

β′
)2

+ 2β′α′ −NIJ

(

XI
)′ (

X̄J
)′ − e2ν Vtot(X, X̄)

)

, (3.2)

where

Vtot = g2Vg + e−4βVb, (3.3)

NIJ is given by (A.5) and the scalars X are related to the scalars z by (A.2), (A.4) Here,

the constant g2 is inserted to keep track of terms arising from the flux potential, Vg. But,

henceforth, we will formally absorb the constant into the definition of the flux potential by

rescaling the flux quantum numbers as hI → hI/g, so as to be consistent with notation in

literature.

As a first step, we decompose the warp factors α and ν appearing in the line-

element (3.1) into

α = α0 +
1

2
ln f ν = ν0 −

1

2
ln f , (3.4)

where

f = −µ r + g2e2α1(r). (3.5)

The horizon will correspond to physical solutions of the equation

µ r = g2e2α1(r). (3.6)

As we will see in some examples later, by changing the value of µ we modify the root struc-

ture of this equation so that the constant parameter µ parametrizes the non-extremality

of the solution. To proceed, we decompose L into powers of g2,

L = L0 + g2L2. (3.7)

The next step is to rewrite both L0 and L2 in terms of squares of first-order flow equa-

tions. From this procedure, we will obtain an overdetermined system whose consistency

must be checked. This rewriting is analogous to the one performed in five-dimensional

N = 2, U(1) gauged supergravity in [2, 6]. Let us start with L0. For the sake of simplicity,

we use the diffeomorphism invariance of the theory, changing the radial coordinate, to set

ν0 = 2β + α0 and obtain

L0 = −µβ′ − µr
(

(

β′
)2

+ 2β′α′

0 −NIJ

(

XI
)′ (

X̄J
)′
)

− e2α0GIJQIQJ . (3.8)

Next, we introduce the combination

EI = X ′I − α′

0X
I + eα0N IJλJ , (3.9)
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where λJ are real parameters that are a priori arbitrary. This expression is the candidate

for the first order equation driving the scalar fields. Using (A.4) we get

X̄INIJEJ = X̄INIJX
′J + α′

0 + eα0λIX̄
I . (3.10)

Inserting the above equation into L0 we find

L0 = −µβ′ − µλI
[

reα0

(

XI + X̄I
)]′

−µr
[

(

β′ + α′

0

)2 − GIJNIPEPNJQĒQ + 2 X̄INIJEJ XKNKLĒL

−2
(

α′

0 + eα0λIX
I
) (

α′

0 + eα0λIX̄
I
)]

+µeα0λI
(

XI + X̄I
)

− e2α0GIJ (rµ λIλJ +QIQJ) , (3.11)

where we introduced the positive definite matrix

GIJ = N IJ + 2eK X̄IXJ , (3.12)

defined on the scalar moduli space with the Kähler potential, K, given by (A.7). Notice that

the first line of (3.11) contains total derivatives, while the second and third lines contain

squares of various combinations of fields. The last line encodes additional constraints that

will be discussed soon.

Requiring the variation of the second and third lines of L0 with respect to the fields

(β, α0, X
I) to vanish can be achieved by setting the various squares to zero. This yields

XI = X̄I as well as the first-order flow equations

β′= −α′

0 ,

EI= 0 ,

α′

0= −eα0λIX
I . (3.13)

These can be readily integrated by introducing the rescaled scalar fields

Y I = e−α0XI , (3.14)

giving

e2β = e−2α0 = Y I HI ,

Y I = −N IJHJ , (3.15)

where HI = γI +λI r, with constant γI . To obtain (3.15) we used the relations FIJKXK =

0 (A.1) and
(

XINIJX̄
J
)′
= 0 (A.4), as well as the fact that the XI ’s are real.

To conclude the L0 rewriting, we must analyze the variation of the terms in the last

line of (3.11). Their variation should result in equations that are consistent with the flow

equations (3.13). To this end, we restrict the analysis to models in which satisfy two

simplifying conditions. First, we demand that there are no linear terms proportional to

(X − X̄)K in GIJ , i.e.

