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SUMMARY

Innate immune recognition of foreign nucleic acids
induces protective interferon responses. Detection
of cytosolic DNA triggers downstream immune
signaling through activation of cyclic GMP-AMP syn-
thase (cGAS). We report here the crystal structure of
human cGAS, revealing an unanticipated zinc-ribbon
DNA-binding domain appended to a core enzymatic
nucleotidyltransferase scaffold. The catalytic core of
cGAS is structurally homologous to the RNA-sensing
enzyme, 20-50 oligo-adenylate synthase (OAS), and
divergent C-terminal domains account for specific
ligand-activation requirements of each enzyme. We
show that the cGAS zinc ribbon is essential for
STING-dependent induction of the interferon
response and that conserved amino acids displayed
within the intervening loops are required for efficient
cytosolic DNA recognition. These results demon-
strate that cGAS and OAS define a family of innate
immunity sensors and that structural divergence
from a core nucleotidyltransferase enables second-
messenger responses to distinct foreign nucleic
acids.

INTRODUCTION

The human innate immune system deploys cellular sensors to

detect and respond to the presence of pathogens. Many of these

sensors activate innate immunity by recognizing aberrant nucleic

acid localization within the cell (Holm et al., 2013; Kagan, 2012;

Medzhitov, 2007). Foreign RNA detection by toll-like receptors

and RIG-I has been studied in some detail, but the mechanistic

basis of DNA detection and signal initiation within the cytoplasm

has remained enigmatic. Recently, the enzyme cyclic GMP-AMP

synthase (cGAS) was identified as requisite for DNA detection,

and cyclic GMP-AMP (cGAMP) was shown to function as a sec-

ond messenger that stimulates innate immunity through the

endoplasmic reticulum receptor STING (Sun et al., 2013; Wu

et al., 2013). The identification of cGAS explains the potent im-
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mune response to cytosolic DNA and reveals a major source of

ligands responsible for STING activation, but it does not show

how cGAS responds selectively to DNA and how it relates to

other nucleic acid receptors.

RESULTS AND DISCUSSION

To investigate the mechanism and evolution of cytosolic DNA

recognition, we determined the 2.5 Å crystal structure of human

cGAS. Analysis of purified human cGAS by partial proteolytic

digestion revealed a protease-sensitive �150-amino-acid-long

N terminus attached to a protease-resistant fragment containing

all regions previously determined to be required for cytosolic

DNA detection (Figure S1) (Sun et al., 2013). A fluorescence

scan of crystallized cGAS (amino acids 157–522) detected

zinc, and a single bound zinc ion provided anomalous X-ray

diffraction data sufficient for initial phase determination

(Table S1 and Figure S2). Human cGAS adopts the overall fold

of other template-independent nucleotidyltransferase (NTase)

enzymes, including transfer RNA (tRNA) NTases (CCA-adding

enzymes) and the RNA sensor 20-50 oligo-adenylate synthase

(OAS) (Donovan et al., 2013; Hartmann et al., 2003; Xiong and

Steitz, 2004). Appended to the NTase core scaffold is an unantic-

ipated zinc-ribbon domain resulting from a unique sequence

insertion conserved in the C-terminal domain (C domain) of all

vertebrate cGAS enzymes (Figures 1A, 1B, and S3).

The structure of cGAS reveals an evolutionary link with the

human double-stranded RNA (dsRNA) sensor OAS. Upon recog-

nition of cytosolic dsRNA, OAS produces the secondmessenger

20-50 oligo-adenylate (Hovanessian et al., 1977; Kerr and Brown,

1978), which triggers innate immunity by activating RNase L and

translation arrest (Baglioni et al., 1978; Hovanessian et al., 1979).

In line with their roles as cytoplasmic sensors that signal the

presence of foreign RNA and DNA through the production of

second-messenger nucleic acids, OAS and cGAS contain an

NTase core domain that is structurally conserved (Figure 1C).

