
File: 643J 257801 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 7031 Signs: 5266 . Length: 60 pic 11 pts, 257 mm

Information and Computation � IC2578

information and computation 127, 41�61 (1996)

The Limit of Splitn-Language Equivalence

Walter Vogler*

Institut fu� r Mathematik, Universita� t Augsburg, D-86135 Augsburg, Germany

Splitting is a simple form of action refinement that may be used to
express the duration of actions. In particular, splitn subdivides each
action into n phases. Petri nets N and N$ are splitn -language equivalent
if splitn(N) and splitn(N$) are language equivalent. It is known that
these equivalences get finer and finer with increasing n. This paper
characterizes the limit of this sequence by a newly defined partial order
semantics. This semantics is obtained from the interval-semiword
semantics, which is fully abstract for action refinement and language
equivalence, by closing it under a special swap operation. The new
swap equivalence lies strictly between interval-semiword and step-
sequence equivalence.] 1996 Academic Press, Inc.

1. INTRODUCTION

Many models of concurrent systems assume that the
actions which are performed by the system are instan-
taneous. The interleaving approach is based on this assump-
tion: in this approach, which is traditionally followed in
process algebra, the concurrent execution of two actions is
regarded as being equal to performing them in any order.
Hence, the behaviour of a system can be described by its
language, which is the set of action sequences that the
system can perform. This would not be adequate if actions
had durations: then, concurrent actions could overlap in
time and this would be observable. But also in Petri net
theory, where traditionally a ``true concurrency'' approach
is preferred, it is usually assumed that a transition firing is
instantaneous.

In real life, however, actions usually take time. It is often
assumed that we can nevertheless work with instantaneous
actions: the suggestion is to replace an action with duration
by a sequence of two instantaneous actions, one denoting
the start, the other the end of the original action. (The first
paper to work this out is probably [Hen88], which was
conceived much earlier than 1988.) Hence, instead of con-
sidering the language of a system N, we first apply the

operation split2 to N, which splits each action a into a
sequence a1a2 , and then consider the language of split2(N).

If this were a sensible treatment of durational actions,
then, for each n>2, splitting each action into n phases
should give us the same information as splitting into two
phases. To formulate this expectation mathematically, let
the operation splitn replace each action a with a sequence
a1 } } } an ; let us call systems N and N$ splitn -language equiv-
alent or simply splitn-equivalent, if the split systems splitn(N)
and splitn(N$) have the same language. With these notions,
the above expectation says: if systems are split2-equivalent,
then they are splitn -equivalent for all n. Although plausible
at first sight, this conjecture has turned out to be wrong, at
least in the case of autoconcurrency where an action may be
performed concurrently with itself. For all n, splitn+1-equiv-
alence is strictly finer than splitn -equivalence [GV95].
Thus, if we want to model the durations of actions by con-
sidering them as sequences of several phases, we should
work with the limit of these increasingly finer equivalences.
The purpose of this paper is to characterize this limit; we
will use safe Petri nets as system models, and we will give a
characterization in terms of a new partial order semantics of
nets, called swap-interval-semiwords.

Splitting is a simple form of action refinement. The latter
operation is meant to support the hierarchical design of
systems; it has recently found considerable interest, see e.g.,
[AH93, AM96, BDK91, DG95, Dev92, Gla90, GG89b,
JM93, NEL89, Ren93, Vog92]. Action refinement replaces
each action with a more detailed subsystem. A semantics
supports this operation if it is possible to determine the
semantics of the refined system from the refinement and the
semantics of the system, i.e., without knowing the system
itself. In other words, the semantics should induce a con-
gruence with respect to action refinement.

In this context, a specific class of partial orders is of
interest, so-called interval orders. The elements of interval
orders correspond to intervals of real numbers, i.e. these
partial orders are natural candidates for the description of
system runs where actions have durations; see [Vog95] for
some results in this direction. Processes [GR83] and semi-
words [Gra81, Sta81] are well-established partial order
semantics of Petri nets; interval semiwords combine the
ideas of semiwords and interval orders. Process, semiword,

article no. 0048

41 0890-5401�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* Work on this paper was partially supported by the DFG (Project
Halbordnungstesten), the ESPRIT Basic Research Working Group 6067
CALIBAN (CAusal CalcuLI BAsed on Nets) and the Fakulta� t fu� r Infor-
matik, Technische Universita� t Mu� nchen. This is a revised and extended
version, an abstract of which has appeared in the Proceedings of ICALP
95, Lecture Notes in Computer Science Vol. 944, Springer-Verlag, Berlin�
New York, 1995.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81162206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

File: 643J 257802 . By:SD . Date:30:05:96 . Time:10:53 LOP8M. V8.0. Page 01:01
Codes: 6066 Signs: 5239 . Length: 56 pic 0 pts, 236 mm

FIGURE 1

and interval-semiword equivalence are congruences for
action refinement [Vog91, Vog92], but only interval-semi-
word equivalence has the following additional property: if
nets N and N$ are not interval-semiword equivalent, then
there exists a refinement ref such that ref (N) and ref (N$) are
not language equivalent. Hence, if we take language-equiv-
alence as a starting point, then interval semiwords make
exactly those additional distinctions between nets which are
necessary to get a congruence. Expressed in a technical way,
interval-semiword equivalence is fully abstract with respect
to language equivalence and action refinement, i.e., it is the
coarsest congruence for action refinement that is finer than
language equivalence. Analogously, the purpose of this
paper is to determine a fully abstract semantics with respect
to language equivalence and splitting. It is clear that interval
semiwords induce a congruence for splitting that is finer
than language equivalence, but as we will see, it is not the
coarsest such congruence��as was already claimed without
proof in [Lar88, Vog92]. At least, interval semiwords will
be the starting point for the definition of the new fully
abstract semantics.

The corresponding problem on the level of bisimulations
(which do not simply consider the sequences of actions that
are performed, but also take into account the choices that
are possible during a system run) has been solved: as on the
language level, splitn+1-bisimilarity is strictly finer than
splitn -bisimilarity for all n # N [GV95]. ST-bisimulation is
a variant of bisimulation that corresponds to the interval
idea. It is fully abstract with respect to bisimulation and
general action refinement [Gla90, Vog93], but��quite sur-
prisingly��it is also fully abstract with respect to bisimula-
tion and splitting [GL95].

That the situation is different on the language level can be
seen from the following example. If we want to describe the
runs of the two nets in Fig. 1 by partial orders, then we get
essentially that N can perform the (labelled) partial order p
in Fig. 2, while N$ can perform p and the partial order q.
These partial orders are interval orders, hence N and N$
have different interval semiwords.

The split nets split3(N) and split3(N$) can perform the
sequence a1b1 b2 a2 a3b1b3c1 . From this sequence we can

FIGURE 2

deduce that N and N$ can perform p: in this sequence, we see
an a starting, then a b. Since this first b starts before the end
of a, it must be independent of a; it corresponds to the b in
the lower left corner of p. Similarly, the second b is inde-
pendent of the first one; but it comes after a. Now, b3 is the
end of some b; the essential point is, that it must in fact be
the end of the first b, since only the first b has finished its
second phase at this point. Hence, c comes after a and the
first b, but it is independent of the second b.

For q, we argue that there is no corresponding sequence
in any splitn(N$). In such a sequence, we would see the lower
b starting during the a-action. Hence, the upper b would
start after the lower one, but it would end before the lower
one, since c starts during the lower b. In such a situation,
where one b overtakes the other, we cannot keep the two b's
apart by keeping them in different phases��as we have done
above for p. Hence, when some b ends, we cannot be sure
which one it is. Consequently, we can only deduce that N$
can perform q or p, something we already know. Thus, it
seems convincing that N and N$ cannot be differentiated
by looking at the languages of any of their splittings, but
they are distinguished by interval-semiword equivalence.
Hence, this equivalence is different from the limit of the
splitn-equivalences.

In the above example, the presence of p ``hides'' q. Here,
and in similar cases, we can obtain q from p by applying a
swap-operation to the two b-actions, which exchanges their
successors in the partial order p. This example motivates the
new semantics which characterizes the limit we are looking
for: the swap-interval-semiwords of a net are obtained
by closing the set of interval semiwords under the swap-
operation.

Swap-interval-semiwords are a way to deal with dura-
tional actions in concurrent systems. But they can also be
interesting in formal language theory. If we consider expres-
sions built from variables for languages with the operations
concatenation } , choice + (i.e., union), and shuffle &, then
substitution of languages for the variables can be seen as
action refinement; validity of equations for such expressions
can be checked using interval semiwords [Mey95].
Similarly, swap-interval-semiwords are useful to establish
the validity of equations where the variables stand for
words; e.g., from our results one can see that for all words
X, Y, and Z we have

XY & YZ=(XY & YZ)+(XYZ & Y).

