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SUMMARY
Antiangiogenic tumor therapy has failed in the adjuvant setting. Here we show that inhibition of the Tie2
ligand angiopoietin-2 (Ang2) effectively blocksmetastatic growth in preclinical mousemodels of postsurgical
adjuvant therapy. Ang2 antibody treatment combines well with low-dosemetronomic chemotherapy (LDMC)
in settings in which maximum-dose chemotherapy does not prove effective. Mechanistically, Ang2 blockade
could be linked to quenching the inflammatory and angiogenic response of endothelial cells (ECs) in the
metastatic niche. Reduced EC adhesion molecule and chemokine expression inhibits the recruitment of
tumor-promoting CCR2+Tie2� metastasis-associated macrophages. Moreover, LDMC contributes to thera-
peutic efficacy by inhibiting the recruitment of protumorigenic bone marrow-derived myeloid cells. Collec-
tively, these data provide a rationale for mechanism-guided adjuvant tumor therapies.
INTRODUCTION

Surgery is the standard care of treatment for resectable primary

tumors. However, many cancer patients experience fatal meta-

static growth despite removal of the primary tumor. For instance,

30% of node-negative and 70% of node-positive breast cancer

patients succumb to distant metastases despite surgical inter-

vention (Demicheli et al., 2008), confirming the well-established

fact that metastatic seeding has already occurred at the time

of diagnosis and subsequent surgery. Hence, better and prefer-

ably mechanism-based clinical regimens of postsurgical adju-
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vant therapy need to be developed to follow surgery, even

when nometastases are evident, to lower the risk that the cancer

will come back.

Antiangiogenic tumor therapies, targeting the VEGF pathway,

have received widespread clinical application for the treat-

ment of advanced primary tumors. Their efficacy is still limited,

and antiangiogenic primary tumor therapy has in preclinical

models even been proposed to promote metastasis (Ebos

et al., 2009; Pàez-Ribes et al., 2009). In the adjuvant setting,

anti-VEGF therapy did not prove clinically effective, as shown

in colorectal cancer (Allegra et al., 2011; de Gramont et al.,
tumor therapy following surgical removal of primary tumors,
that would be excluded frommore aggressive forms of adju-
ntified the combination of an anti-Ang2 antibody and LDMC
h setting. Moreover, the study provides mechanistic insights
vironment as an important mediator of tumor progression,
body and LDMC. These data warrant further preclinical vali-
to clinical application.
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2012) as well as in triple-negative breast cancer (Cameron

et al., 2013).

The Tie2 ligand angiopoietin-2 (Ang2) has recently emerged

as a promising target for second-generation antiangiogenic

drug development that can be combined with established

anti-VEGF/VEGFR therapies (Gerald et al., 2013; Hashizume

et al., 2010; Koh et al., 2010). Ang2 is produced by activated

endothelial cells (ECs) to facilitate vascular responses to

angiogenic and other endotheliotropic cytokines. In fact, Ang2

upregulation may be among the first cellular responses of

angiogenic activation to contribute toward the vascular priming

associated with the induction of angiogenesis (Holash et al.,

1999; Zagzag et al., 1999).

On the basis of its endothelial activation-associated tran-

scriptional regulation, we hypothesized that Ang2 may be an

attractive target for postsurgical adjuvant therapy. Conceptually,

Ang2-targeting therapies should quench the vascular response

and thereby prevent the growth of seeded metastases. To

probe this hypothesis, we used two different models of sponta-

neous metastasis (including an anti-VEGF-refractory model)

in which adjuvant therapy was initiated following surgical

removal of the primary tumor. Comparatively, we also studied

the efficacy of anti-VEGF antibody (VEGF Ab), maximum-toler-

ated-dose chemotherapy (MTDC), and low-dose metronomic

chemotherapy (LDMC) in the same models. The results of these

preclinical therapy experiments guided experiments aimed at

unraveling the underlying mechanisms to pave the way for

mechanism-guided postsurgical adjuvant combination tumor

therapies.

RESULTS

Anti-Ang2 Therapy Limits the Growth of Preseeded
Micrometastases
To study the effect of Ang2-targeting in the adjuvant setting, we

used an orthotopic breast cancer model, which closely mimics

lung and bone metastasis as frequently observed during human

breast cancer progression (Figure 1A). Ang2 Ab therapy reduced

the incidence of bone metastases as well as the growth of lung

metastases in the 4T1 breast cancer mouse model (Figures

1B–1G). Exclusion of residual primary tumor growth after surgery

(before randomization to treatment groups) (Figure S1A available

online) and the decrease in metastatic burden upon therapy was

traced by bioluminescence imaging (Figure 1B). Bone metasta-

ses were more frequent in the control group (seven of ten versus

two of ten) (Figure 1C). Representative images of hematoxylin

and eosin (H&E) sections with osteolytic lesions displayed the

extent of bone damage inflicted by metastasis (Figure 1D). The

lesions caused a corresponding loss of bone density, which

was further confirmed by computed tomographic (CT) imaging

(Figure 1E). Bioluminescence imaging also revealed reduced

lung and lymph node metastasis upon Ang2 blockade (Figures

1B and 1C). H&E sections of lungs identified a significantly

decreased incidence of macrometastases (Figures 1F and 1G)

andmicrometastases (Figures S1B and S1C) in Ang2 Ab-treated

mice. Ang2 blockade resulted in a significant decrease of

vessel density and increase of intratumor microvessel pericyte

coverage compared to the immunoglobulin G (IgG)-treated con-

trol group (Figures 1H–1J).
Ca
Metronomic Chemotherapy Increases the
Antimetastatic Effect of Anti-Ang2 Ab and Promotes
Overall Survival
Although Ang2 blockade reduced metastatic growth, residual

metastasis was detected upon bioluminescent imaging. This

led us to hypothesize that an additional therapeutic regimen

may improve the therapeutic benefit conferred by Ang2

blockade. To test this hypothesis, we combined low-dose pacli-

taxel metronomic chemotherapy [LDMC(PTX)] with Ang2 Ab

therapy in the postsurgical adjuvant setting of the 4T1 orthotopic

breast cancer model. The combinatorial therapy was signifi-

cantly more effective than either LDMC (PTX) or MTDC (PTX)

given as monotherapy (Figures 2A and 2B). Interestingly, Ang2

targeting alone yielded a significantly better therapeutic res-

ponse than MTDC (PTX).