In contrast to the catalytic domain, the more divergent C domain

is rotated in cGASwith respect to its orientation in theOAS struc-

ture, consistent with altered geometry enabling cGAS to accom-

modate dsDNA.

Adjacent to the conserved enzymatic scaffold of cGAS and

OAS is a positively charged cleft at the interface between the

https://core.ac.uk/display/81162246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jmberger@berkeley.edu
mailto:doudna@berkeley.edu
http://dx.doi.org/10.1016/j.celrep.2013.05.008
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2013.05.008&domain=pdf


A

NTase 
Core

C Domain

Zinc-Ribbon Insertion

N-terminal 
Extension

C Domain

NTase Core

N

C

cGAS
OAS

C

B

Human 
cGAS

H (x5) CC (x6) C

D

522160 330

cGAS

Zinc-Ribbon

Figure 1. Structure of Human cGAS

(A) Cartoon schematic of the human cGAS primary sequence.

(B) Overall structure of human cGAS, with the N-terminal helical extension, NTase core scaffold, and C-terminal domain (C domain) shown in blue. A unique zinc-

ribbon insertion is shown in magenta, and the zinc ion is shown in yellow.

(C) Structural overlay of cytosolic nucleic acid sensors, human cGAS (blue), and human OAS (pink).

(D) Electrostatic surface potential of cGAS (left); a conserved, positively charged nucleic-acid-binding cleft equivalent to the OAS dsRNA-binding site, as

observed in the structure of an OAS-dsRNA complex (right; PDB code 4IG8).

See also Figures S2 and S3.
N-terminal extension and the C domain alpha-helical lobe (Fig-

ures 1C and 1D). When compared to the crystal structure of

dsRNA-bound OAS (Donovan et al., 2013), the location of the

positively charged cleft in cGAS suggests that OAS and cGAS

most likely use a similar binding surface to engage double-

stranded nucleic acid ligands (Figure 1D). Insertion of the H(X5)

CC(X6)C zinc-ribbon binding motif between residues 389 and

405 induces structural rearrangement of the cGAS C domain,

relative to OAS. The zinc-coordination site buttresses a charged

loop that alters the geometry of the positive binding cleft, consis-

tent with the differing nucleic-acid-binding specificities of cGAS

and OAS enzymes, as discussed below.

Previous studies, which relied on detection of cGAMPbymass

spectrometry or indirect immune-stimulation assays requiring

cellular extracts (Sun et al., 2013), did not analyze cGAS product

species and activating conditions directly. Using purified com-

ponents, we reconstituted DNA-dependent cyclic dinucleotide

production by cGAS and analyzed the products using thin layer

chromatography. Minimal cGAS activity requires GTP, ATP, and

an activating dsDNA ligand (Figure 2A). cGAS dinucleotide syn-

thesis activity is abolished by E225A and D227Amutations to the

active site (Figure 2A, ‘‘Mut’’), confirming the specificity of our

in vitro reconstitution system. Surprisingly, the cGAS GMP–

AMP dinucleotide product migrates differently from chemically

synthesized 30-50 linked cGAMP (Figure 2B and Figure S4A).

Concurrent experiments revealed that the cGAS product is a
C

hybrid cyclic nucleotide containing a noncanonical 20-50 glyco-
sidic linkage (Diner et al., 2013).

We observed robust cGAS catalytic activity only in the pres-

ence of dsDNA (Figure 2C). While single-stranded DNA (ssDNA)

substrates weakly stimulate catalysis, we detected no dinucleo-

tide synthesis in the presence of ssRNA or dsRNA ligands or in

the absence of nucleic acids (Figure 2C). Strict DNA-stimulated

activity was not observed for murine cGAS (Sun et al., 2013),

suggesting that the human variant has evolved more stringent

ligand-activation requirements. The construct used for structural

studies, lacking the poorly conserved �150-amino-acid-long N

terminus, retains enzymatic activity and DNA selectivity, indi-

cating that all domains required for dsDNA detection and im-

mune signaling are present in our crystal structure (Figure S4B).