This equation fails for languages.
In the rest of the paper, we proceed as follows. In Sections

2 and 3, we study interval orders and their representations
by so-called interval sequences. These interval sequences are
used in many of our proofs, but similar representations have
also been studied in their own right; see, e.g., [JK93]. In
Section 2, we characterize the set of representations of a

42 WALTER VOGLER

File: 643J 257803 . By:SD . Date:30:05:96 . Time:09:23 LOP8M. V8.0. Page 01:01
Codes: 6223 Signs: 5276 . Length: 56 pic 0 pts, 236 mm

given interval order; furthermore, we look at the augmenta-
tions of an interval order and show how augmentation
corresponds to an operation on interval sequences. These
results are also interesting in their own right; an extension
to infinite interval orders is discussed in a short appendix.
Section 3 is concerned with the swap operation, which is
defined on interval orders and their representations; a
correspondence between the two versions of swap is shown.
Section 4 introduces some Petri net notions, including inter-
val-semiword semantics, and the split operations. In Section
5, the new swap-interval-semiword semantics is defined and
the announced full abstractness result is given. Half of the
proof of this result is deferred to Section 6; it is based on a
more detailed version of interval sequences. In Section 5, we
also show that the new semantics is closed under augmenta-
tion and prefixes. (Note that these relations are defined in a
natural way for interval orders, but not for their representa-
tions.) With these results, we can really prove that the nets
of Fig. 1 are indeed splitn -equivalent for all n # N. With this,
we get that the new swap equivalence lies strictly between
interval-semiword and step-sequence equivalence. We pre-
sent two consequences of our main result in Section 7: we
show that we can justify interval semiwords, when we addi-
tionally consider parallel composition with synchronization
as in TCSP; i.e., interval-semiword equivalence is fully
abstract for language equivalence, parallel composition and
splitting. Furthermore, we sketch how the above mentioned
equations can be checked. The paper closes with some
concluding remarks in Section 8.

I am grateful to Rob van Glabbeek for discussing the
above example and first ideas about swapping with me. I
thank Roberto Gorrieri and two anonymous referees for
their careful reading and constructive suggestions.

2. REPRESENTING AND AUGMENTING
INTERVAL ORDERS

In this section, we look at interval orders and their
representation by sequences; a basic reference for interval
orders is [Fis85, Chap. 2]. Furthermore, we study interval
orders that are augmentations of some given interval order
and relate their representations to the representations of this
given interval order.

We restrict attention to finite interval orders, since we are
interested in finite system runs later on. We will describe
system runs by labelled interval orders; but, since the con-
cepts of this section are independent of the labels, we will
introduce the labelling only in the next section.

A partial order p=(E, <) consists of a finite set E (of
events) and an irreflexive, transitive relation < on E. We
will consider isomorphic partial orders as equal. If e<e$, we
call e a predecessor of e$ and e$ a successor of e. If e<e$ or
e=e$, we write e�e$. Two events e and e$ are concurrent,

e co e$, if neither e<e$ nor e$<e (but possibly e=e$). If co
is transitive, we call p co-transitive. (In [Fis85] such a p is
called a weak order.) In this case, co is an equivalence rela-
tion and concurrent events are ordered in the same way with
respect to all other events; hence, < induces an ordering of
the co-equivalence classes, and we can think of p as a
sequence of these classes.

E$�E is left-closed if for all e$<e # E$ we have e$ # E$.
(E$, <$) is a prefix of (E, <) if E$ is a left-closed subset of
E and <$ equals < restricted to E$_E$. We can think of
a prefix as an initial segment of the system run (E, <).

(E, <) is a (proper) augmentation of (E, <$), if <$ is a
(proper) subset of <; if (E, <$) describes a system run, then
(E, <) describes essentially the same run, but includes some
more ordering information about the events. If < is total,
i.e., for all events e and e$ we have e<e$, e=e$, or e$<e,
then (E, <) is a linearization of (E, <$). In this case, we can
view (E, <) as a sequence; in this sequence, each event
occurs exactly once. If X is a set of partial orders, we call
p # X least sequential in X if p is not a proper augmentation
of any q # X.

(E, <) is an interval order, if for all a, b, c, d # E we have:
if a<b and c<d, then a�d or c�b. Thus, whenever we
have the ``parallel arrows'' shown in Fig. 3, we must also
have one of the ``diagonals'' indicated by the dotted lines.
(We depict partial orders as Hasse diagrams, where a line
connecting a and b from left to right indicates that a<b.) A
(proper) augmentation p of q is called a (proper) interval
augmentation of q if p is an interval order. The name ``inter-
val order'' originates from the following result.

Theorem 2.1. [Fis85]. (E, <) is an interval order if and
only if there are closed intervals [r1(e), r2(e)]�R, e # E,
such that all events e and e$ satisfy the equivalence: e<e$ if
and only if r2(e)<r1(e$).

We can think of event e as starting at time r1(e) and last-
ing until r2(e). Event e is smaller than event e$ if the interval
of e lies completely before the interval of e$.

For a finite set E let E\=E + _4 E& be the disjoint union
of two copies of E, where E+=[e+ | e # E] and E&=
[e& | e # E]. We call e+ the start of e and e& the end of e.
A sequence w # (E\)* is called an interval sequence (over E)
if for all e # E:

�� w contains e+ once

�� w contains e& at most once, and if e& occurs in w, it
occurs after e+.

FIGURE 3

43SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257804 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 6497 Signs: 4534 . Length: 56 pic 0 pts, 236 mm

The interval sequence w is called closed, if e& occurs in w for
each e # E.

Interval sequences w over E and w$ over E$ are isomorphic
if there is some bijection ; : E � E$ such that w$ can be
obtained from w by replacing each e+ by ;(e)+ and each e&

by ;(e)&. Since we are not so much interested in the con-
crete events, but in the structure of their starts and ends, we
usually do not distinguish isomorphic interval sequences.

Given an interval sequence w, we can associate to each
e # E an interval [r1(e), r2(e)]�R as follows: r1(e) is the
position of e+ in w, r2(e) is the position of e& in w or (in case
that e& does not occur in w) some value greater than |w|,
the length of w. In view of Theorem 2.1, we define:

Definition 2.2. An interval sequence w over E repre-
sents (or is a representation of) an interval order (E, <) if
for all e1 , e2 # E we have e1<e2 if and only if e&

1 occurs
before e+

2 in w.

We can think of a representation as a sequential observa-
tion where we see events start and end; thus, we observe the
events as intervals in time and from this we can conclude
that some partial order of events occurred, namely the
represented interval order. The ordering relation of this par-
tial order is not so much causality based; but it is natural to
assume that event e can cause event e$, only if e ends before
e$ starts, i.e. if e<e$ in the interval order.

In [Vog92], it is shown that each interval order has some
closed representation. Here, we want to find out about all
representations. For this purpose, we define three relations
<+, <&, <\.

Definition 2.3. For events e1 and e2 of an interval
order (E, <), we write e1<+e2 if for some e3 we have
e1 co e3 and e3<e2 . Analogously, e1<&e2 if for some e3 we
have e1<e3 and e3 co e2 .

These relations are introduced for the following reason: if
w represents (E, <) and e3<e2 , then e&

3 occurs before e+
2

in w; furthermore, e1 co e3 implies that e+
1 occurs before e&

3 ,
since otherwise e&

3 would not occur in w or we would have
e3<e1 , which are both wrong. Hence, e+

1 must occur before
e+

2 if e1<+e2 . Similarly, e&
1 must occur before e&

2 or e&
2

does not occur at all, if e1<&e2 .
Since co is reflexive, we have that e1<e2 implies e1<+e2

and e1<&e2 . We can characterize <+ and <& as follows:

Lemma 2.4. Let (E, <) be an interval order and e1 ,
e2 # E.

(i) e1<+e2 if and only if the set of predecessors of e1 is
a proper subset of the set of predecessors of e2 .

(ii) e1<&e2 if and only if the set of successors of e2 is a
proper subset of the set of successors of e1 .

Proof. (i) `` O '' Choose e3 with e1 co e3<e2 and e4<e1 .
Since (E, <) is an interval order, we have e3�e1 or e4�e2 .

If e3�e1 , we conclude that e3=e1 and e4<e2 by trans-
itivity. If e4�e2 , we can exclude e4=e2 , since this would
imply e3<e1 . Hence, the subset-property follows, and the
subset is proper due to e3 .

`` o '' Choose e3 such that e3<e2 , but not e3<e1 . If
e1<e3 , we get e1 co e1<e2 ; otherwise e1 co e3<e2 . Hence
e1<+e2 .

(ii) Similar. K

Definition 2.5. For an interval order (E, <), we define
<\ on E\ as follows:

�� e+
1 <\e+

2 if e1<+e2

�� e&
1 <\e&

2 if e1<&e2

�� e&
1 <\e+

2 if e1<e2

�� e+
1 <\e&

2 if e1<e2 or e1 co e2 .

Similarly to the above, we get for a representation w of
(E, <):

�� If e+
1 <\e+

2 , then e+
1 occurs before e+

2 in w; see
above.