Next, we investigated whether the therapeutic benefit

conferred by combinations of Ang2 Ab and LDMC (PTX) would

also translate to improved overall survival. Combinations of

Ang2 Ab and LDMC (PTX) significantly increased overall survival

compared with Ang2 Ab alone or control IgG (mean survival of

LDMC (PTX) plus Ang2 Ab versus Ang2 Ab alone: 33.5 versus

27 days, p < 0.04; mean survival of LDMC (PTX) plus Ang2 Ab

versus IgG: 33.5 versus 25 days, p < 0.0001; Figure 2C). In

contrast to this combination, MTDC (PTX) alone failed to provide

any survival benefit (Figure 2C).

LDMC and Anti-Ang2 Ab Combination Therapy Has
Fewer Adverse Effects Than High-Dose Chemotherapy
MTDC (PTX) is clinically frequently used as postsurgical adjuvant

chemotherapy. We thus analyzed the adverse effects of the

different therapeutic regimens used in this study. Histological

analysis revealed severe bone marrow suppression in the

MTDC (PTX) group (Figure 2D). Reproductive toxicity is a major

adverse effect often observed in female breast cancer patients

undergoing chemotherapy subsequent to mastectomy. MTDC

(PTX) resulted in significantly fewer healthy follicles compared

with control or other therapeutic regimens (Figure 2E). Lastly, a

significant reduction in body weight was observed in the

MTDC (PTX) group, but not in the other treatment groups,

including the combination of LDMC (PTX) and Ang2 Ab

(Figure 2F).

Anti-Ang2 Ab Therapy Inhibits Metastatic Growth in an
Anti-VEGF-Refractory Tumor Model
Following the demonstration of the effect of Ang2 Ab on meta-

static growth in the 4T1 orthotopic breast cancer model, we

next conducted experiments aimed at examining the effect of

Ang2 blockade on the growth of micrometastases in the Lewis

lung carcinoma (LLC) model (Figure 3A). Subcutaneously

growing LLCs, previously shown to be refractory to anti-VEGF

therapy (Shojaei et al., 2007a), were removed at approximately

0.30 g (day 14 following inoculation). No visible metastases

were macroscopically detectable at this stage. Intriguingly,

primary tumor removal led to the rapid downregulation of circu-

lating VEGF levels (Figure S2).

Postsurgical adjuvant Ang2 Ab therapy inhibited the growth

of LLC metastases in the lungs. Macroscopic metastases were

detected in 80% of control IgG-treated mice, whereas only

20% of Ang2 Ab-treated mice had macroscopic metastases
ncer Cell 26, 880–895, December 8, 2014 ª2014 Elsevier Inc. 881
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Figure 1. Adjuvant Ang2 Blockade Inhibits Metastatic Growth of Orthotopic 4T1 Mammary Tumors

(A) Schematic representation of the experimental protocol. 4T1 tumors grown orthotopically in the third right mammary fat pad were surgically removed after

10 days (average tumor size 250 mm3), following which therapy was initiated with the Ang2 Ab or control IgG. Mice were sacrificed after 3 weeks of treatment.

(B) Bioluminescence imaging 3 weeks after primary tumor removal.

(C) Table enumerating frequency of metastatic lesions in various organs (from two experiments).

(D) Representative images showing H&E-stained bone sections. Black arrows indicate osteolytic lesions and associated periosteal discontinuity.

(legend continued on next page)
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(Figure 3B). H&E staining of lung sections confirmed the signifi-

cant reduction of metastatic growth in the Ang2 Ab-treated

group compared with control IgG-treated mice (Figures 3C

and 3D).

Metronomic Chemotherapy Increases the
Antimetastatic Efficacy of Ang2 Targeting in an
Anti-VEGF-Refractory Model
As Ang2 inhibition blocked growth of micrometastases in the

anti-VEGF-refractory LLCmodel, we next compared the efficacy

of the Ang2 Ab with a neutralizing VEGF Ab in the postsurgical

adjuvant setting. Moreover, as resistance to VEGF/VEGFR2 tar-

geting has been attributed to the recruitment of Cd11b+Gr1+ or

Cd11b+Gr1+Ly6Chi cells in this tumor model (Priceman et al.,

2010; Shojaei et al., 2007a), we evaluated the efficacy of pacli-

taxel in inhibiting the recruitment of these cells to sites of metas-

tasis. To that end, we compared paclitaxel with another standard

chemotherapy, gemcitabine, because the latter has been shown

to interfere with recruitment of these cells at MTD in primary

tumor models (Suzuki et al., 2005). Gemcitabine even at metro-

nomic dosing inhibited recruitment of the resistance-conferring

myeloid cells more effectively than paclitaxel (Figures S3A and

S3B) in the LLC model. Thus, along with Ang2 Ab and VEGF

Ab, we evaluated their combination with metronomic gemcita-

bine [LDMC(GEM)] and MTD gemcitabine [MTDC(GEM)] for

inhibition of postsurgical metastases.

Postsurgical adjuvant Ang2 Ab therapy inhibited the growth

of LLC metastases in the lungs, in contrast to VEGF Ab therapy,

which showed extensive metastatic growth (Figures 4A

and 4B). LDMC (GEM) inhibited metastatic growth more effec-

tively than MTDC (GEM). H&E staining of tissues sections

confirmed the significant reduction of metastatic growth by

the combination of Ang2 Ab with VEGF Ab and metronomic

chemotherapy compared with the other treatment groups (Fig-

ures 4A and 4B).

Ang2 Neutralization Inhibits Angiogenesis in Growing
Metastatic Nodules
Resistance to anti-VEGF agents has been associated with the

formation of a nonresponsive refractory vasculature in response

to cytokines from resistance-conferring myeloid cells (Helfrich

et al., 2010; Shojaei et al., 2009). Analysis of the vasculature

in metastatic nodules revealed a significantly reduced vessel

area upon Ang2 Ab treatment compared with IgG- or VEGF

Ab-treated animals (Figures 4C and 4D). IgG-treated mice had

primarily medium-size vessels (100–1,600 mm2) with a pericyte

coverage of 22% (Figures 4E and 4F). The remaining vessels in

metastases of Ang2 Ab-treated mice were smaller (<100 mm2)
(E) Representative CT images of mouse skeletons (left: overview of simultaneous

high magnifications of long bone samples from control IgG-treated mice [a0,a00] a
(F) Representative low-magnification H&E-stained lung sections from both treatm

(G) Quantification of frequency of metastases in lungs expressed as number of m

three independent experiments; ***p % 0.001).

(H) Representative immunohistochemical images of CD31- and aSMA-stained lu

(I and J) Quantification of (I) microvessel density (expressed as vessel number

percentage of aSMA-positive CD31microvessels comparedwith the total number

mice.

Values are mean ± SD; n = 5 mice; **p% 0.01, ***p% 0.001. The experiment was

experiments. See also Figure S1.