Fluorescence anisotropy experiments confirmed that cGAS spe-

cifically engages dsDNA (Kd �87.6 nM), whereas Mab21L2, an

NTase lacking the zinc-ribbon domain insertion, cannot interact

as robustly with DNA substrates (Figure 2D). cGAS had a

dramatically reduced affinity for ssDNA (Kd �1.5 mM), consistent

with the limited ability of single-stranded nucleic acids to stimu-

late enzymatic activity (Figure 2D). The affinity of cGAS for

dsDNA decreases for dsDNA ligands shorter than two helical

turns (Figure S4C). This finding is consistent with previous results

demonstrating that at least 20–30 base pairs (bp) of dsDNA are

required for efficient stimulation of innate immunity (Ablasser

et al., 2009; Karayel et al., 2009; Stetson and Medzhitov, 2006).
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Figure 2. In Vitro Reconstitution of cGAS Dinucleotide Signaling

(A and B) Thin-layer chromatography analysis of cGAS cyclic dinucleotide synthesis. Purified full-length cGAS was incubated with substrate nucleotides and

interferon stimulatory DNA (ISD) as indicated. Prior to analysis, reactions were terminated by treatment with alkaline phosphatase to remove free nucleotide

triphosphate. An E225A/D227A mutation to the cGAS active site (Mut) ablates cyclic dinucleotide production. Dotted radioactive spots corresponding to UV-

shadowed AMP and 30-50 linked cGAMP markers demonstrate that the product of cGAS activity is a noncanonical dinucleotide product.

(C) cGAS activity is strictly dependent on dsDNA activation.

(D) Fluorescence anisotropy analysis of cGAS binding to dsDNA. Error bars represent the SD from the mean of at least three independent experiments.

See also Figure S4.
The zinc-ribbon structural domain is conserved among verte-

brate cGASmembers, but it is not found in other OAS and related

NTase family members (Figure 3A). Zinc coordination in cGAS
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(A) Sequence alignment of human and murine cGAS and OAS cytosolic sensors.

indicated.

(B) Structural details of the zinc-coordination site. Highly conserved amino acids

(C) Reconstitution of STING-dependent cGAS signaling in cells. Luciferase produc
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occurs by an atypical H(X5)CC(X6)C motif that most closely re-

sembles HCCC-type zinc ribbons found in TAZ domains (Laity

et al., 2001). In the human cGAS structure, the first pair of
409

219

N K E E K C C
S S G A K C C

T K L K S L I R L V K H W Y Q N C K

R K D C L K L M K Y L L E Q L K
R K E C L K L M K Y L L E Q L K

T K L K S L I R L V K H W Y Q N C K

Zn

ertion

421

220- - - - - - -
- - - - - - -

- -
- -

D

(R
el

at
iv

e 
to

 W
T)

1.0

0.5

0
-

1.5

WT
10 150

C396A
10 150

H390A
10 150

C405A
10 150

C397A
10 150

C404A
10 150cGAS (ng):

IF
N

-β
 lu

ci
fe

ra
se

 

- +
cGAS

E225A/
D227A

ng

The unique cGAS zinc-ribbon insertion domain and coordinating residues are

are labeled.

tion under control of the interferon-b (IFN-b) promoter demonstrates that DNA-

G; cGAS E225A/D227A contains two point mutations in the enzymatic active

oordination motif (H390A, C396A, C397A, C404A) abolish cGAS activity when

0A retains weakened signaling potential (150 ng).

ndent experiments.