�� If e&
1 <\e&

2 , then e&
1 occurs before e&

2 in w, or e&
2

does not occur; see above.

�� If e&
1 <\e+

2 , then e&
1 occurs before e+

2 in w, by defini-
tion of a representation.

�� If e+
1 <\e&

2 , then e&
2 does not occur before e+

1 by
definition of a representation, hence e+

1 occurs before e&
2 in

w or e&
2 does not occur at all.

As a consequence, every closed representation of (E, <)
is an augmentation, hence a linearization of (E\, <\).

We have the following result [Fis85]. (Observe that <+

corresponds to O& in [Fis85] and vice versa.)

Lemma 2.6. Let (E, <) be an interval order.

(i) <+, <&, <\ are co-transitive partial orders with
<�<+ and <� <&.

(ii) If e=1
1 co \e=2

2 (i.e., e=1
1 and e=2

2 are concurrent with
respect to <\), then =1==2 (i. e., both equal & or both equal
+).

(iii) e+<\e&.

(iv) If e+
1 <\e+

2 , then there exists some e3 with
e+

1 <\e&
3 <\e+

2 .

(v) If e&
1 <\e&

2 , then there exists some e3 with
e&

1 <\e+
3 <\e&

2 .

This lemma shows that the co\-equivalence classes con-
sist of starts only or of ends only ((ii)) and that start- and
end-classes occur alternatingly ((iv) and (v)) beginning with
a class of starts and ending with a class of ends ((iii)). With
this lemma, we can characterize the representations of an
interval order as follows��where the difficult part is that all
(closed) representations can be obtained as described.

44 WALTER VOGLER

File: 643J 257805 . By:SD . Date:30:05:96 . Time:10:53 LOP8M. V8.0. Page 01:01
Codes: 6170 Signs: 4883 . Length: 56 pic 0 pts, 236 mm

Theorem 2.7. Let p=(E, <) be an interval order.

(i) The closed representations of p are exactly the
linearizations of (E \, <\). In particular, there exists a
closed representation of p.

(ii) If w is a closed representation of p, then exactly all
closed representations of p can be obtained from w by com-
muting starts and commuting ends. More precisely, define a
relation on (E \)* as follows: w1e+

1 e+
2 w2 #w1 e+

2 e+
1 w2 and

w1e&
1 e&

2 w2 #w1e&
2 e&

1 w2 for all e1 , e2 # E, w1 , w2 # (E \)*,
let #* be the reflexive�transitive closure of #. Then the
#*-equivalence class of w is the set of all closed representa-
tions of p.

(iii) If w is a closed representation of p, then exactly all
representations of p can be obtained from w by commuting
starts, commuting ends (as in (ii)) and deleting ends from the
end of a sequence (i.e., transforming w$e& to w$).

Proof. (i) We have already seen above that each
closed representation is an augmentation and hence a
linearization of (E\, <\). On the other hand, such a
linearization w is an interval sequence by Lemma 2.6(iii); if
e1<e2 , then e&

1 <\e+
2 , i.e., e&

1 occurs before e+
2 in w; if not

e1<e2 , then e2<e1 or e2 co e1 , hence e+
2 <\e&

1 , i.e., e&
1

does not occur before e+
2 in w. This shows that w is a

representation of p.

(ii) Part (i) shows that each closed representation is
obtained by putting the elements of each co\-equivalence
class into some arbitrary sequence and concatenating these
sequences in the order prescribed by <\. Since each co\-
equivalence class consists of starts only or of ends only, by
2.6(ii), we see that we can get all closed representations by
commuting starts and commuting ends. On the other hand,
starts that do not belong to the same co\-equivalence class
are separated by an end in <\, see 2.6(iv), hence also in any
closed representation. Thus, commuting starts exchanges
starts from the same co\-equivalence class and gives
another closed representation. The case of commuting ends
is analogous.

(iii) In view of Part (ii), we only have to consider the
difference between closed representations and arbitrary
representations, where ends of events may be missing. We
have seen above that all representations are augmentations
of (E\, <\), except that in general some ends might be
missing. If e&

1 <\e+
2 , then e1<e2 and e&

1 must occur before
e+

2 in each representation. Hence, the missing ends must
all belong to the maximal co\-equivalence class. Thus, for
an arbitrary representation w we can choose a closed
representation w$ that coincides with w except for the
missing ends. By commuting ends in w$ we can move these
missing ends of w to the end of w$ and by deleting ends we
obtain w.

On the other hand, none of the ends belonging to the
maximal co\-equivalence class is needed in a representa-
tion, as is easily seen. Deleting ends as described in (iii)
deletes only elements of this class, hence transforms a
representation of p to another one. K

This theorem shows that interval orders are more
abstract than interval sequences. Several interval sequences
may represent the same interval order; they differ in the
ordering of starts or in the ordering of ends, but these dif-
ferences may be irrelevant for some purposes and are
abstracted away in the interval order.

Remark. Theorem 2.7(ii) shows that the set of closed
representations of some given p is a Mazurkiewicz trace
(see, e.g., [Die90]) over E\, where every two starts and
every two ends are independent. An extension of Theorem
2.7 to the case of infinite interval orders is discussed in the
appendix.

In the second half of this section we will have a look at the
augmentations of a given partial order p. Suppose we want
to prove some claim for all augmentations of p=(E, <); in
order to allow for an inductive proof of such a claim, we
must have that each augmentation can be reached by
adding to < one pair at a time. We will show that this is
indeed the case. Observe that not any pair will do; if we add
the pair (b, c) to < as shown in Fig. 4, then we destroy
transitivity.

Theorem 2.8. Let p=(E, <) and p$=(E, <$) be par-
tial orders such that p$ is a proper augmentation of p. Then
there exists a partial order p"=(E, <�[(e1 , e2)]) such that
p" is a proper augmentation of p and p$ is an augmentation
of p".

Proof. Choose e1 minimal w.r.t. < in the non-empty set
[e # E | _e$ # E : e<e and not e<e$]; choose e2 maximal
w.r.t. < in the non-empty set [e # E | e1<$e and not e1<e].
Obviously, <"=<�[(e1 , e2)] is irreflexive. To show
transitivity of <", we first consider some e<e1 . Since
e<$e1<$e2 , we have e<$e2 ; by choice of e1 we must have
e<e2 . Second, let e2<e. Since e1<$e2<$e, we have e1<$e;
by choice of e2 we must have e1<e. K

Next, we want to show a similar result for interval orders.
Consider the interval order p on the left hand side of Fig. 5
and its augmentation p$ on the right hand side, which is an
interval order, too.

FIGURE 4

45SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257806 . By:SD . Date:30:05:96 . Time:10:52 LOP8M. V8.0. Page 01:01
Codes: 6010 Signs: 4464 . Length: 56 pic 0 pts, 236 mm

FIGURE 5

The construction in the above proof makes it possible to
choose e1=c and e2=d. Adding the pair (c, d) to p gives
indeed a partial order, but not an interval order; hence, we
have to be more careful.

Theorem 2.9. Let p=(E, <) be an interval order and
let p$=(E, <$) be a proper interval augmentation of p.
Then there exists a proper interval augmentation p"=
(E, <�[(e1 , e2)]) of p such that p$ is an augmentation of p".

Proof. Choose e1 minimal w.r.t. <& (!) in the non-
empty set [e # E | _e$ # E : e<e and not e<e$]; choose e2

maximal w.r.t. <+ in the non-empty set [e # E | e1<$e and
not e1<e]. By Lemma 2.6(i) and the proof of Theorem 2.8,
we get a partial order p" with this choice.

We have to check that p" is an interval order and, since
p is an interval order, it is sufficient to consider e1 , e2 and
some c, d with c<d. Since p$ is an interval order, we have
e1�$d or c�$e2 .

(a) e1�$d. If e2<c, then e1�d by transitivity of p" and
we are done��also, of course, if c�e2 . Hence, let us assume
that e2 co c. This implies that e2<+d. Since e1�$d, the
choice of e2 implies that e1�d.

(b) c�$e2 . If d<e1 , then c�e2 by transitivity of p" and
we are done��also, of course, if e1�d. Hence, let us assume
that e1 co d. This implies that c<&e1 , thus c has the same
successors in p and p$ by choice of e1 , and we conclude that
c�e2 . K

To conclude this section, we give a result for the represen-
tations of the augmentations of a given interval order. We
show a lemma first.

Lemma 2.10. Let p=(E, <) and p$=(E, <$) be inter-
val orders such that p$ is a proper augmentation of p with
<$=<�[(e1 , e2)]. Then there exists a closed representa-
tion w1 e+

2 e&
1 w2 of p and, for any such closed representation,

w1e&
1 e+

2 w2 is a representation of p$.