Ca
but more stable, as indicated by increased coverage with peri-

cytes (Figures 4C–4F). The reduced vascularization of Ang2

Ab-treated mice correlated with increased tissue hypoxia

as indicated by increased Hif1a staining compared with IgG-

treated mice (Figures S3C and S3D). In contrast to Ang2 Ab

treatment, mice treated with VEGF Ab had predominantly large

vessels (>400 mm2) with poor pericyte coverage (Figures 4E

and 4F). Hif1a immunoreactivity was more intense in VEGF

Ab-treated lung metastases compared with IgG control (Figures

S3C and S3D).

Ang2 Controlled Endothelial CCL2 Induction Leads to
the Recruitment of CCR2+ Metastasis-Associated
Macrophages
In order to unravel the underlying mechanisms of the antimeta-

static effect of Ang2 Ab treatment in the postsurgical adjuvant

setting, we examined the stromal inflammatory infiltration of me-

tastases. Immunohistochemical staining of lung metastases re-

vealed more F4/80-positive macrophages in the IgG control

group than in the Ang2 Ab-treated animals (Figure 5A). Flow cy-

tometric analyses of lung metastases-derived cell suspensions

identified the inflammatory infiltrate as CCR2-positive and

Tie2-negative metastasis-associated macrophages (MAMs)

(CCR2+Tie2� MAMs) (Qian and Pollard, 2010). Both the total

number of macrophages and the fraction of CCR2+Tie2�

MAMs were significantly decreased in the Ang2 Ab-treated

group (Figures 5B, 5C, and S4A). The fraction of Tie2-positive

macrophages did not differ significantly in IgG- or Ang2 Ab-

treated animals (Figure S4B).

In order to validate the Ang2 dependency of the CCR2-posi-

tive macrophage recruitment, we performed a Matrigel plug

assay using postsurgical serum from IgG- or Ang2 Ab-treated

mice as stimulus. Corroborating the results of the flow cytomet-

ric analyses, immunofluorescence staining was consistent with

Ang2 dependency of the influx of CCR2-positive macrophages.

Furthermore, when the plug was spiked with the CCR2 ligand

CCL2 in addition to serum from Ang2 Ab-treated mice, signifi-

cantly more macrophages were recruited than with the serum

alone (Figure 5D). Next, we investigated the mechanism underly-

ing Ang2-dependent recruitment of MAMs to metastases. CCL2

is required for the recruitment of CCR2-positive MAMs. Ang2

stimulation of cultured human umbilical vein ECs (HUVECs)

led to upregulation of endothelial CCL2 expression, consistent

with the Ang2 dependency of CCR2+ macrophage recruitment

in vivo (Figure 5E). These findings were confirmed in the 4T1

tumor model revealing that Ang2 Ab treatment resulted in signif-

icantly reduced CCL2 levels in both the serum as well as lung

metastases compared with IgG control treatment (Figures 5F,
ly scanned samples from both treatment groups; right: comparative images of

nd Ang2 Ab-treated mice [b0,b00]). White arrows mark osteolytic lesions.

ent groups. Black arrows mark macrometastases.

acrometastatic lesions (>1 mm in diameter) per total lung section (n = 5 mice;

ng metastases to visualize blood vessels (CD31) and mural cells (aSMA).

per microscopic field of view [FOV]) and (J) vessel maturation (expressed as

of CD31microvessels) in lungmetastases of control IgG- and Ang2 Ab-treated

repeated three times. The figure shows representative images from one of the
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Figure 2. Comparative Analysis of Adjuvant Therapeutic Regimens in the Orthotopic 4T1 Breast Cancer Model

Therapeutic regimens: IgG Ctrl = control IgG; MTDC (PTX) = MTD paclitaxel chemotherapy; LDMC (PTX) = low-dose metronomic paclitaxel chemotherapy; Ang2

Ab = anti-Ang2 Ab treatment; LDMC (PTX) + Ang2 Ab = combination of the two treatments.

(A) Images from bioluminescence analysis 3 weeks after mastectomy to evaluate the efficacy of different therapeutic modalities.

(legend continued on next page)
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S4C, and S4D). The cytokine array also identified TREM-1 as

another prominently regulated molecule upon Ang2 blockade.

However, further analysis established it as nonendothelial and

of myeloid origin (Figures S4D and S4E).

Genetic Depletion of CCR2 or Neutralization of CCL2
Postsurgically Reduces Metastatic Growth
In order to validate the importance of Ang2-induced CCL2/

CCR2-dependent macrophage recruitment during metastatic

growth, two independent experimental approaches targeting

either the ligand CCL2 or the macrophage receptor CCR2

were applied. Upon CCL2 neutralization with a neutralizing

Ab in an adjuvant setting of 4T1 orthotopic breast cancer, lung

metastases were significantly decreased compared with IgG-

treated animals, as quantified by ex vivo bioluminescence

measurements (Figures 5G–5I). Furthermore, the CCR2 receptor

was conditionally deleted in myeloid cells in vivo, after surgical

removal of the primary tumor in the syngeneic LLC model by

treating Ccr2fl/fl::Mx1 Cre with Poly I:C (Figures 5J and S4F).

The postsurgical deletion of CCR2 led to a significant decrease

in lungmacrometastases compared with control mice (Figure 5K

and 5L). These results support a role of Ang2-CCL2-CCR2 axis

for metastatic growth.

To investigate the clinical relevance of the observed Ang2-

controlled CCL2-dependent metastatic growth in mice, we

evaluated the correlation of CCL2 and Ang2 expression level

in a breast cancer patient data set. The mRNA data scattered

strongly in the random clinical cohorts. Yet whereas Ang2

expression levels did not correlate with CCL2 expression in the

grade 1 patient samples (r = 0.082, p = 0.51), there was a signif-

icant correlation between Ang2 and CCL2 expression in grade 2

and 3 patient samples (r = 0.388, p = 0.0012).

Ang2 Controls Inflammatory Adhesion Molecule
Expression
Having demonstrated Ang2-dependent CCL2 upregulation

and recruitment of CCR2-positive MAMs, we next investigated

whether Ang2 also contributes to the formation of a prometa-

static microenvironment by positively regulating inflammatory

adhesion molecule expression favoring homing of MAMs to the

metastases. Quantitative RT-PCR analyses of lung lysates

24 hr after tail vein injection of LLC cells identified a decrease

of Icam-1 expression in Ang2 Ab-treated mice to 40% of IgG-

treated animals (Figure 6A). The downregulation of Icam-1

mRNA expression by Ang2 Ab was confirmed by western blot

analysis of lung metastases lysates from mice treated with

Ang2 Ab or control IgG (Figures 6B and 6C). Similarly, Vcam-1

expression was decreased in the postsurgical adjuvant LLC

model upon Ang2 Ab treatment (Figure S5A).
(B) Quantitative bioluminescent analysis of metastatic burden in the different treat

steradian).