GIJ(X, X̄) = GIJ(ReX,ReX) +O
(

(X − X̄)2
)

, (3.16)
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so that we may solve the variational equations steming from the last line of (3.11) by

setting (X − X̄)I = 0. Second, we assume that the physical charges QI can be expressed

in terms of the constant vectors λI and γI by using the relation

GIJ(ReX,ReX)QIQJ = µGIJ(ReX,ReX)λIγJ . (3.17)

Generically, this can be achieved in models in which GIJ(ReX,ReX) is diagonal or

off-diagonal.

Imposing the relation (X − X̄)I = 0 as well as (3.17), the last line of (3.11) becomes

µeα0

(

2λIx
I − eα0GIJ(x, x)HIλJ

)

, (3.18)

where xI = ReXI . Denoting the combination (3.18) by ∆, we compute its variation with

respect to α0 and with respect to the scalar fields xI , respectively, and obtain

µ δ (eα0)
[

2λIx
I − eα0GIJ(x, x)HIλJ

]

= 0 , (3.19)

µ eα0 δxL
[

2λL − ieα0N IP
(

FPQL − F̄P̄ Q̄L̄
)

NQJHIλJ

−2eα0

((

xIHI

)

λL +
(

xIλI
)

HL

) ]

= 0 ,

where in the second equation the quantities N IJ and FIJK are evaluated at xL. Us-

ing (3.15), we find that the first equation of (3.19) is satisfied, while for the second equation

we obtain

µ eα0

(

xIλI
)

δxLNLK xK = 0 , (3.20)

Recalling that the variation of (A.4) yields δXI NIJX̄
J + XINIJδX̄

J = 0, and setting

XI = X̄I , gives δxI NIJ x
J = 0. This equals (3.20), hence we conclude that for a model

satisfying (3.17) the conditions (3.19) stemming from the variation of ∆ are satisfied by a

solution to the first-order flow equations (3.13).

Now we turn our attention to L2, which is given by

L2 = e2α1

(

(

β′
)2

+ 2β′
(

α′

0 + α′

1

)

−NIJ

(

XI
)′ (

X̄J
)′ − e4β+2α0−2α1Vg(X, X̄)

)

. (3.21)

Following [2], we rewrite this as

L2 = e2α1

{

(

β′ + α′

0 + α′

1 + 2α e2A+α0−α1 hI X
I
)

(

β′ + α′

0 + α′

1 + 2α e2β+α0−α1 hI X̄
I
)

−
(

α′

0 + α′

1 + α e2β+α0−α1 hI X
I
)(

α′

0 + α′

1 + α e2β+α0−α1 hI X̄
I
)

−
(

β′ + α e2β+α0−α1 hI X
I
)(

β′ + α e2β+α0−α1 hI X̄
I
)

−NIJ

(

(XI)′ + β′XI − κ e2β+α0−α1 N IKhK

)

×

×
(

(X̄J)′ + β′X̄J − κ e2β+α0−α1 NJLhL

)}

−κ
[

e2β+α0+α1 hI
(

XI + X̄I
)

]′

, (3.22)

where κ = ±1 (corresponding to two possible rewritings). This expresses L2 in terms of

squares of combinations of fields. Setting these squares to zero ensures the vanishing of

– 7 –
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the variation of L2 with respect to the various fields. This yields XI = X̄I as well as the

first-order flow equations3

β′ + α′

0 + α′

1 = −2κ e2β+α0−α1 hI X
I ,

α′

0 + κ′1 = −κ e2β+α0−α1 hI X
I ,

β′ = −κ e2β+α0−α1 hI X
I .