K173

K407

K414

K393

K384

Ori

cGAS 
Product

pi

Enzyme: E
22

5A
 / 

D
22

7A

W
T

C
39

6A

K
39

4A

K
39

4E

K
40

7A

K
40

7E

A

B

C

D

T A A
0

5

0

5

ds
D

N
A 

B
in

di
ng

(R
el

at
iv

e 
to

 W
T)

1.5

0.5

0

E22
5A

/D
22

7A

1.0

W
T

C39
6A

IF
N

-β
lu

ci
fe

ra
se

 
(R

el
at

iv
e 

to
 W

T)

1.0

0.5

0
WT

1.5

A
K171

A E
K173

A E
K198

A E
K384

A E
K394

A E
K403

A E
K407

A E
K414

A
R176

*
*

* *

*

* * *
*

Figure 4. cGAS Zinc Ribbon and Positive

DNA-Binding Cleft Are Essential for DNA

Recognition and Catalytic Activity

(A) Reconstitution of STING-dependent cGAS

signaling in cells as described in Figure 3. Single

alanine and glutamine mutations to conserved

positively charged amino acids within the DNA-

binding cleft demonstrate that K173, K384, K407,

and K414 are required for efficient cytosolic DNA

detection.

(B) In vitro reconstitution of cGAS dinucleotide

synthesis using purified components as described

in Figure 2 (*p < 0.001). Mutations to the active site

(E225A/D227A), zinc-coordination motif (C396A)

and conserved DNA-binding cleft (K394A, K394E,

K407A, K407E) all abolish DNA-stimulated enzy-

matic activity.

(C) The ability of mutant cGAS enzymes to engage

a 45 bp double-stranded ISD substrate was

measured by fluorescence polarization with the

use of 2 mM of purified protein as described in

Figure 2D (*p < 0.001). Mutations to the active site

(E225A/D227A) do not disrupt DNA interactions,

whereas disruption of the zinc-coordination motif

drastically inhibits the ability of cGAS to interact

with dsDNA.

(D) Structural details of the DNA-binding cleft

formed by the N-terminal extension and zinc-

ribbon domain. Conserved positively charged

amino acids identified as critical for DNA-stimu-

lated activity are labeled and shown in magenta.

In (A) and (C), error bars represent the SD from the

mean of at least three independent experiments.

See also Figure S1C.
adjacent cysteine residues (C396 and C397) each coordinate the

zinc ion. In the second cysteine pair, C404 completes the coor-

dination, and neighboring C405 flips out to form a paired

cysteine interaction with downstream C463 from alpha helix 11

(Figures 3A and 3B).

To examine the role of zinc ion coordination and to extend our

biochemical studies to cellular interferon (IFN) signaling in the

context of the endoplasmic reticulum adaptor protein STING

(Burdette and Vance, 2013; Ishikawa and Barber, 2008; Sun

et al., 2009; Zhonget al., 2008),we tested the functionof site-spe-

cific cGAS proteinmutations in a cell-based assay. Using an IFN-

b-stimulated promoter cassette upstream of firefly luciferase, we

first confirmed that intracellular cGAS signaling requires the

presence of STING to confer second-messenger detection (Fig-

ure 3C). As expected, a double mutation to the cGAS active site

(E225A/D227A) that prevents cyclic dinucleotide synthesis abol-

ished IFN signaling (Figure 3C). Mutations at each position in the

zinc-coordination site near the DNA-binding cleft also ablated or

severely impaired detectable IFN-response activation (Fig-

ure 3D), confirming that this motif is essential for innate immune

signaling; however, a C405A mutation did not inhibit IFN sig-

naling, indicating that the paired cysteine interaction with alpha

helix 11 is not critical for cytosolic DNA recognition (Figure 3D).

We also examined conserved positively charged positions

along the potential DNA-binding cleft (Figure S3). Single alanine
C

or glutamate substitutions along the N-terminal alpha helical

extension and within the conserved zinc-ribbon loop dramati-

cally reduced the ability of cGAS to detect cytosolic DNA,

demonstrating the importance of conserved residues in this re-

gion of the protein (Figure 4A). Biochemical analysis with purified

human cGAS confirmed that mutations to the active site,

zinc-coordination motif, and conserved charged cleft ablate

DNA-stimulated dinucleotide synthesis activity (Figure 4B).