Proof. The last claim is obvious, once we have shown
the existence of w1e+

2 e&
1 w2 . In view of 2.7(i) and 2.6, such

a representation exists unless there is some e3 with
e+

2 � \e+
3 �\e&

1 . In this case, there exists some e4 with
e2 co e4<e3; furthermore, we have e3<e1 or e3 co e1 . In
this situation, we have e1<$e2 and e4<$e3 and, therefore,
e1�$e3 or e4�$e2 , since p$ is an interval order.

(a) e1�$e3 . Since we have not e1<e3 , this implies
e2 = e3 or e1 = e3 . The former implies e2 co e4 < e2 , a

contradiction. The latter gives e4<e1<$e2 , hence e4<$e2

and by definition of p$ also e4<e2 , a contradiction to
e2 co e4 .

(b) e4�$e2 . Since we have e2 co e4 , this implies e1=e4

or e2=e4 . The former implies e1<e3 , a contradiction in
view of e3<e1 or e3 co e1 . The latter implies e1<$e2<e3 ,
hence e1<$e3 and by definition of p$ also e1<e3 , again a
contradiction. K

Theorem 2.11. Let p be an interval order and w a closed
representation of p. Then v is a closed representation of some
interval augmentation p$ of p if and only if v can be obtained
from w by commuting starts, commuting ends as in 2.7(ii) and
moving starts to the end, i.e., transforming w1e+

2 e&
1 w2 to

w1e&
1 e+

2 w2 , where e1 {e2 . The same holds for arbitrary
representations if we additionally allow to delete ends from
the end as in 2.7(iii).

Proof. `` O '' In view of Theorem 2.7, this follows by
induction on the size of the order relation from 2.9 and 2.10.

`` o '' Obvious.

3. SWAPPING

In this section, we introduce and study an operation on
interval orders and their representations that we need for
our later results on splitn -refinements. From now on, we will
consider labelled partial orders, in particular labelled inter-
val orders (E, <, l), which consist of a partial or interval
order (E, <) and a labelling l : E � 7 of the events with
elements from some fixed set 7 of actions. The definitions
and results of Section 2 carry over to the labelled case,
where the labelled interval sequence (w, l) is a representation
of (E, <, l) if w is a representation of (E, <). When we
depict a labelled partial order, we replace the events by their
labels as in Fig. 2.

As explained in Section 2, we can view unlabelled (or,
analogously, labelled) interval orders as observations where
the events (or actions) have durations. Fig. 6 shows possible
intervals during which the actions of p and q of Fig. 2 might
take place. (To make the intervals visible, they are not
drawn on the same line, but above each other.)

When we observe the labelled interval order p, we see two
overlapping b-actions. The lower b starts first (namely,
before the end of a) and later overlaps with the upper b.
Then we see that the first b is followed by c, while the second
b is independent of c. In the setting of splitn -refinement, such

FIGURE 6

46 WALTER VOGLER

File: 643J 257807 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 6565 Signs: 5155 . Length: 56 pic 0 pts, 236 mm

an overlap of one event with another might lead to confus-
ing these events; in other words, we might get the impres-
sion that the upper b overtook the lower one and ended
earlier such that in fact we observed q instead of p. We can
obtain q from p by exchanging the successors of the two
b-labelled events. This swap-operation is not symmetric: in p,
the two b-events run in parallel, i.e., the one that starts first
also ends first; we can transform p to q, where we have some
overtaking, but not vice versa.

Definition 3.1. Let p=(E, <, l) be a labelled interval
order such that for some e1 , e2 # E we have e1 co e2 ,
e1<+e2 , e1<&e2 and l(e1)=l(e2). Let q=(E, <$, l) be
defined by

e<e$ and e1 {e{e2

e<e if {e1<e$ and e=e2

e2<e$ and e=e1 .

Then q is obtained from p by swapping (e1 and e2),
denoted by q # swap(p). If some q$ is obtained from p by
applying this swap-operation arbitrarily often (including
zero times), we write q # swap*(p).

This operation is actually easier to understand on the
level of interval sequences, where the starts and ends of
events are treated explicitly. For this reason, we will use
representations in our proofs, although we are ultimately
interested in system runs described as partial orders��for
which augmentation and prefix are intuitive notions. For
example, we will rely on representations in our proof that
the swap-operation on labelled interval orders is well-
defined, i.e. that q # swap(p) is a labelled interval order
again. But before defining the swap-operation on labelled
interval sequences, we note the following.

Proposition 3.2. If q # swap(p), then q{p (more
precisely, p and q are not isomorphic).

Proof. Let q be obtained by swapping e1 and e2 in
p=(E, <, l). Let e1 have n predecessors in p, and let X be
the set of events that have exactly n predecessors in p. Since
e1<+e2 , we conclude from Lemma 2.4 that e2 has more
than n predecessors and e2 � X. If some event e has different
predecessors in p and q, then we must have e1<e or e2<e;
i.e., e must have more than n predecessors in p and in q.
Hence, X is also the set of events that have exactly n prede-
cessors in q and any isomorphism from p to q must map X
to X.

Only e1 and e2 have different successors in p and in q.
Since e1<&e2 , we conclude from Lemma 2.4 that all events
in X have the same number of successors in p and q except
e1 which has strictly less successors in q than in p. Hence, no
isomorphism from p to q can map X to X, and we conclude
that no isomorphism exists. K

Definition 3.3. Let (w, l) be a labelled interval se-
quence such that for some e1 , e2 we have that l(e1)=l(e2),
e+

1 occurs before e+
2 in w, e+

2 before e&
1 and (provided e&

2

occurs at all) e&
1 before e&

2 . Let (v, l) be obtained from (w, l)
by exchanging e&

1 and e&
2 in w. Then we say that (v, l) is

obtained from (w, l) by swapping (e1 and e2), denoted by
(v, l) # swap(w, l). If some (v$, l) is obtained from (w, l) by
applying this swap-operation arbitrarily often (including
zero times), we write (v$, l) # swap*(w, l). K

Obviously, (v, l) as defined above is a labelled interval
sequence. First we show the close interrelation between the
swap-operation on interval orders and that on interval
sequences. In particular, this will imply that q # swap(p) is
indeed a labelled interval order.

Lemma 3.4. Let p be a labelled interval order. Then the
following five statements are equivalent:

(i) q # swap(p) or p=q.

(ii) For each representation (w, l) of p there exists some
representation (v, l) of q such that (v, l) # swap(w, l) or
(v, l)=(w, l).

(iii) For each representation (v, l) of q there exists some
representation (w, l) of p such that (v, l) # swap(w, l) or
(v, l)=(w, l).

(iv) There exists some closed representation (w, l) of p
and some representation (v, l) of q such that (v, l) #
swap(w, l) or (v, l)=(w, l).

(v) There exists some representation (w, l) of p and some
representation (v, l) of q such that (v, l) # swap(w, l) or
(v, l)=(w, l).

Proof. (i) O (ii) Let (w, l) be a representation of
p=(E, <, l). If p=q, we can choose (v, l)=(w, l). Hence,
let q=(E, <$, l) be obtained from p by swapping e1 and e2 .
Since e1<+e2 , e+

1 occurs before e+
2 in w; since e1 co e2 , e+

2

occurs before e&
1 in w or e&

1 does not occur; since e1<&e2 ,
e&

1 occurs before e&
2 in w or e&

2 does not occur; e1<&e2

shows that e&
1 does not belong to the last co\-equivalence

class, hence e&
1 does occur in w. Thus, the swapping of e1

and e2 in (w, l) is defined and leads to some (v, l). We have
to show that (v, l) represents q, i.e. e<e if and only if e&

occurs before e$+ in v for all e, e$ # E.
The position of any e$+ is the same in v and w. If

e1 {e{e2 , then the position of e& is the same, too; hence,
e<e if and only if e<e$ (by definition of swap(p)) if and
only if e& occurs before e$+ in w (since (w, l) represents p)
if and only if e& occurs before e$+ in v. For the case e=e1

we have: e1<e if and only if e2<e$ if and only if e&
2 occurs

before e$+ in w if and only if e&
1 occurs before e$+ in v (by

definition of swap(w, l)). The case e=e2 is analogous.

(ii) O (iii) If p=q, we can choose (w, l)=(v, l); hence
let us assume that p{q. First let (v, l) be a closed represen-
tation of q, and furthermore by (ii) let (w$, l) and (v$, l) be

47SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257808 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 6299 Signs: 4963 . Length: 56 pic 0 pts, 236 mm

closed representations of p and q such that (v$, l) can be
obtained from (w$, l) by swapping e1 and e2 . (v, l) can be
obtained from (v$, l) by commuting starts and commuting
ends; we can perform the same commutations in (w$, l) to
obtain some (w, l) where swapping e1 and e2 gives (v, l).

The only problem would arise if we wanted to commute
e+

1 and e+
2 or e&

1 and e&
2 . In this case we would have some

representation (w$, l)=(w1 e+
1 e+

2 w2 , l) of p (or similarly for
e&

1 and e&
2) and swapping e1 and e2 would give a represen-

tation (v$, l)=(w1e+
1 e+

2 w$2 , l) of q. Commuting e+
1 and e+

2

in (w$, l) still gives a representation (w1 e+
2 e+

1 w2 , l) of p, but
this representation is isomorphic to (v$, l) by exchanging e1

and e2 ; hence p=q (or, more precisely, p is isomorphic
to q), contradicting our assumption.