(XI)′ + β′XI = κ e2β+α0−α1 N IKhK . (3.23)

By demanding compatibility with the first-order flow equations (3.13) obtained from L0

we find

2α0 + α1 = 0 (3.24)

as well as

λI = −κhI . (3.25)

The harmonic functions HI entering in the solution (3.15) are thus given by

HI = γI − κhI r. (3.26)

Summarizing, we have obtained a non-extremal static electrically charged black brane

solutions are described by

ds2 = −e−2β f dt2 + e2β f−1 dr2 + e2β
(

dx2 + dy2
)

,

f = −µ r + g2 e4β ,

e2β = Y I HI ,

Y I = Ȳ I = −N IJHJ ,

HI = γI − κhI r , κ = ±1 , (3.27)

where the constants γI are related to the physical charges QI by

GIJQIQJ = −κµGIJ hIγJ . (3.28)

In the following we discuss two examples. First, we consider an N = 2 model based

on the prepotential

F (X) = −2i
√
X0X1X2X3. (3.29)

This model comes from the U(1)4 truncation of N = 8 gauged supergravity in four dimen-

sions [9]. Using (3.30), we compute NIJ for this prepotential using and find

NIJ =
i

2
(2δIJ − 1)

F (X)

XIXJ
. (3.30)

Hence (3.12) reads

GIJ =
1

4
XIXJ

(

8 + (−1)δIJ
2i

F (X)

)

. (3.31)

3A first order rewriting for non-extremal black solutions, with a different re-parametrization was inde-

pendently developed in [13].
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Inserting (3.30) into (A.4) yields

F (X) = − i

4
, (3.32)

therefore

GIJ = 4
(

XI
)2

δIJ , (3.33)

as well as

e2β = 4i F (Y ) = 8
√
Y 0Y 1Y 2Y 3 . (3.34)

Using (3.30) we compute

NIJ Y
J = −i

F (Y )

Y I
, (3.35)

and hence

Y I =
1

4

e2β

HI
, (3.36)

where we made use of the third equation of (3.27). Explicitly, the harmonic functions are

given by

HI =
1

hI
(µ−1Q2

I + h2Ir). (3.37)

Inserting this into (3.34) gives the warp factor

e2β = 2
√

H0H1H2H3 . (3.38)

These solutions correspond to the brane solutions in [7]. They interpolate between an AdS4

asymptopia with

l24 ∼ 1√
h0h1h2h3

(3.39)

and the outer horizon given by the largest root of (3.6). It is possible to tune µ to make

the solution extremal by demanding that the following holds at horizon

− µ

4
= g2β′e4β . (3.40)

As a second example consider the model based on the prepotential

F (X) = −X0X1. (3.41)

For this prepotential we have

NIJ = −2|ǫIJ | (3.42)

For axion-free configurations, (3.12) is simply

GIJ =
1

2

(

z−1 0

0 z

)

, (3.43)

where we introduced

z =
X1

X0
. (3.44)

Using (A.4), we find

e2β = 4Y 0Y 1. (3.45)

– 9 –
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While the scalars are given by

Y J =
1

2
|ǫIJ |HJ . (3.46)

Once again, we have a solution that interpolates between AdS4 with radius

l24 ∼ 1

|h0h1|
(3.47)

and the corresponding horizon.

3.2 Dyonic rewriting

Here we develop a first order rewriting to generate a class of dyonic non-extremal solutions

in the presence of electric fluxes with h0 = P 0 = 0. For this set of quantum numbers,

the 1D Lagrangian density can be rewritten as a sum of perfect squares which yield the

following first order equations:

(zi)′ =
1

2
gij(γj − 2r q̃j)e

−
8

3
β (3.48)

β′ =

(

−1

4
zihi +

1

2
gijz

iP j

)

e−α1 (3.49)

α′

1 = 2β′ + 2Q0e
−2β−α1 (3.50)

with constraints given by:

hiP
i = 0 − 2Q0 = γi P

i gijqiqj = −4µgij q̃iγj (3.51)

1

3
e−2βziq̃i +

1

3
zihie

−α1 − 2

3
gijziP

je−
4

3
β−α1 (3.52)

Notable solutions of the above equations for Q0 = 0 contain the η-geometries discussed

in [11] with relevance to holographic condensed matter issues. Solutions of these equations

can be up-lifted to 5D and be shown to be solutions of the first order equations derived

from a re-writing of the 5D gauged SUGRA action for the same set of quantum numbers,

written in 5D language.