(C) Kaplan-Meier survival curves of primary tumor resected 4T1 tumor-bearing m

log-rank test).

(D) Representative images of H&E-stained sections of bone marrow as readout o

(E) Evaluation of ovarian toxicity as indicated by mean numbers of healthy follicle

(F) Analysis of body weight loss over time as a measure of systemic well-being o

Values are mean ± SD unless otherwise indicated; n = 4 mice; *p % 0.05, **p % 0

except the survival analysis, which was done once; data from one representative

Ca
In order to analyze the functional relevance of decreased

adhesion molecule expression upon Ang2 Ab therapy, we

performed flow chamber assays with cultured ECs (HUVECs).

Pretreatment of HUVECs with Ang2 Ab resulted in significantly

reduced adhesion and increased rolling velocity of macrophages

over cultured HUVECs (Figures 6D and 6E; Movies S1 and S2).

In order to confirm that the changes in rolling velocity could

be attributed to different expression levels of Ang2-regulated

ICAM-1, we performed flow chamber experiments with ICAM-

1 Ab- or IgG-coated microspheres using HUVEC-seeded cham-

bers with or without Ang2 Ab pretreatment. The rolling velocity of

ICAM-1 Ab-coated microspheres in the HUVEC-seeded cham-

bers was significantly increased upon pretreatment with Ang2

Ab, consistent with an Ang2-dependent mechanism of ICAM-1

upregulation (Figures 6F and 6G; Movies S3 and S4). The identi-

fied Ang2-controlled ICAM-1 expression could be potentially

clinically relevant, because Ang2 and ICAM-1 expression levels

significantly correlated in grades 2 and 3 but not in grade 1 breast

cancer patient samples (Figure S5B).

Endothelial Activation by Ang2 Leads to
ICAM-1 Upregulation in a STAT3- and NF-kB-Dependent
Manner
Adhesion molecules are classically known to be downstream

targets of inflammatory signaling pathways. Angiogenic stimuli

induce activation of STAT3 pathway by regulating nuclear trans-

location of phospho-Tyr705-STAT3 (Yahata et al., 2003). We hy-

pothesized that Ang2may similarly induce such pathways in ECs

and thereby regulate expression of ICAM-1. Phosphorylation of

STAT3 leads to its nuclear translocation. Hence, we investigated

the localization of phospho-STAT3 in HUVECs by immunofluo-

rescence staining. Phospho-STAT3 was detected at low levels

in the cytoplasm but not in the nuclei of unstimulated HUVECs.

However, upon Ang2 stimulation, STAT3 was phosphorylated

and translocated to the nucleus (Figures 6H–6J). To assess the

functional relevance of STAT3 activation in the Ang2-mediated

upregulation of ICAM-1, we next exploited a cell-permeable

STAT3-specific inhibitory peptide (Turkson et al., 2001). Ang2-

mediated upregulation of ICAM-1 was inhibited in the presence

of the STAT3 inhibitory peptide, while the control peptide had

no effect (Figures S5C and S5D).

We also explored the significance of the NF-kB pathway

in Ang2-mediated endothelial activation, because both STAT

signaling and NF-kBpathways have been shown to act synergis-

tically. Ang2 itself did not induce p65 nuclear translocation

but increased TNF-a-mediated endothelial NF-kB activation,

as evidenced by IkBa phosphorylation and nuclear translocation

(Figures S5G and S5H). Correspondingly, Ang2 upregulated

ICAM-1 in TNF-a-primed ECs (Figures S5E and S5F). Taken
ment groups (values are mean ± SEM; n = 9 mice; p/s/cm2/sr = photons/s/cm2/

ice treated after surgery with respective therapeutic regimens (n = 19–22 mice;

f myelosuppression. The black arrow indicates hypocellular area.

s per square millimeter (n = 4 mice).

f the mice.

.01, ***p % 0.001, ns = nonsignificant. Each experiment was performed twice

experiment are presented in the figure.
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Figure 3. Effect of Ang2 Ab on Postsurgical Growth of Preseeded

LLC Metastases

(A) Schematic representation of experimental protocol. Primary tumors

(subcutaneous LLC tumors) were grown for 14 days, after which they were

surgically removed (average tumor size 360 mm3), and therapy was initiated

thereafter. Mice were sacrificed 3 weeks after surgery.

(B) Representative images of lungs isolated from mice after sacrifice.

Approximately 80% of control IgG-treated mice had macroscopically

detectable lung metastases (arrows). In contrast, fewer than 20% of Ang2

Ab-treated mice had detectable metastatic foci.

(C) Representative histological images of lung sections (H&E staining) showing

prominent metastatic foci in IgG-treated controls and no detectable metas-

tases in Ang2 Ab-treated mice.
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together, these findings are consistent with ICAM-1 upregulation

by Ang2 in ECs being mediated by the synergistic activities of

NF-kB and STAT3 signaling.

Metronomic Chemotherapy, but Not Anti-Ang2 Ab
Therapy, Decreases the Mobilization of Resistance-
Conferring Myeloid-Derived Cd11b+Gr1+Ly6Chi Cells
Metronomic chemotherapy could extend the therapeutic benefit

of Ang2 blockade in both tumor models. In order to study

the mechanism of the improved efficacy of the LDMC (PTX)

plus Ang2 Ab combination therapy, we evaluated the effect

of LDMC (PTX) on the recruitment of CD133+VEGFR2+ myeloid

cells in the 4T1 orthotopic breast cancer model. LDMC

monotherapy and combination therapy resulted in a significant

reduction of recruited myeloid cells compared with all other

treatments. Ang2 Ab had no effect on mobilization compared

with the IgG-treated group, consistent with an effect of LDMC

treatment (Figure S6A).

A subset of myeloid cells characterized by expression of

Cd11b+Gr1+ or Cd11b+Gr1+Ly6Chi has recently been associ-

ated with conferring resistance against anti-VEGF and anti-

VEGFR2 agents in preclinical studies (Priceman et al., 2010;

Shojaei et al., 2007a). LDMC (GEM) was found to be more effec-

tive than paclitaxel in inhibiting the recruitment of these cells to

metastases. We therefore examined if the therapeutic benefit

upon gemcitabine addition to antiangiogenic therapy in the

VEGF Ab refractory LLC model could, at least in part, be attrib-

uted to this observation. To this end, we evaluated the effect

of various combinations and monotherapies on the recruitment

of these cells to metastases. Antiangiogenic monotherapy by

neutralizing VEGF or Ang2 or their combination did not inhibit

the recruitment of Cd11b+Gr1+ or Cd11b+Gr1+Ly6Chi cells,

whereas LDMC (GEM) or its combination with antiangiogenic

regimens significantly reduced the recruitment of the resistance

mediating myeloid cells to the metastases. Metronomic dosage

was similarly efficacious as MTD (GEM) in inhibiting recruitment

of these cells, as revealed by flow cytometric analysis of cell sus-

pensions from lung metastases (Figures 7A, 7B, and S6B).