It remains the case that (v, l) is not closed. Any given
representation (v, l) of q can be obtained from a closed
representation (v$, l) by deleting ends from the end. Choose
(w$, l) with (v$, l) # swap(w$, l) and delete the corresponding
ends from w$ to obtain some representation (w, l) of p with
(v, l) # swap(w, l).

(iii) O (iv) obvious, since in (iii) we can choose (v, l) to
be closed, which implies closedness of (w, l).

(iv) O (v) obvious

(v) O (i) Let (w, l) be a representation of p=(E, <, l),
and let (v, l) be a representation of q=(E, <$, l). If
(v, l)=(w, l), then p=q. Hence, let (v, l) be obtained from
(w, l) by swapping e1 and e2 . Since e+

1 occurs before e+
2 in

w, we cannot have e2<+e1 , thus e1<+e2 or e+
1 co \e+

2 . In
the latter case, let w$ be obtained by exchanging e+

1 and e+
2

in w. Since w$ can also be obtained by commuting starts in
w, we know that (w$, l) also represents p. Now w$ and v are
isomorphic��the corresponding bijection simply exchanges
e1 and e2 . Hence, p=q (or, more precisely, p and q are
isomorphic).

Thus, we can assume e1<+e2 which implies that not
e2<e1 . Since e+

2 occurs before e&
1 in w, we also do not have

e1<e2 , and we conclude that e1 co e2 . Since e&
1 occurs

before e&
2 in w or e&

2 does not occur in w at all, we cannot
have e2<&e1 ; thus, e1<&e2 or e&

1 co\ e&
2 . In the latter

case, v can be obtained from w by commuting ends��or, if
e&

2 does not occur in w, we have that v and w can be
obtained from some closed representation of p by commut-
ing ends and deleting ends from the end. Hence, p=q in this
case.

Thus, we can now assume e1<+e2 , e1 co e2 and e1<&e2 ,
hence swapping of e1 and e2 in p is defined and gives some
q$ # swap(p). The proof that (v, l) represents q$, hence
q # swap(p), is the same as above. K

In the above proof, we have seen that applying the swap-
operation to a labelled interval sequence might lead to one
that represents the same labelled interval order��corres-
ponding to the fact that labelled interval orders are more

abstract than labelled interval sequences. This possibility is
the reason for including the clauses ``p=q'' and ``(v, l)=
(w, l)'' in the lemma.

In this context, it might be interesting to note that the
swap-operation can be applied only finitely often. Let
(v, l) # swap(w, l); let w& be obtained from w by deleting all
starts and similarly for v&. Then w& is lexicographically
smaller than v& with respect to the ordering O defined by:
e&

1 Oe&
2 if e+

1 occurs before e+
2 in w or, which is the same,

in v. Thus, swapping can be applied to a labelled interval
sequence only finitely often, and this carries over to labelled
interval orders by Lemma 3.4. (Observe that for q # swap(p)
we have q{p by 3.2 and p and q cannot have a representa-
tion in common.)

As a consequence of Lemma 3.4, we see that swapping for
labelled interval orders is well-defined:

Proposition 3.5. Let p be a labelled interval order and
q # swap(p). Then q is a labelled interval order, too.

Proof. Lemma 3.4 shows that q has a representation;
hence it must be a labelled interval order. K

Furthermore, we can translate Lemma 3.4 to the case of
iterated swapping.

Theorem 3.6. Let p be a labelled interval order. Then the
following five statements are equivalent:

(i) q # swap*(p).

(ii) For each representation (w, l) of p there exists some
representation (v, l) of q with (v, l) # swap*(p).

(iii) For each representation (v, l) of q there exists some
representation (w, l) of p with (v, l) # swap*(w, l).

(iv) There exists some closed representation (w, l) of p
and some representation (v, l) of q such that (v, l) #
swap*(w, l).

(v) There exists some representation (w, l) of p and some
representation (v, l) of q such that (v, l) # swap*(w, l).

Proof. (i) O (ii), (i) O (iii) and (v) O (i) follow induc-
tively from 3.4; (ii) O (iv), (iii) O (iv), and (iv) O (v) are
obvious.

We close this section by two results on the interplay of
swapping with augmenting labelled interval orders and with
the prefix-relation.

Proposition 3.7. Let p, q, and q$ be labelled interval
orders such that q # swap*(p) and q$ is an augmentation of q.
Then there exists an interval augmentation p$ of p with
q$ # swap*(p$).

Proof. It is enough to consider the case that q is
obtained from p by one swap-operation, say by swapping e1

48 WALTER VOGLER

File: 643J 257809 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 6765 Signs: 5476 . Length: 56 pic 0 pts, 236 mm

and e2 . Furthermore, by Theorem 2.9, it is enough to con-
sider the case that q$ is obtained by adding one pair to the
ordering relation of q, say (e3 , e4). By Lemma 2.10, q has a
closed representation (v1e+

4 e&
3 v2 , l) and q$ is represented

by (v1e&
3 e+

4 v2 , l). By Theorem 3.6, there is a representation
(w, l) of p such that swapping e1 and e2 in (w, l) gives
(v1 e+

4 e&
3 v2 , l).

If [e1 , e2] and [e3 , e4] have no event in common, it is
obvious that w=w1 e+

4 e&
3 w2 , and (w1e&

3 e+
4 w2 , l) repre-

sents some augmentation p$ of p such that swapping e1 and
e2 in (w1 e&

3 e+
4 w2 , l) is defined and yields (v1e&

3 e+
4 v2 , l),

thus q$ # swap*(p$). It is not hard to see that the same argu-
ment works for e4 # [e1 , e2] and e3 � [e1 , e2].

If e4 � [e1 , e2] but e3 # [e1 , e2], say e3=e1 , then (w, l)=
(w1e+

4 e&
2 w2 , l) represents p, (v1e+

4 e&
1 v2 , l) represents q

and (v1e&
1 e+

4 v2 , l) represents q$. Now (w1e&
2 e+

4 w2 , l)
represents an augmentation p$ of p, swapping of e1 and e2 is
defined and it yields (v1e&

1 e+
4 v2 , l), i.e., q$ # swap*(p$).

Finally, we have to consider the case [e1 , e2]=[e3 , e4].
Since after swapping e1 and e2 the starts and ends of these
events have to appear in v1e+

4 e&
3 v2 in the order

e+
1 , e+

2 , e&
2 , e&

1 , we would conclude that e4=e2=e3; thus,
this final case cannot occur. K

Proposition 3.8. Let p, q, and q$ be labelled interval
orders such that q # swap(p) and q$ is a prefix of q. Then there
exists a prefix p$ of p such that q$ # swap(p$) or q$ is an
augmentation of p$.

Proof. Let q be obtained by swapping e1 and e2 in p.
There are several cases:

(a) Neither e1 nor e2 belongs to q$. Then q$ is a prefix of
p, too, and, we can choose p$=q$; q$ is an augmentation of
p$ in this case.

(b) Both e1 and e2 belong to q$. Choose p$ as the prefix
of p which has the same events as q$. (Note that these events
form a left-closed set in p, since an event has a predecessor
in p which is not a predecessor in q only if this predecessor
is e1 or e2 , and both of these are in p$.) From Lemma 2.4 it
is clear that we either can swap e1 and e2 in p$ to obtain q$
or e1 and e2 have the same successors in p$. In the latter case
p$=q$.

(c) e1 , but not e2 belongs to q$. Since e2 is missing in q$,
all its successors in q are missing, too. These are the suc-
cessors of e1 in p and subsume the successors of e2 in p by
Lemma 2.4. Hence, e1 has no successors in q$ and q$ is a
prefix of p.

(d) e2 , but not e1 belongs to q$. This is the most interest-
ing case, since due to this case we really have to involve
augmentation in 3.8. Let E$ be the set of events of q$. Choose
p$ as the prefix of p with event set E"=E$&[e2] _ [e1].

First, we have to check that E" is left-closed in p. So let
e<e$ # E" in p. If [e, e$] & [e1 , e2]=<, then e<e$ # E$ in

q, hence e # E$ and e # E". If e$=e1 , then e is also a prede-
cessor of e2 in p by 2.4, hence this holds in q, and e # E$ and
e # E" follow. Since e2 � E" and e1 # E", it remains to check
the case e=e2 . In this case, e$ is a successor of e2 in p, hence
also of e1 in q; we get the contradiction e1 # E$.