Whereas active-site mutants retained affinity for dsDNA, a

C396A mutation disrupting the zinc-coordination motif pre-

vented dsDNA interactions (Figure 4C). These data show that

dsDNA engagement is critical for activation of the enzymatic po-

tential of cGAS and that conserved, positively charged amino

acids along with the unique zinc-ribbon insertion are essential

for DNA recognition (Figure 4D). We note that the presence of

the unstructured N-terminal tail greatly enhanced the stability

of cGAS protein during purification (data not shown), hinting

that the N terminusmay play a further role in stabilization or auto-

inhibition, as observed with other innate immune cellular recep-

tors (Sun et al., 2013).

Concurrent with our structural analysis of the human cGAS

enzyme, Patel and colleagues determined the structure of

murine cGAS bound to dsDNA and product dinucleotide (Gao

et al., 2013). The overall sequence identity of human and murine

cGAS is �55% (Figure S3), and structures of both enzymes now
ell Reports 3, 1362–1368, May 30, 2013 ª2013 The Authors 1365



reveal that rapid mammalian evolution has occurred in patches

along the surface of the enzyme, indicative of positive selection

and host–pathogen conflict (Daugherty and Malik, 2012). The

critical role of cGAS in innate immunity and cytosolic DNA detec-

tion (Sun et al., 2013) suggests that the mechanisms by which

intracellular dsDNA pathogens subvert cGAS-dependent DNA

recognition may aid in detecting the regulation of cGAS enzy-

matic activity and cytosolic signaling.

The recent discovery of cGAS as a cytosolic DNA sensor is an

important advance in the field of innate immunity (Sun et al.,

2013), and the structure described here presents essential

molecular details of cGAS biochemistry. The structure of human

cGAS, revealing the similar folds of cGAS and OAS, implicates a

common evolutionary ancestor as the origin of a family of struc-

turally related but functionally distinct cytosolic nucleic acid sen-

sors. Although multiple duplications of the OAS genes had been

considered to be an outlier grouping of restriction factors, it is

now clear that the OAS/cGAS NTase scaffold has evolved as

part of a second-messenger system to rapidly generate and

amplify di- and oligonucleotide signals upon pathogen recogni-

tion. cGAS andOAS constitute a family of catalytic OAS-like sec-

ond-messenger receptors (OLRs), which together with Toll-like

receptors (TLRs) and RIG-I-like receptors (RLRs) form the front

line of immune defense against foreign pathogens.