Myeloid cell mobilization occurs as a direct result of systemic

GCSF levels. We therefore evaluated circulating concentrations

GCSF. LDMC (GEM) as well as MTDC (GEM) decreased the

circulating levels of GCSF, consistent with their efficacy in inhib-

iting mobilization of Cd11b+Gr1+Ly6Chi cells compared with

antiangiogenic therapies (Figure 7C).

Anti-Ang2 Ab Inhibits Bv8/PK-2-Induced Angiogenesis
Ang2 neutralization significantly decreased angiogenesis in me-

tastases but did not affect the recruitment of resistance-confer-

ring proangiogenic Cd11b+Gr1+ cells in the VEGF Ab-refractory

LLC model. Bv8/Pk-2 has been characterized as myeloid-

derived proangiogenic cytokine mediating angiogenesis in
(D) Quantification of meanmetastatic lung fraction analyzed by digitized image

analysis using Fiji software. Mice carried small but histologically detectable

micrometastases at the time of surgery, which marked the beginning of

therapy (third bar).

Values are mean ± SD; n = 5 mice; ***p % 0.001. The figure shows

representative images from one of three independent experiments. See also

Figure S2.
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VEGF Ab refractory tumor models (Shojaei et al., 2007b, 2009).

Ang2 Ab had no effect on the concentrations of Bv8 in lung me-

tastases (Figure S6C). This led us to hypothesize that Ang2might

be critical for inducing angiogenesis in response to proangio-

genic cytokines from the myeloid cells. To test this hypothesis,

we performed in vitro tube formation and sprouting assays and

in vivo Matrigel plug assays to evaluate the angiogenic response

of Bv8 in the presence or absence of Ang2. Treatment of human

cardiac microvascular ECs with Ang2 Ab decreased sprouting

and vascular networks formation in the presence of exogenous

Bv8 (Figures 7D, 7E, and S6D). Similarly, systemic Ab-mediated

Ang2 neutralization in theMatrigel plug assay in vivo significantly

reduced the vascularity in grafted Matrigel plugs containing Bv8

(Figures 7F–7H).

DISCUSSION

Antiangiogenic therapy targeting the VEGF pathway has in the

past decade become part of standard tumor therapy (Carmeliet

and Jain, 2011; Ferrara and Kerbel, 2005). Recently, the benefit

of such therapies has also been exploited in the adjuvant setting,

revealing little to no efficacy of anti-VEGF (Allegra et al., 2011;

Cameron et al., 2013; de Gramont et al., 2012). Ang2-targeting

therapies are presently studied as second-generation antiangio-

genic drugs that combine well with anti-VEGF to improve the

hitherto limited clinical efficacy of established antiangiogenic

therapy (Holopainen et al., 2012; Kienast et al., 2013; Koh

et al., 2010). The strong transcriptional regulation of Ang2 in acti-

vated ECs and its autocrine gatekeeper role on EC responsive-

ness led us to hypothesize that Ang2 may conceptually be an

appealing candidate for postsurgical adjuvant tumor therapy.

By applying two spontaneous metastasis models, including

one anti-VEGF-resistantmodel, we identified Ang2 in the present

experimental preclinical study as an effective target for postsur-

gical adjuvant tumor therapy. Ang2 blockade following primary

tumor resection significantly reduced the metastatic burden

and exerted an antiangiogenic response with stabilized residual

vasculature in metastases. Combining Ang2 Ab with chemother-

apeutics interfering with recruitment of the anti-VEGF resis-

tance-conferring myeloid cells further improved the therapeutic

benefit. Mechanistically, we demonstrate that Ang2-stimulated

ECs acquire an activated proinflammatory phenotype character-

ized by induction of autocrine STAT3 activation, subsequent up-

regulation of adhesion molecules such as ICAM-1, and secretion

of the chemoattractant CCL2. The increase in Ang2-driven

ICAM-1 may indirectly also contribute to the observed increase
Figure 4. Comparative Analysis of Different Postsurgical Adjuvant The

Therapeutic regimens: IgG ctrl group; VEGF Ab = anti-VEGF Ab treatment; Ang2 A

metronomic gemcitabine chemotherapy; VEGF Ab + LDMC (GEM) = combinati

treatments, Ang2 Ab + VEGF Ab + LDMC (GEM) = combination the three treatm

(A) Representative low-magnification histological images of lung sections (H&E

arrowhead. The inset shows micrometastatic foci that failed to grow in the comb

(B) Quantification of mean metastatic lung fraction analyzed by digitized image a

(C) Representative immunohistochemical images of CD31- and aSMA-stained lu

and mural cells (aSMA). Insets show magnified images of the vasculature.

(D–F) Quantification and characterization of vasculature in different antiangiogeni

area. (E) Analysis of vessel size distribution within the vascularized area. (F) Perc

Values are mean ± SD; *p % 0.05, **p % 0.01, ***p % 0.001, ns = nonsignifica

experiment are presented in the figure. See also Figure S3.
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in CCL2 in metastases by supporting the adhesion of leukocyte

subsets (notably macrophages), which may, beyond ECs, be a

source of CCL2. CCR2+Tie2� MAMs were recruited to the me-

tastases via the induced CCL2 chemokine gradient, and the

responsiveness of the endothelium to the myeloid cell-derived

angiogenic cytokine Bv8 was increased in the presence of

Ang2. These findings support the concept of Ang2 as a regulator

of the inflammatory response and highlight the importance of the

microenvironmental inflammatorymilieu as a critical determinant

of metastatic growth.

Whereas Ang2 is critical for the upregulation of Tie2 in Tie2-

positive macrophages or their recruitment to primary tumors

(De Palma and Naldini, 2011; Huang et al., 2011; Mazzieri

et al., 2011), we detected Tie2-negative CCR2-positive MAMs

in metastases arguing for this distinct macrophage subset to

be involved in promoting metastatic growth. Recent evidence

from human studies showed that Tie2-expressing macrophages

do not correlate with metastasis (Goede et al., 2012; Schauer

et al., 2012). In contrast, several studies have established a cor-

relation between CCR2+ Tie2� MAMs and breast cancer metas-

tasis (Joyce and Pollard, 2009; Lu and Kang, 2009; Qian et al.,

2011). Correspondingly, ECs have been identified as a source

of the chemokine CCL2 (Sanchez et al., 2007), which recruits

CCR2-positive macrophages. The present study established

Ang2 as an endothelial regulator of CCL2 expression, as evi-

denced by in vitro, in vivo, and patient data set analyses.