The ordering relations of p$ and q$ coincide except for e1

and e2 . If e<e1 in p$, then e<e2 in p by 2.4, hence also
e<e2 in q and q$. If e1<e in p$, then also in p; hence e2<e
in q and q$. This shows that if we isomorphically rename e1

to e2 in p$, we get another representative of p$, which has q$
as an augmentation. Thus, q$ is an augmentation of p$. K

Remark. (i) To see that, in Proposition 3.8, q$ might
indeed be a proper augmentation, consider p and q in Fig. 2.
Choose q$ as the prefix of q which has one a-, one b-, and
one c-labelled event. The only possible prefix p$ of p consists
of the c-labelled event and its two predecessors.

(ii) We have seen that the operations of swapping and
augmenting can just as well be performed on the level of
representations as on the level of interval orders. It is inter-
esting to note that such a correspondence does not hold for
the prefix-relation. Consider again the prefix of p in Fig. 2
consisting of the c-labelled event and its two predecessors,
and let (v, l) be a representation of this prefix. In (v, l), we
obviously have only one start of a b-labelled event; further-
more, the end of this event occurs in v, since this end must
occur before the start of the c-labelled event. Let (w, l) be
any representation of p. Since in p there are two concurrent
b-labelled events, we must have two starts of b-labelled
events in (w, l) before the first end of such an event. Hence,
v cannot be a prefix of w. Compare [Vog92] and the trunk-
relation mentioned there.

4. PETRI NETS, INTERVAL SEMIWORDS,
AND SPLITTING

In this section, a very brief introduction to Petri nets is
given. For further information the reader is referred to, e.g.,
[Pet81, Rei85]. We will deal with safe Petri nets (place�
transition-nets) whose transitions are labelled with actions
from some infinite alphabet 7 or with the empty word *.
These actions are left uninterpreted; the labelling only
indicates that two transitions with the same label from 7
represent the same action occurring in different internal
situations, while *-labelled transitions represent internal,
unobservable actions. We assume that 7 also contains for
each a # 7 and i # N the action ai .

Thus, a labelled Petri net N=(S, T, W, lab, MN) (or just
a net for short) consists of finite disjoint sets S of places and
T of transitions, the weight function W : S_T _ T_S �
[0, 1], the labelling lab: T � 7 _ [*], and the initial mark-
ing MN : S � N0 . When we introduce a net N, then we
assume that implicitly this introduces its components

49SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257810 . By:SD . Date:30:05:96 . Time:10:51 LOP8M. V8.0. Page 01:01
Codes: 5925 Signs: 4739 . Length: 56 pic 0 pts, 236 mm

S, T, In general, we will not distinguish isomorphic nets
(just as for partial orders).

v A multiset over a set X is a functlon + : X � N0 . We
identify x # X with the multiset that is 1 for x and 0
everywhere else. For multisets, multiplication with scalars
from N0 and addition is defined elementwise.

v A marking is a multiset over S; a step is a multiset
over T. A step + is enabled under a marking M, denoted by
M[+) , if �t # ++(t) } W(s, t)�M(s) for all s # S. If M[+)
and M$(s)=M(s)+�t # + +(t)(W(t, s)&W(s, t)), then we
denote this by M[+)M$ and say that + can occur or fire
under M, yielding the follower marking M$. We also say that
the transitions of + can fire concurrently. Since transitions
are special steps, this also defines M[t) and M[t)M$ for
t # T.

v This definition of enabling and occurrence can be
extended to sequences as usual: a sequence w of steps is
enabled under a marking M, denoted by M[w) , and yields
the follower marking M$ when occurring, denoted by
M[w)M$, if w=* and M=M$ or w=w$+, M[w$)M" and
M"[+)M$ for some marking M". If w is enabled under the
initial marking, then it is called a transition step sequence,
or��in the case where w # T*��a transition firing sequence.

We can extend the labelling of a net to steps by
lab(+)=�t # T, lab(t){* +(t) } lab(t), where the empty sum
equals the empty word. Then we can extend the labelling
also to sequences of steps or transitions as usual, i.e.,
homomorphically; note that internal actions are automati-
cally deleted in the labelling of a sequence. Next, we lift the
enabledness and firing definitions to the level of actions:

v A sequence v of multisets over 7 is image enabled
under a marking M, denoted by M[v)) , if there is some w
with M[w) and lab(w)=v. If M=MN , then v is called an
action step sequence or just step sequence; if w # T*, then v
is called an action firing sequence or just firing sequence. We
call two nets step-sequence equivalent if they have the same
step sequences. We call two nets language equivalent if they
have the same firing sequences.

v For a marking M the set [M) of markings reachable
from M is defined as [M$ | _w # T*: M[w)M$]. A marking
is called reachable if it is reachable from MN . The net is safe
if M(s)�1 for all places s and reachable markings M.

v Two not necessarily distinct transitions t1 and t2 are
concurrently enabled under some marking M if M[t1+t2).
A transition t is self-concurrent if M[2t) for some reachable
marking M. An action a # 7 is autoconcurrent if M[2a)) for
some reachable marking M.

General Assumption. All nets considered in this paper
are safe and without isolated transitions.

This implies that all nets in this paper are free of self-con-
currency, but it does not exclude autoconcurrency.

FIGURE 7

The purpose of studying ``true concurrency'' is to dis-
tinguish the independent execution of actions from their
execution in arbitrary order. The language of a net only cap-
tures the latter view of concurrency; e.g., the nets of Fig. 7
are language equivalent, but obviously the first net can per-
form actions a and b independently of each other, while the
second cannot. Petri net theory has a long tradition of
studying ``true concurrency'' using partial orders. Most
often a partial order semantics is given by so-called pro-
cesses; see, e.g., [BF88]. In this approach the partial order
models causality; consequently, the semantics of the nets in
Fig. 7 are incomparable.

Another view is that concurrency is more than arbitrary
interleaving but includes it. From this point of view the
semantics of the first net of Fig. 7 should include the seman-
tics of the second net. This idea is formalized in the (trans-
ition) partial word semantics of [Gra81], which coincides
with the (transition) semiword semantics of [Sta81] for the
nets we consider here since these are free of self-concurrency.
A transition semiword of a net N is a partial order labelled
with transitions of N; any set of pairwise concurrent
elements of this partial order represents a step that can be
fired provided the precedences prescribed by the partial
order are observed.

v Let N be a net, M a marking of N, and p=(E, <, l) a
partial order labelled over T. We call p a transition semiword
of N enabled under M if for all disjoint subsets B and C of E
we have: If all elements of C are pairwise concurrent and B
and B _ C are left-closed, then l is injective on C and the step
l(C) is enabled under M+�e # BW(l(el), .)&W(., l(e)), i.e.,

\s # S : :
e # C

W(s, l(e))�M(s)+ :
e # B

W(l(e), s)&W(s, l(e)).

We write M[p). If p is enabled under MN we simply say
that p is a transition semiword of N.

Figure 8 shows a net and one of its transition semiwords;
some sets B and C are indicated, and indeed, we can fire the
step t3+t4 if we fire t1 and t2 first.

FIGURE 8

50 WALTER VOGLER

File: 643J 257811 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 5879 Signs: 4566 . Length: 56 pic 0 pts, 236 mm

It is easy to see that the set of transition semiwords of
a net is closed under augmentation; i.e., if p is an augmen-
tation of a transition semiword q, then p is a transition
semiword, too. This shows that concurrency in transition
semiwords is just seen as a possibility; possibly concurrent
transitions can also be performed sequentially.

For safe nets the so-called event structures of processes
are just the least sequential transition semiwords, see
[Kie88, Vog92]. In these transition semiwords, the
ordering can be seen as modelling causality.

v The image q of a partial order p=(E, <, l) labelled
over T is (E$, <$, l $) where E$=[e # E | lab(l(e)){*],
<$=< |E$_E$ and l $=lab b l |E$. If p is a transition semi-
word of N, then q is an action semiword or just a semiword
of N. Two nets are semiword equivalent if they have the same
semiwords.

Next, we combine the definitions of semiwords and inter-
val orders.

v A transition semiword (E, <, l) of a net N is an inter-
val transition semiword of N if (E, <) is an interval order; its
image is an interval action semiword or an interval semiword
for short. The set of interval semiwords of N is denoted by
ISW(N). Two nets are interval-semiword equivalent if they
have the same interval semiwords.

Since the elements of an interval order correspond to
closed intervals of real numbers, an interval semiword can
intuitively be seen as the observation of a system run where
each firing takes some time. Hence, they give a partial order
semantics which is not so much related to causality, but
rather has a temporal flavor.

Instead of the interval semiwords themselves, we can also
consider their representations:

v An interval word of a net N is a representation of an
interval semiword of N; the set of interval words is denoted
by IW(N). Two nets are interval-word equivalent if they
have the same interval words.

Interval words of Petri nets can also be defined inde-
pendently of interval semiwords, see [Vog92]; they are also
called ST-traces, see [Gla90]. Since a labelled interval
order can be reconstructed from any of its representations,
interval-word and interval-semiword equivalence obviously
coincide.