4 Hot Nernst brane in AdS5

In this section we use first order rewritings for N = 2 5D gauged supergravity [2] to discover

and write down a new class of black solutions in AAdS5 spaces which in the extremal limit

have vanishing entropy. In the extremal limit these satisfy the third law of thermodynamics

or the Nernst law and hence, go by the name of Nernst branes. Studying the physics of

matter in near-extremal solutions of the Nernst type will potentially shed valuable light on

the physics of phase transitions at zero-temperature in the dual 4D field theory, and the

phase diagram that captures aspects of this transition as one approaches absolute zero. We

will look for these solutions by extremizing the low-energy 5D N = 2 gauged supergravity

action arising from the compactification of M-theory on a CY3. This action is amenable

to first order rewritings for dyonic black solutions [2] in the presence of electric fluxes and

– 10 –



J
H
E
P
0
8
(
2
0
1
4
)
1
5
1

which are charged under one of the Cartans of the angular momentum group in 5D. One

can solve the resulting first order equations for a system with no dyonic charges and only

an angular momentum J and with electric fluxes h1, h2 and h3 in the STU model to obtain

a family of solutions (see appendix C in [2]) wherein the scalars, XA, (A = 1, 2, 3), are

constant through out and the metric is given by

ds2 = −e2Udt2 +
dτ2

τ2
+ e2B(dx2 + dy2) + e2W (dz + Cdt)2 (4.1)

and where

eB = τ (4.2)

e2W = (α+ γτ4)/τ2 (4.3)

e2U = τ6/(α+ γτ4) (4.4)

C = τ4/(α+ γτ4) (4.5)

Here α = 3J
4hAXA is a positive constant, while γ is a constant of integration. The above

solution is a zero-entropy AAdS5 extremal Nernst solution, which can be compactified to

4D and lies in the BPS class of solutions of the 4D rewriting, as observed in [2].

The Nernst brane, being at zero entropy, has no discernible scale in its near horizon

geometry. A hot Nernst brane on the other hand would have a natural scale, arising from

the temperature. In order to heat up a zero-scale system to a finite scale one, we take

a hint from the observation that massive BTZ black holes in AdS3 can be thought of as

deformations of the angular momentum from static M = 0 BTZ black holes. Hence we

perform a deformation of the gtz term in the above solution via the shift:

C → C + λ . (4.6)

One can check that the above solution satisfies the EOMs.

In particular, for λ = −γ < 0, we observe that the solution has two horizons with the

outer horizon given by the zero of g00 = −e2U + e2WC2 at τ = (α|λ|)1/4, and where the

temperature, computed by demanding smoothness of the Euclidean near-horizon Rindler

metric is

T =
2π

|λ|α(αλ)1/4 . (4.7)

The black solutions so obtained, interpolate between the non-extremal Rindler geometry

near the horizon of the black brane to AdS5. Hence, we have discovered here a family of hot

black branes in AAdS which obeys the third law of thermodynamics at zero temperature.

5 Hot deformations

So far, we have written down rewritings which allow us to obtain hot black solutions by

solving first order equations. However, these rewritings have various constraints on charges

and fluxes and it is not possible to always obtain a non-extremal solution for a generic set

of charges and fluxes whose extremal counterparts are fully known. The Nernst brane is a
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case in point. So far, there exists no first order re-writing for its non-extremal counterpart.

We wrote down the hot solution by performing a deformation on the extremal solution to

obtain a new solution of the EOMs.

In this section, we generalize this principle by developing a deformation algorithm

for a large class of extremal solutions, that will automatically generate the corresponding

non-extremal solutions.