Upon recruitment to metastases, macrophages require a

suitable microenvironment for survival and adhesion. Adhesion

molecules such as ICAM-1 expressed by ECs contribute to

the proinflammatory milieu (Kobayashi et al., 2007). NF-kb and

STAT3 signaling have previously been implicated in ICAM-1

regulation (Wung et al., 2005). However, the upstream regulation

of ICAM-1 in metastases is still elusive. Our studies provide ev-

idence for Ang2 as a regulator of NF-kb- and STAT3-mediated

ICAM-1 expression in ECs and, thus, of monocytic cell adhesion.

The correlation of Ang2 and ICAM-1 levels in advanced grade 2

and 3 breast cancer patient samples was consistent with these

findings. Thus, the findings argue for a role of Ang2 in upregu-

lating CCL2 and ICAM-1, which act in concert to promote

CCR2+ macrophage recruitment and adhesion driving metasta-

tic growth.

Endothelial STAT3 activation is critical for myeloid-derived

angiogenesis (Kujawski et al., 2008). Interestingly, recent evi-

dence points to the recruitment of Cd11b+Gr1+ myeloid cells

as mediators of anti-VEGF therapy resistance (Shojaei et al.,

2007a). These cells secrete the alternate proangiogenic cytokine
rapeutic Regimens in the Anti-VEGF Ab-Refractory LLC Model

b treatments; MTDC (GEM) =MTD gemcitabine chemotherapy; LDMC (GEM) =

on of the two treatments; Ang2 Ab + LDMC (Gem) = combination of the two

ents.

staining) showing metastatic foci marked by dotted line and/or T with black

ination therapeutic regimen.

nalysis using Fiji software (n = 9 mice).

ng sections from different treatment groups to visualize blood vessels (CD31)

c therapy treatment groups (n = 4 mice). (D) Vessel area as percentage of total

entage of covered vessels and size distribution of covered vessels.

nt. Each experiment was performed twice. The data from one representative
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Bv8/PK2, which induces a refractory vasculature characterized

by large vessels in a STAT3-dependent manner (Helfrich et al.,

2010; Qu et al., 2012). The involvement of endothelial STAT3

activation in myeloid-driven angiogenesis and the reduced

vascularization of growing metastases upon Ang2 Ab treatment

in the anti-VEGF-refractory model led us to hypothesize that

Ang2-mediated STAT-3 activationmight be contributing to treat-

ment-refractory angiogenesis. Ang2 neutralization inhibited Bv8-

mediated angiogenesis, suggesting that refractory angiogenesis

is caused not only by recruitedmyeloid cell-derived Bv8/PK2 but

also by EC responsiveness to myeloid cell-derived angiogenic

cytokines. These findings provide experimental evidence for a

potential role of Ang2 in anti-VEGF-refractory angiogenesis in

the metastatic setting, as has recently been shown in a primary

tumor model (Rigamonti et al., 2014). Notably, higher Ang2

serum levels have been associated with poor prognosis in pa-

tients undergoing anti-VEGF therapy (Goede et al., 2010; Kim

et al., 2013).

Considering the promising clinical studies with reduced

adverse effects, LDMC may be an attractive therapeutic modal-

ity for adjuvant therapy in comparison with MTDC (Dellapasqua

et al., 2008; Garcia et al., 2008). Ang2 Ab and LDMC (PTX) had

better efficacy in the orthotopic breast cancer model in the adju-

vant setting compared with MTDC (PTX). Moreover, the combi-

nation of Ang2 Ab and LDMC (PTX) had improved efficacy

compared with Ang2 Ab alone. LDMC (PTX) was found to signif-

icantly affect the mobilization of tumor-promoting myeloid cells.

A subset of these cells (Cd11b+Gr1+) has been associated with

refractory angiogenesis as described earlier. We could show

that angiogenesis induced by cytokines from these cells is blunt-

ed in an Ang2-deficient microenvironment, but recruitment of

these cells was not affected by Ang2 neutralization. Further-

more, gemcitabine reduced recruitment of these resistance-

mediating myeloid cells. The triple combination of LDMC
Figure 5. Effect of Ang2 Ab on Endothelial CCL2 Expression and Recru

(A) Representative images of F4/80+ cells in metastatic foci of lung in 4T1 orthot

(B and C) Flow cytometric analysis of lung metastases-derived cell fractions from

of F4/80+ macrophages infiltrating the lung metastases (n = 5 mice). (C) Quantific

metastases (n = 5 mice).

(D) Quantification of infiltrating CCR2+ macrophages (MAMs) to Matrigel plugs c

mastectomy (orthotopic 4T1 model) for 10 days before serum collection, and the M

was added to another group with Ang2 Ab-treated serum to evaluate if CCL2 ca

(E) Effect of recombinant Ang2 stimulation on CCL2 expression (quantitative PC

expression (n = 3 replicates).

(F) Effect of Ang2 Ab treatment on the local concentrations of CCL2 (ELISA of lys

mice).

(G) Schematic representation of experimental protocol. 4T1-luc tumors grown o

10 days (average tumor size 250mm3), after which therapywas initiated with them

treatment.

(H) Bioluminescence images from ex vivo imaging of mouse lungs immediately a

(I) Quantification of ex vivo bioluminescence imaging reflecting the metastatic lo

(J) Schematic representation of experimental protocol. Primary tumors (subc

and Ccr2flox/flox::Mx1 Cre-positive mice, after which they were surgically remove

genotype) treated with three doses of Poly I:C for Cre induction. Mice were sacr

(K) Images of mouse lungs from both groups post sacrifice. The yellow arrowhea

(L) Scatterplot showing quantification and distribution of macroscopic lung metas

after 3 weeks of Cre induction in adjuvant settings (n = 7 mice).

(M) Correlation analysis between Ang2 and CCL2 expression profiles in nonm

set (n = 67).

(N) Correlation analysis between Ang2 and CCL2 expression profiles in advanced

Values are mean ± SD unless otherwise indicated; *p % 0.05, **p % 0.01, ***p %
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(GEM), Ang2 Ab, and VEGF Ab further improved the therapeutic

efficacy compared with Ang2 Ab and VEGF Ab, as evidenced by

significantly lowered metastatic load. The reduction in myeloid

cells after gemcitabine coincided with a decrease in plasma

GCSF, consistent with a link between the two.