The operation of action refinement, see [Vog92] (also for
additional references), is meant to support the hierarchical
design of systems. An action refinement ref assigns to each
action a # 7 a subsystem ref (a). From a net N, we obtain the
net ref (N) by replacing each a-labelled transition by a
separate copy of the net ref (a).

If one is interested in action refinement, one should use a
semantics that supports this operation in the following way:
it should be possible to determine the semantics of ref (N)

from the refinement ref and the semantics of N, i.e., without
knowing N itself. Or equivalently, we require: if nets are
equivalent with respect to the semantics in use, then the
refined nets should be equivalent again, i.e., the equivalence
induced by the semantics should be a congruence with
respect to action refinement. Process, semiword, and inter-
val-semiword equivalence are such congruences [Vog91,
Vog92]. Only interval-semiword equivalence has the
following additional property: if nets N and N$ are not inter-
val-semiword equivalent, then there exists a refinement ref
such that ref (N) and ref (N$) are not language equivalent.
Hence, if we take the language as a starting point, then
interval semiwords make exactly those additional distinc-
tions between nets which are necessary to get a congruence.
Expressed in a technical way, interval-semiword equiv-
alence is fully abstract with respect to language equivalence
and action refinement, i.e., it is the coarsest congruence for
action refinement that is finer than language equivalence.

In this paper, we are only interested in a very simple, but
natural sort of refinement, namely in splitting. In such a
refinement, an action is performed in several phases, i.e., we
replace a # 7 with a sequence a1 a2 } } } an . Splitting is one
way to express that an action has a duration. Note that we
do not refine internal actions.

Definition 4.1. Let N be a net, n # N. Then splitn(N)=
(Sn , Tn , Wn , labn , Msplitn(N)), the splitting of N into n
phases, is defined by

Sn=S _4 [(si , t) | i=1, ..., n&1, t # T with lab(t){*]

Tn=[(t, j) | t # T with lab(t){*, j=1, ..., n]

_4 [t # T | lab(t)=*]

Wn has value 1 for the following pairs (and 0 otherwise)

((t, i), (si , t)) i=1, ..., n&1

((si , t), (t, i+1)) i=1, ..., n&1

(s, (t, 1)) if W(s, t)=1

((t, n), s) if W(t, s)=1

(s, t) if W(s, t)=1 and lab(t)=*

(t, s) if W(t, s)=1 and lab(t)=*

labn(t, j)=lab(t) j

labn(t)=* if lab(t)=*

1 if s # S and MN(s)=1

Msplitn(N)(s)={1
0

if s # S and MN (s)=1
otherwise.

51SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257812 . By:SD . Date:30:05:96 . Time:10:50 LOP8M. V8.0. Page 01:01
Codes: 5311 Signs: 3979 . Length: 56 pic 0 pts, 236 mm

FIGURE 9

We call nets N, N$ splitn -language equivalent or simply
splitn -equivalent if splitn(N) and splitn(N$) are language
equivalent.

Figure 7 shows two nets that are language equivalent or,
which is the same, split1-equivalent; but they are not split2 -
equivalent, since only the net on the left can perform
a1 b1 a2 b2 after splitting. Figure 9 shows the results of
applying split2 .

Figure 10 shows two nets that are split2- but not split3 -
equivalent. These nets are not split3-quivalent, since only
the net on the left can perform w=b1b2 a1a2a3b1 b3c1 after
application of split3 . It is not so easy to see that they are
split2 -equivalent; but it is feasible to check all possible firing
sequences of the split nets. (Observe that the net on the left
can essentially perform the semiword on the left of Fig. 11,
while the net on the right can perform one of the semiwords
in the middle or on the right of Fig. 11.) The essential point
is that both nets can perform b1a1a2b1 b2 c1 after applica-
tion of split2 , which is somewhat similar to w above. Note
that b can be performed autoconcurrently; without
autoconcurrency, split2- and split3-equivalence coincide.

More generally, it has been shown in [GV95] that for all
n # N there are nets which are splitn- but not splitn+1-equiv-
alent. On the other hand, it is not difficult to see that
splitn+1-equivalence implies splitn -equivalence: for some
net N and n # N, consider a firing sequence of splitn+1(N)
where each occurrence of any an , a # 7, is immediately suc-
ceeded by an+1. If the an corresponds to some (t, n), then
after firing (t, n) the only enabled an+1-labelled transition is
(t, n+1) . Hence, if we contract each subsequence anan+1 to
an , we get a firing sequence of splitn(N). Vice versa, each
firing sequence of splitn(N) can be obtained this way. We
conclude:

FIGURE 10

FIGURE 11

Theorem 4.2. For all n # N, splitn+1 -equivalence implies
splitn -equivalence, but not the other way round.

Remark. We consider only split-refinements where each
visible action is split into the same number of phases. This
is no restriction for the following reason: if all actions of N
are split into at most n phases, we can obtain the language
of the split net from the language of splitn(N) in much the
same way as above by contracting ak } } } an to ak for an
action a that is split into k<n phases. Hence, splitn -equiv-
alence implies equivalence with respect to arbitrary
splittings into at most n phases.

5. A NEW CONGRUENCE FOR SPLITTING

From the general result that interval-semiword equiv-
alence is fully abstract for language equivalence and action
refinement, it is clear that, in particular, it is a congruence
for splitting. In this paper, we want to determine the coar-
sest such congruence, i.e., one that is fully abstract with
respect to splitting and language equivalence. In other
words, we want to determine the limit of the sequence of the
increasingly finer splitn -equivalences.

On the level of bisimulation, a corresponding result has
been shown. ST-bisimulation is a variant of bisimulation
that corresponds to interval (semi-)words. ST-bisimilarity
is fully abstract with respect to action refinement and
bisimilarity [Gla90, Vog93], and it is also fully abstract
with respect to splitting and bisimilarity [GL91].

On the language level, it will turn out that such a coin-
cidence does not hold. Consider the net N of Fig. 12; it can
perform the interval semiword in the middle of Fig. 12,
and we can conclude this from the firing sequence
a1 b1 b2 a2a3b1 b3 c1 of split3(N). This sequence shows that
some b starts independently of some a; after a, but not after
the first b, a second b starts. The essential point is that b3 ,
which comes next, must be the end of the first b, since the
second b has only performed its first phase; hence, c starts
after a and the first b, but independently of the second b. If
we try to construct a similar firing sequence for the labelled
interval order on the right, we start with a1b1 b2 a2 a3b1 as

FIGURE 12

52 WALTER VOGLER

File: 643J 257813 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 5943 Signs: 4527 . Length: 56 pic 0 pts, 236 mm

before; but now we have to continue with b2b3c1 . In the
resulting sequence, we cannot see anymore which b ends
before c. In fact, a1b1b2a2a3b1 b2b3c1 # split3(N) although
the labelled interval order on the right is not an interval
semiword of N. Instead, it is obtained from the interval
semiword in the middle by swapping; this observation
motivates the new semantics, which is defined by closing
ISW(N) under swapping. (Similarly, transition semiwords
can be obtained by closing the set of event structures of
processes under augmentation, as remarked above.)

Definition 5.1. The swap-interval-semiword semantics
of a net N is the set swap-ISW(N) of all labelled interval
orders q for which there exists some p # ISW(N) with
q # swap*(p). We also call the elements of swap-ISW(N)
swap-semiwords. If we have swap-ISW(N)=swap-ISW(N$)
for nets N and N$, we call these nets swap-semiword equiv-
alent or simply swap equivalent.

The proof that swap equivalence is the fully abstract con-
gruence we are looking for is based on interval sequences.
Hence, as a first step, we characterize swap equivalence with
these sequences

Definition 5.2. The swap-interval-word semantics of
a net N is the set swap-IW(N) of all labelled interval
sequences (v, l) for which there exists some (w, l) # IW(N)
with (v, l) # swap*(w, l). We also call the elements of swap-
IW(N) swap-words. If swap-IW(N)=swap-IW(N$) for nets
N and N$, we call these nets swap-word equivalent.

Theorem 5.3. (i) For a net N, swap-IW(N) is the set of
all representations of elements of swap-ISW(N).

(ii) Swap-word and swap-semiword equivalence coincide.

Proof. (i) By Theorem 3.6(i) O (ii), a representation
of some q # swap-ISW(N) is an element of swap-IW(N). By
Theorem 3.6(v) O (i), each element of swap-IW(N)
represents some q # swap-ISW(N).

(ii) immediate from (i).

Lemma 5.4.12 in [Vog92] shows how, for any refinement
ref, we can determine the interval words of some ref (N)
from the interval words of N. Here, we are only interested in
splitting instead of general refinement, and we are only
interested in the language of the split net, not in its interval
words. Accordingly, we adapt Lemma 5.4.12 in [Vog92] to
our setting and our slightly different notation.

Definition 5.4. Let (w, l) be a labelled interval
sequence over E, n�2. A concrete n-refinement of (w, l)
is a sequence v # (7_E)* such that:

�� If (b, e) occurs in v, then b=ak for a=l(e) and some
k�n.