We begin with an outline of the working philosophy behind the deformation of extremal

dyonic solutions in 4D N = 2 gauged SUGRA, in the presence of fluxes, to non-extremal

solutions. In order to generate new solutions of the second order EOMs, we identify

deformations that are symmetries of the EOMs. The deformations are implemented in

three steps. First, notice that the deformations

(ab)2 → (ab)2 − µr (5.1)

b → b (5.2)

form a symmetry of the equations of motion (2.5) and (2.6). We can promote this transfor-

mation to a symmetry of the full set of equations of motion by considering a transformation

for which the functional forms of b and zi is left intact, while the relationships between

the constants — ie. charges/fluxes and parameters — is left undetermined. Then we pro-

cede to impose (2.7) and (2.9) to hopefully find new algebraic relationships between the

constants. We have thus constructed a well-defined solution generating technique, which is

applicable to a large class of extremal solutions where the above operations can be defined.

The set of deformations outlined above, when applied to extremal configurations, gen-

erally produces a non-extremal configuration. It must be noted that for all known solutions

in the STU model, this deformation works algebraically, in the sense that one can always

define an operation in parameter space that elevates the deformation to a symmetry of

the system and hence the deformation generates a new-solution. However, in some cases,

these solutions, though mathematically well-defined do not correspond to real physical

backgrounds as they fail the standard tests of positivity of metric coefficients or finiteness

of 4-derivative scalars constructed from the Riemann, Ricci tensor and the Ricci scalar. As

a final step one has to check that the solutions obtained are physical.

Below, we give an illustrative example of how to implement the three-step deformation

technique for a well-known magnetic extremal black brane [5] to produce a well defined

non-extremal solution. This solution has a line element of the form (2.3) based on the

prepotential (3.29). It is parametrized by 4 magnetic charges P I and four electric fluxes

hI . For extremal solution of this type, the hamiltonian constraint is given by [8]

P IhI = 0. (5.3)

We can solve this constraint by taking

P 0 = − 3

16h0
P i =

1

16hi
. (5.4)

The warp factors for this solution read

b2 = 8
∏

I

√

αIr + βI a b = (γr2 + δ), (5.5)
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where

αI = − γ

4hI
βI = P I (5.6)

γ and δ are real constants subject to the constraint

γδ = − 3

16
. (5.7)

Moreover, in order to avoid a naked singularity we must have γ > 0 and the horizon is

located at

rH =

√
3

4 γ
. (5.8)

This solution can be found by making use of the first order equations [3, 8] for the prepo-

tential (3.29). We now implement the three-step hot deformation:

Step 1: Deform the warp factors

(a b)2 → (a b)2 − µr, (5.9)

keeping the functional forms of b and zi fixed.

Step 2: Insert the deformation into the remaining equations and read off the corresponding

algebraic equations. For the case at hand, these can be solved and they imply the

modified relationships

P 0 = − 3

16h0
−→ P 0

(

1 +
48

9
µγ

)−1/2

= − 3

16h0
(5.10)

P i =
1

16hi
−→ P i (1− 16µγ)−1/2 =

1

16hi
. (5.11)

Step 3: We check that the solution is physical.

In summary, we have obtained a regular solution with

b2 = 8
∏

I

√

αIr + βI (ab)2 =
(

γr2 + δ
)2 − µr, (5.12)

where

αI = − γ

4hI
, (5.13)

and

β0 = P 0

(

1 +
48

9
µγ

)−1/2

βi = P i (1− 16µγ)−1/2 . (5.14)

This solution is non-extremal as it has two horizons, which for small µ, are located at

r± = rH ±
√
µ

31/4
+ . . . . (5.15)

This technique should prove to be of tremendous utility in generating and studying hot

solutions of relevance to holographic condensed matter and fluid dynamics, in the future.
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6 Conclusions

In this note we have developed new rewritings of N = 2 4D gSUGRA actions for a class

of dyonic non-extremal and electric non-extremal solutions not contained in the dyonic

class, obtained the non-extremal version of the Nernst brane in AAdS5 and introduced a

deformation technique applied on extremal solutions to generate new non-extremal ones.