In conclusion, this study (1) has shed important therapy-rele-

vant insights into the mechanisms of tumor progression and

metastasis and (2) reports preclinical proof-of-principle experi-

ments establishing a rationale for the combination of Ang2 Ab

therapy with LDMC. Ang2 not only controls the recruitment of tu-

mor-promoting MAMs but also affects the angiogenic response

tomyeloid-derived proangiogenic cytokines, such as Bv8, which

contributes to anti-VEGF refractoriness. Ang2 thereby contrib-

utes to tumor progression by linking the metastatic inflamma-

some and the angiogenic program. Mechanistically, Ang2 is a

multifaceted endotheliotropic cytokine. Genetic experiments

have provided compelling evidence for a primary function of

autocrine-acting Ang2 as an inhibitor of Ang1/Tie2 signaling

(Augustin et al., 2009), and the findings of this study are well

compatible with this model. Yet Ang2 has also been reported

to act as a partial agonist of Tie2; that is, it can activate Tie2 as

a weak agonist in the absence of the strong agonist Ang1 (Daly

et al., 2013; Yuan et al., 2009). Moreover, angiogenically acti-

vated ECs downregulate the Ang receptor Tie2, and Ang2 has

been shown to activate Tie2low ECs in an integrin-dependent

manner (Felcht et al., 2012). Thus, Ang2 signaling appears to

be much more complex than has previously been anticipated,

and it may in a context-dependent manner be able to exert rather

diverse and even opposing functions. As such, although a

detailed mechanistic analysis of the intracellular downstream

mechanisms of Ang2 signaling was not the focus of this study,

the findings provide a compelling preclinical rationale for the

mechanism-based combination of Ang2 Ab therapy and LDMC

as a potential adjuvant maintenance therapy following surgical
itment of CCR2+ MAMs

opic breast cancer model detected by DAB staining.

control IgG- or Ang2 Ab-treated mice (orthotopic 4T1 model). (B) Quantification

ation of CCR2+ Tie2� macrophages relative to total macrophages in the lung

ontaining serum from IgG- or Ang2 Ab-treated mice. Mice were treated after

atrigel plug assay was performed for 1 week. Additionally, recombinant CCL2

n rescue the Ang2 blockade effect (n = 6 mice).

R analysis of cultured HUVECs). Ang2 led to a strong upregulation of CCL2

ate from lung metastases) in postsurgically treated tumor bearing mice (n = 5

rthotopically in the third right mammary fat pad were surgically removed after

ouse CCL2 Ab or control IgG treatment. Mice were sacrificed after 2.5 weeks of

fter sacrifice.

ad in lungs after IgG or CCL2 Ab treatment (n = 5 mice).

utaneous LLC) were grown for 2 weeks in Ccr2flox/flox::Mx1 Cre-negative

d (average tumor size 360 mm3). Following surgery, mice were (irrespective of

ificed after another 3 weeks.

ds mark macroscopic metastases.

tases in Ccr2flox/flox::Mx1 Cre-negative and Ccr2flox/flox::Mx1 Cre-positive mice

etastatic breast cancer patient samples (grade 1) using the GSE3494 data

breast cancer samples (grades 2 and 3) using the GSE3494 data set (n = 67).

0.001, ns = nonsignificant. See also Figure S4.
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Figure 6. Ang2-Mediated Upregulation of ICAM-1 Promotes Recruitment of Macrophages

(A) Quantitative RT-PCR analysis of whole-lung lysates 24 hr after tail vein injection of 1 3 106 LLC tumor cells and following IgG or Ang2 Ab treatment.

(B) Western blot analysis of lysates from lung metastases originating from LLC model and adjuvant treatment with IgG or Ang2 Ab.

(C) Quantification of ICAM-1 protein expression.

(D) Velocity distribution of macrophages flowing over a HUVEC-coated parallel flow chamber. The HUVEC-coated chambers were treated with IgG (left) or Ang2

Ab (right) for 12 hr and then subjected to continuous flow of macrophages at a rate of 30 ml/min over a period of 1 min. The captured videos were processed with

Fiji software. Flow velocities were recorded as pixel per second (1.4 mm/pixel). The images show representative sequences of a 0.34 s segment of rolling

macrophages over a HUVEC-coated parallel flow chamber, representing a 10-frame sequence recorded at 29.97 frames/s. The sequenceswere processed using

Fiji’s edge detection and temporal color-code algorithms. Consequently, cells of the same color are part of the same frame. The distance between the differently

colored macrophages was directly proportional to their rolling velocities. See also Movies S1 and S2.

(E) Quantification of macrophage velocity distribution shown in (D).

(F) Velocity distribution of microspheres (microseconds) flowing over a HUVEC-coated parallel flow chamber. The HUVEC-coated chambers were treated with

either IgG or Ang2 Ab for 12 hr and then subjected to continuous flow of microspheres conjugated to either IgG or anti-ICAM-1 antibodies at a rate of 30 ml/min

over a period of 1 min. The images show representative sequences of ICAM-1 Ab-conjugated microspheres rolling over IgG (left) or Ang2 Ab (right) treated

HUVECs. The captured videos were processed with Fiji and analyzed as outlined in (D). See also Movies S3and S4.

(G) Quantification of macrophage velocity distribution shown in (F).

(H) Representative images showing nuclear translocation of p-STAT3 (red) into nuclei stained by DAPI (blue) and cytoskeletal Phallaoidin (green) in HUVECs

upon stimulation by rhAng2 or control PBS (n = 3 replicates).

(I) Representative western blot analysis of STAT-3 phosphorylation (Tyr 705) after stimulation of HUVECs with rhAng2 (n = 5 replicates).

(J) Quantification of the ratio of p-STAT-3 to total STAT-3 protein expression normalized to control (n = 5 replicates) (see also Figure S5).

Values are mean ± SD. *p % 0.05; **p % 0.01; ***p % 0.001.

Cancer Cell

Ang2 as a Target for Adjuvant Tumor Therapy

Cancer Cell 26, 880–895, December 8, 2014 ª2014 Elsevier Inc. 891



IgG
 C

tr

Ang
2 A

b

VEGF A
b

MTDC(G
EM)

LD
MC(G

EM) 
0

100

200

300

400

G
CS

F 
co

nc
en

tr
at

io
n 

(p
g/

m
l)

NS

NS

**
**

**
*

*
NS

Negative Ctr bFGF + VEGF

Ang2 Ab + Bv8IgG Ctr + Bv8

bFGF

400 µm

Ang2 Ab + Bv8IgG Ctr + Bv8

Ctr 250

0
2
4
6
8

10

0
50

100
150
200

 V
es

se
l n

um
be

r/m
m

2
C

D
31

+ 
ve

ss
el

 a
re

a(
%

)

Ctr
bF

GF

IgG
 C

tr +
 Bv8

Ang
2 A

b +
 Bv8

***

**

Ctr
bF

GF

IgG
 C

tr +
 Bv8

Ang
2 A

b +
 Bv8

*

***

A B

C
D E

F
G

0.0

0.2

0.4

0.6

0.8

IgG

MTDC(G
EM)