EXPERIMENTAL PROCEDURES

Protein Purification

Full-length human cGAS and cGAS truncations were subjected to PCR ampli-

fication from a previously described IFN-stimulated gene cDNA library (kind

gift from J. Schoggins and C. Rice, Rockefeller University; Schoggins et al.,

2011) and cloned into a custom pET vector optimized for E. coli expression

of an N-terminal 63His-MBP-TEV fusion protein (Kranzusch and Whelan,

2011). Proteins were overexpressed at 16�C in BL21-RIL DE3 E. coli (along

with pRARE2 human tRNA plasmid) (Agilent) grown in 23YT media for 20 hr

after induction with 0.5 M IPTG. Recombinant protein was purified by succes-

sive Ni-NTA affinity, Heparin ion exchange, and Superdex 75 chromatography

steps. Cells were lysed by sonication in 20 mMHEPES (pH 7.5), 400mMNaCl,

10% glycerol, 30 mM imidazole, 1 mM PMSF (supplemented with Complete

Protease Inhibitor, Roche), and 1 mM TCEP. Clarified lysate was bound to

Ni-NTA agarose (QIAGEN), and resin was washed with lysis buffer supple-

mented to 1 M NaCl prior to the elution of bound protein using lysis buffer sup-

plemented to 300 mM imidazole. MBP-tagged proteins were concentrated to

�30–40 mg ml�1 and digested with Tobacco Etch Virus protease for�16 hr at

4�C. cGASwas separated fromMBP on a 5ml Heparin HiTrap column (GE Life

Sciences) with the use of a linear gradient of 250–1000 mM NaCl. Proteins

were further purified by size-exclusion chromatography on a Superdex 75

16/60 column in 20 mMHEPES (pH 7.5), 150 mMKCl, and 1 mM TCEP. Eluted

protein was concentrated to�10–20mgml�1 and used immediately in crystal-

lography experiments or flash-frozen in the presence of 10% glycerol in liquid

nitrogen and stored at �80�C for biochemical experiments.

Mutant cGAS variants were purified as described for the wild-type human

enzyme, except instead of TEV digestion, MBP-tagged proteins were dialyzed

overnight at 4�C against buffer containing 20 mM HEPES (pH 7.5), 150 mM

KCl, 10% glycerol, and 1 mM TCEP. Wild-type and mutant MBP-tagged

cGAS enzymes were concentrated to �10–12 mg ml�1, flash-frozen in liquid

nitrogen, and stored at �80�C for biochemical experiments.

Crystallization and Structure Determination

Full-length cGAS protein was digested with increasing amounts of trypsin at

25�C for 30 min to allow the identification of stable constructs for crystallog-

raphy trials. Trypsin reactions were terminated by the addition of 1 mM

PMSF for SDS-PAGE analysis or an equal volume of 6 M guanidine hydrochlo-
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ride for mass spectrometry. A human cGAS 157–522 amino acid construct

was designed on the basis of mass spectrometry results and phylogenetic

alignment, and the cGAS truncation was purified as described above. Initial

crystals of cGAS amino acids 157–522 were obtained at 18�C in 1:1 hanging

drops set with 10 mg ml�1 protein and 50 mM KCl, 10 mM MgCl2, and 15%

PEG-6000well solution after 36 hr of growth, then optimized in 15-well hanging

drop trays (QIAGEN) with the use of 1.5:0.5 drops with 8 mg ml�1 protein and

44 mMKCl, 10 mMMgCl2, 25 mM Tris (pH 7.0), 15 mM Tris (pH 9.0), and 6.9%

PEG-6000. Crystals were harvested with nylon loops and cryoprotected by in-

cubation in well solution supplemented to 25% ethylene glycol for 30–60 s

prior to being flash-frozen in liquid nitrogen. Initial native X-ray data were

measured under cryogenic conditions at the Lawrence Berkeley National Lab-

oratory Advanced Light Source (Beamline 8.3.1), and zinc anomalous data

were measured at the Stanford Synchrotron Radiation Lightsource (Beamlines

11.1 and 12.2). Selenium-substituted cGAS amino acids 157–522 were puri-

fied under identical conditions, and crystals of this sample grew in 44 mM

KCl, 10 mM MgCl2, 25 mM Tris (pH 7.0), 15 mM Tris (pH 9.0), and 9.7%

PEG-6000. These crystals were optimized through microseeding and streak

seeding of crushed native crystals with the use of a Kozak whisker. X-ray

diffraction data from selenium-containing crystals were measured at the

Stanford Synchrotron Radiation Lightsource (Beamline 12.2).

X-ray diffraction data were processed with XDS and SCALA (Kabsch, 2010).

Indexed crystals belonged to the orthorhombic spacegroup P21212 with one

copy of cGAS in the asymmetric unit. The zinc site was identified with HySS

within PHENIX (Adams et al., 2010), and SOLVE/RESOLVE was used in calcu-

lating an initial map (Terwilliger, 1999). After initial model building in Coot (Ems-

ley and Cowtan, 2004), iterative rounds of model building and refinement were

conducted with PHENIX until all interpretable electron density was modeled.