These techniques will be particularly useful in developing holographic black duals for com-

putations in 3D CFTs dual to AdS4 and Lifschitz geometries which can be obtained by

choosing the flux quanta appropriately. A recent development in this field (see cf. [17])

has resulted in the existence of closed form solutions for the metric in asymptotically AdS

spaces and where the scalars can be obtained by solving algebraic equations. The new

classes of extremal solutions so obtained can now be plugged into the deformation toolkit

we have introduced here to obtain whole new classes of non-extremal solutions. More excit-

ingly, one should be able to easily extend this formalism to 5D gauged supergravity where

whole new extremal and non-extremal solution spaces could be uncovered with exciting im-

plications for 4D field theories. For example, based on past and recent research [15, 18, 19]

and ongoing work by some of the authors [4], one can write down the affine parameter

that characterizes the flow of scalar fields from boundary to the horizon of extremal black

solutions and these are holographically dual to the c-function that parametrizes Wilsonian

flow in the corresponding field theory. Hence one can make statements about the central

charges of the UV and IR fixed points of the Wilsonian flow from trivial calculations in the

bulk. Hence, the techniques developed here have easy extensions and applications which

can impact not just the study of black holes but also holographically coded processes of

field theories.
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A Notation

In this appendix we follow the notation found in [3], which for convenience is summarized

below, and relate it to the parameters which appear in (2.1). The Lagrangian describing the

couplings of N = 2 vector multiplets to N = 2 supergravity is encoded by a holomorphic

function F (X) called the prepotential, that depends on n + 1 complex scalar fields XI
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(I = 0, . . . , n). F (X) is homogeneous of degree two, i.e. F (λX) = λ2F (X), from which

leads to the homogeneity properties

FI = FIJ X
J ,

FIJK XK = 0 , (A.1)

where FI = ∂F (X)/∂XI , FIJ = ∂2F/∂XI∂XJ , etc. The XI are redundant while the

physical scalar fields

zi = Xi/X0 (i = 1, . . . , n) (A.2)

parametrize an n-dimensional complex hypersurface. The redundancy of the XI is encoded

by a constraint on the symplectic vector (XI , FI(X)):

i
(

X̄I FI − F̄I X
I
)

= 1 . (A.3)

This can be written as

−NIJ X
I X̄J = 1 , (A.4)

where

NIJ = −i
(

FIJ − F̄IJ
)

. (A.5)

For N = 2 based models, the lagrangian (2.1) is constructed out of

gī =
∂2K(z, z̄)

∂zi ∂z̄j
, (A.6)

where the Kähler potential is given by

e−K = i(X̄IFI −XI F̄I) , (A.7)

as well as

fIJ =
1

2
Im(NIJ) f̃IJ =

1

2
Re(NIJ), (A.8)

where

NIJ = F̄IJ + i
NIK XK NJLX

L

XM NMN XN
. (A.9)

and

Vg = N IJ ĥI
¯̂
hJ − 2eK |W |2 , (A.10)

where

ĥI = hI − FIKhK W = hIFI − hIX
I , (A.11)

and (hI , hI) denote the magnetic and electric fluxes respectively — see [20] for a nice review.
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B Explicit gauge field ansatz

In this appendix we show our explicit gauge field ansatz for the three cases k = −1, 0, 1.

To establish coordinates we take

dΩ2
k =



















dθ2 + sin2 θdφ2 k = 1

dx2 + dy2 k = 0

dθ2 + sinh2 θdφ2 k = −1

(B.1)

In these coordinates ansatze for the gauge fields are (cf. [1, 16])

AI = QIe−2βdt− P I















cos θdφ k = 1

xdy k = 0

cosh θdφ k = −1

(B.2)

where

QI = f IJ(QJ − f̃JKPK). (B.3)

Using this ansatz the potential Vb (2.8) can also be written

Vb = N IJQ̂I
¯̂
QJ + 2eK |Z|2 , (B.4)

where

Q̂I = QI − FIKPK Z = P IFI −QIX
I . (B.5)
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