LD
MC(G

EM)

VEGF Ab

VEGF Ab+
LD

MC(G
EM)

Ang
2 A

b

Ang
2 A

b+
LD

MC(G
EM)

Ang
2+

VEGF Ab

Ang
2+

VEGF Ab+
LD

MC(G
EM)

Ly
6C

-hi
 c

el
ls

 (%
 o

f t
ot

al
 

ce
lls

 in
 lu

ng
 m

et
s)

NS NS

NS

*

*
*** **

*

0

200

400

600

800

Neg
ati

ve
 C

tr

bF
GF + 

VEGF

* **

Ang
2 A

b +
 B

v8

IgG
 C

tr +
 B

v8C
um

ul
at

iv
e 

sp
ro

ut
 le

ng
th

 (μ
m

)

H

    0

    5

  10   

  15

IgG

MTDC(G
EM)

LD
MC(G

EM)

VEGF Ab

VEGF Ab+
LD

MC(G
EM)

Ang
2 A

b

Ang
2 A

b+
LD

MC(G
EM)

Ang
2+

VEGF Ab

Ang
2+

VEGF Ab+
LD

MC(G
EM)

CD
11

b+ G
r1

+   c
el

ls
 (%

 o
f t

ot
al

 
ce

lls
 in

 lu
ng

 m
et

s)

***
**

**
***

***

NS
NS

Figure 7. Evaluation of Myeloid-Derived CD11b+Gr1+Ly6Chi Cells and Effect of Ang2 Ab on Bv8-Mediated Angiogenesis

(A and B) Effect of various therapeutic regimens on recruitment of mobilized CD11b+Gr1+ (A) and Cd11b+Gr1+Ly6Chi (B) cells to the metastases. Quantification

reflects the resistance conferring cells as percentage of total cells of lung metastases-derived cell suspensions from anti-VEGF-refractory LLC model.

Therapeutic regimens: IgG = control IgG group; VEGF Ab = anti-VEGF Ab treatment; Ang2 Ab = anti-Ang2 Ab treatment; MTD (GEM) = MTD gemcitabine

chemotherapy; LDMC (GEM) =metronomic gemcitabine chemotherapy; VEGFAb + LDMC (GEM) = combination of the two treatments; Ang2 Ab + LDMC (Gem) =

combination of the two treatments; Ang2 Ab + VEGF Ab + LDMC (GEM) = combination of the three treatments (n = 5 mice).

(C) Effect of different monotherapies on serum protein levels of GCSF, the major mobilization factor, as analyzed by ELISA (n = 5 mice).

(D and E) Evaluation of human cardiac microvascular EC sprouting induced by Bv8, the major proangiogenic cytokine produced by CD11b+Gr1+ cells in the

presence of control IgG or Ang2 Ab. bFGF+VEGF served as positive control. The experiment was repeated three times, and 10 spheroids were evaluated each

time per condition. (D) Representative images from the sprouting assay. (E) Corresponding quantification of cumulative sprout length (micrometers). In vivo

(legend continued on next page)
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removal of the primary tumor or debulking pharmacotherapy,

even in anti-VEGF-refractory tumors.

EXPERIMENTAL PROCEDURES

Animal Studies

C57Bl6 or severe combined immunodeficient (SCID) mice were used for the

animal studies. All animal experiments were performed according to the

ethical guidelines of the local animal welfare committee (Regierungspräsidum

Karlsruhe).

Tumor Models

For the LLC model, LLC cells (1 3 106) were implanted subcutaneously in the

flank region of 6- to 8-week-old C57Bl6 mice. Primary tumors were surgically

removed after 2 weeks of growth (average tumor size 360mm3), andmicewere

randomized in the different treatment groups. Mice were treated with either

Ang2 Ab or control IgG for 3 weeks, after which the mice were sacrificed

and the lungs were harvested and processed for histological analysis. A third

cohort of mice was sacrificed immediately after surgery to assess any baseline

metastatic burden at the time of surgery. For the orthotopic breast cancer

model, 4t1-luc cells (1 3 106) were implanted in the third right mammary fat

pad of SCID mice (Charles River Laboratories). Mastectomy was performed

10 days after tumor cell inoculation, and the mice were randomized in the

different treatment groups (see below). During the course of therapy, regular

in vivo monitoring of metastatic growth was accomplished using the IVIS-

200 imaging system. The animals were sacrificed at completion of the exper-

iments, and lungs, femurs, and blood were collected for further analysis.

Adverse Effect Analysis and Survival Studies

The 4T1 orthotopic breast cancer model was used for adverse effect and

survival studies. Adverse effect evaluation experiments were continued for

a period of 2 weeks after mastectomy. Survival studies were performed until

natural death of the mice or until the mice needed to be sacrificed for ethical

reasons. Survival index plots were generated using GraphPad Prism. Body

weight was monitored regularly during the course of the toxicity studies.

Upon completion of the each experiment, ovaries and femurs were collected

for further evaluation of reproductive toxicity and myelosuppression,

respectively.

Additional Animal Experiments

Details of additional animal experiments (Matrigel plug assay, tail vein metas-

tasis model) and treatment regimens are outlined in Supplemental Experi-

mental Procedures.

Ex Vivo Analytical Assays and Cellular Experiments

Details of the histological analyses, immunohistochemical procedures, flow

cytometric analyses used to study metastases, and cellular experiments and

biochemical analyses are outlined in Supplemental Experimental Procedures.

Statistical Analysis of Data

All data are presented as mean ± SD (unless otherwise stated). Comparisons

between different groups were made using Student’s t test, ANOVA, and the

Mann-Whitney test, as appropriate. Correlation analysis was performed in

Prism using the published data set accessible through Gene Expression

Omnibus series accession number GSE3494 (Miller et al., 2005). To compare

groups of equal numbers of patients, a random number was assigned to

each sample using the RANDOM function in Microsoft Excel, and the first 67

samples per group were included in the correlation analysis.
evaluation of the ability of Ang2 Ab or control IgG to interfere with Bv8-induced

bFGF (positive control), or saline (negative control). Mice with Bv8 preloaded plu

(F) Representative images of Matrigel plug sections stained for CD31 (green) to a

(G) Quantification of the number of vessels per unit area (square millimeters) of t

(H) Quantification of CD31-positive area as percentage of total Matrigel plug are

Values are mean ± SD; *p% 0.05, **p% 0.01, ***p% 0.001, ns = nonsignificant. E

from one representative experiment are presented in the figure. See also Figure

Ca
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and four movies and can be found with this article online at

http://dx.doi.org/10.1016/j.ccell.2014.11.005.
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