With the use of anomalous scattering data from selenium atoms, the five sele-

nium sites were located by molecular-replacement phasing and used for veri-

fication of the register and position of the cGAS model.

In Vitro Reconstitution of cGAS Cyclic Dinucleotide Synthesis

DNA-dependent human cGAS cyclic dinucleotide synthesis was reconstituted

with the use of recombinant full-length cGAS and a 45 bp double-stranded

interferon stimulatory DNA (ISD) (Integrated DNA Technologies) (Stetson and

Medzhitov, 2006). cGAS (final concentration �2 mM) or equal volumes of

gel-filtration buffer were incubated with double-stranded ISD (final concentra-

tion �2 mM) in the presence of 25 mM ATP and GTP and [a-32P] ATP or GTP

(�10 mCi) as indicated. All reactions included 50 mM KCl, 5 mM Mg(OAc)2,

50 mM Tris (pH 7.0), 1 mM TCEP, and 0.1 mg ml�1 BSA (NEB), and reactions

were incubated at 37�C for 1.5 hr. Reactions were terminated with the addition

of 5 U of alkaline phosphatase (New England Biolabs) and incubation at 37�C
for 30 min. One microliter of each reaction was spotted onto a PEI-Cellulose F

thin-layer chromatography plate (EMD Biosciences), and reaction products

were separated with the use of 1.5 M KH2PO4 (pH 3.8) as solvent. Plates

were dried at 80�C for 30 min, and radiolabeled products were detected

with a phosphor screen and the Storm phosphorimager (GE Life Sciences).

Where indicated, controls consisting of chemically synthesized AMP (Jena

Biosciences) or 30-50 linked cGAMP (a kind gift from S. Wilson and M. Ham-

mond, University of California, Berkeley) were imaged with a �254 nm light

for UV shadowing and marked by the spotting of a dot of radiolabeled ATP

prior to phosphor-screen exposure. Alternatively, reactions were carried out

in the presence of 45 bp of single-stranded ISD (sequence: 50-TACAG
ATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA-30) (Stetson and

Medzhitov, 2006) or ssRNA and dsRNA formed by the annealing of two chem-

ically synthesized RNA oligomers (sequence: 50-CGGUAGAGCUCACAU

GAUGG-30 ) (Integrated DNA Technologies).

Fluorescence anisotropy DNA-interaction studies were carried out with the

use of 50 fluorescein-derived DNA oligomers with the ISD DNA sequence and

indicated sizes (Integrated DNA Technologies). With the use of the same buffer

conditions used during cyclic dinucleotide synthesis reactions, cGAS was

incubated with DNA for 30 min at 25�C prior to fluorescence polarization mea-

surements obtained with a fluorimeter (Perkin Elmer). Polarization data were

converted to anisotropy, and data from independent experiments were com-

bined and analyzed with GraphPad Prism software for the determination of

binding constants.



Cell-Based IFN-b Luciferase Assay

293T cells were plated into tissue-culture-treated 96-well plates for transfec-

tion. Cells were transfected as indicated (Figures 3C, 3D, 4A, and 4C), along

with IFN-b firefly luciferase (a kind gift from J.U. Jung, University of Southern

California, Los Angeles) and TK-Renilla luciferase reporter plasmids. At 24 hr

after transfection, cells were lysed in passive lysis buffer (Promega) for

15 min. Luminescence was measured on a Veritas Microplate Luminometer

(Turner Biosystems) with the use of Dual-Luciferase Reporter Assay System

according to the manufacturer’s instructions (Promega). The relative IFN-b

expression was calculated by normalizing firefly luciferase to Renilla luciferase

activity. Mutations in cGAS were generated by site-directed mutagenesis

through the use of the QuikChange methodology (Stratagene). As indicated

(Figures 4A and 4C), statistical significance was calculated with an unpaired,

two-tailed t test.
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