�� Define a morphism proj : (7_E)* � (E \)* by

e+ if b=a1

proj(b, e)={e& if b=an

* otherwise.

Then proj(v)=w.

�� For each e # E, define a morphism proje : (7_E)* �
7* by

proje (b, e$)={b
*

if e=e$
if e{e$.

Then proje(v)=a1a1 } } } ak for some k�n.

An abstract n-refinement of (w, l) is some abs(v), where v
is a concrete n-refinement of (w, l) and abs : (7_E)* � 7*
is a morphism defined by abs(b, e)=b.

The condition proj(v)=w says that the first and the last
phases in v exactly match the starts and ends in w. The con-
dition on proje (v) shows that e is in v subdivided into a
suitable sequence of phases. In a concrete n-refinement, the
second component tells us which ai are phases of the same
occurrence of action a. This is an information we do not
have in abs(v), and neither in a firing sequence of splitn(N).
Formally, abs depends on the event set E and should conse-
quently be indexed with E. We will use abs to denote any of
these functions.

With these definitions, Lemma 5.4.12 of [Vog92] gives:

Proposition 5.5. Let N be a net, n�2. Then L(splitn(N))
is the set of all abstract n-refinements of interval words of N.

With this result, we will show that swap-equivalence
implies splitn -equivalence, the first half of our main result.
The proof consists essentially of the following lemma.

Lemma 5.6. Let (w, l) be a labelled interval sequence,
(w$, l) # swap(w, l), and v an abstract n-refinement of (w$, l)
for some n�2. Then v is an abstract n-refinement of (w, l),
too.

Proof. Let (w$, l) be obtained from (w, l) by swapping
e1 and e2 ; i.e., e+

1 , e+
2 , e&

1 , e&
2 occur in w in this order (or

e&
2 does not occur at all) while in w$ they occur in the order

e+
1 , e+

2 , e&
2 , e&

1 (or e&
1 does not occur at all). Furthermore,

e1 and e2 have the same label, say a.
Let v$1 be a concrete n-refinement of (w$, l) with

abs(v$1)=v. By the above (a1 , e1), (a1 , e2), (an , e2) and
(an , e1) occur in v$1 in this order (or (an , e1) does not occur
at all). For each prefix of v$1 , consider the pair (j, k) where
j, k resp., is the largest index i of some (ai , e1), (ai , e2) resp.,
occurring in the prefix (or 0 if otherwise undefined). Con-
sidering the prefixes one after the other, these pairs increase

53SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257814 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 6083 Signs: 4677 . Length: 56 pic 0 pts, 236 mm

monotonously from (0, 0) over (1, 0) and (j, 1) for some
j�1 to reach some (j, n) with j<n; thus, they must have
some value (k, k) inbetween. Hence, we can find v$2 with
v$1=v$2v$3 and k<n such that (ak , e1) and (ak , e2) occur in
v$2 but neither (ak+1 , e1) nor (ak+1, e2). If we construct v3

from v$3 by replacing each (al , e1) by (al , e2) and vice versa,
l>k, then v1=v$2v3 is a concrete n-refinement of (w, l) with
abs(v1)=v. The result follows. K

Lemma 5.7. Let N be a net, n�2. Then L(splitn(N)) is
the set of all abstract n-refinements of swap-interval-words
of N.

Proof. By 5.5, this set of abstract n-refinements contains
L(splitn(N)). Vice versa, it follows from 5.6 that an abstract
n-refinement of a swap-interval-word of N is also one of an
interval word of N, hence in L(splitn(N)). K

Theorem 5.8. Swap-equivalence implies splitn -equiv-
alence for all n # N.

Proof. The result follows directly from 5.7 and 4.2.
(Recall that swap-equivalence is the same as swap-interval-
word equivalence). K

The reverse implication is a little harder to prove. For this
proof, we have to add some information to an interval
sequence and to extend some notions to this detailed ver-
sion of interval sequences. We leave this proof for the next
section, and just state the main result:

Theorem 5.9. (i) Nets are swap-equivalent if and only
if they are splitn -equivalent for all n # N.

(ii) Swap-equivalence is fully abstract with respect to
language equivalence and splitting.

(iii) Swap-equivalence is fully abstract with respect to
language equivalence and split2 .

Proof. (i) Theorems 5.8 and 6.8.

(ii) This follows from (i) once we have shown that
swap-equivalence is a congruence for splitting. Hence, let
nets N1 , N2 be swap-equivalent and let k # N. The nets
splitn(splitk(Nm)) and splitn } k(Nm), m=1, 2, are isomor-
phic, except that the actions (ai) j of splitn(splitk(Nm)), where
i=1, ..., k and j=1, ..., n, have to be renamed bijectively to
a(i&1) } n+j , which are the actions of splitn } k(Nm). By (i),
splitn } k(N1) and splitn } k(N2) are language equivalent.
Therefore, splitk(N1) and splitk(N2) are splitn -equivalent for
all n # N, and by (i) they are swap-equivalent.

(iii) Similarly, observe that a congruence for split2 is
a congruence for splitting in any 2k, hence for arbitrary
splitting. K

In order to check swap-equivalence, it seems that we have
to consider all interval semiwords of a net and all labelled
interval orders that can be obtained from them by iterated

swapping. If we want to check an example as the one given
in the introduction, such considerations are not feasible.
The following observation helps a little.

Theorem 5.10. If, for nets N1 and N2 , ISW(N1)�
swap-ISW(N2), then we have swap-ISW(N1)�
swap-ISW(N2).

Proof. For p1 # swap-ISW(N1) there exists by definition
some p2 # ISW(N1) with p1 # swap*(p2). By assumption,
p2 # swap-ISW(N2) and, hence, there exists p3 # ISW(N2)
with p2 # swap*(p3). We conclude p1 # swap*(p3) and
p1 # swap-ISW(N2). K

Theorem 5.10 shows that in order to prove swap-equiv-
alence it suffices to check that all interval semiwords of one
net are contained in the swap-ISW semantics of the other
(and vice versa). But we can do better than this, as the next
two theorems show.

Theorem 5.11. (i) For a net N, swap-ISW(N) is closed
under interval augmentation; i.e., if p is an interval augmenta-
tion of q # swap-ISW(N), then p # swap-ISW(N).

(ii) Let N1 and N2 be nets such that all least sequential
interval semiwords of N1 are contained in swap-ISW(N2).
Then swap-ISW(N1)�swap-ISW(N2).

Proof. (i) Let q # swap-ISW(N); i.e., there exists some
p # ISW(N) with q # swap*(p). Let q$ be an interval
augmentation of q. By Proposition 3.7, there exists an inter-
val augmentation p$ of p with q$ # swap*(p$). Since ISW(N)
is closed under interval augmentation, we conclude that
p$ # ISW(N) and q$ # swap-ISW(N).

(ii) By assumption and (i), ISW(N1)�swap-ISW(N2)
and the result follows from 5.10. K

Theorem 5.12. (i) For a net N, swap-ISW(N) is closed
under taking prefixes.

(ii) Let N1 and N2 be nets such that each least sequential
interval semiword p of N1 is a prefix of an element of swap-
ISW(N2). Then swap-ISW(N1)�swap-ISW(N2).

Proof. (i) Let q$ be a prefix of q # swap-ISW(N), i.e.,
there exist p1 # ISW(N) and p2 , ..., pn such that
pi+1 # swap(pi), i=1, ..., n&1, and pn=q. By Proposition
3.8 we can find a sequence p$1 , ..., p$n of labelled interval
orders such that each p$i is a prefix of pi , p$n=q$ and, for
i=1, ..., n&1, p$i+1 # swap(p$i) or p$i+1 is an augmentation
of p$i . Since ISW(N) is closed under taking prefixes, we have
p$1 # ISW(N)�swap-ISW(N). Since swap-ISW(N) is by
definition closed under swapping and by Theorem 5.11
closed under augmentation, we conclude that all p$i��
including q$��are in swap-ISW(N).

(ii) follows from (i) and 5.11(ii).

54 WALTER VOGLER

File: 643J 257815 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 5974 Signs: 4808 . Length: 56 pic 0 pts, 236 mm

In order to show the usefulness of these results, we apply
them to the nets discussed in the introduction. For this
application, we also need the relation between processes
and semiwords. We do not define processes here and refer
the reader to, e.g., [Vog92]; but hopefully, the following
discussion will be intuitively clear also for those readers who
do not know processes.

Processes describe runs of Petri nets. A process consists of
events, representing transition firings, and of conditions,
representing tokens that appear during a run of a net. A pro-
cess induces a partial order on the events; if we label the
events with the corresponding transitions, this labelled par-
tial order is the event structure of the process. If we change
the labelling to the corresponding actions and delete events
that correspond to internal actions, then we obtain the
action structure of the process. This action structure shows
the actions that occurred and their causal relations. For
example, the net N of Fig. 1 has the labelled partial order p
of Fig. 2 and all the prefixes of p as action structures. The net
N$ in Fig. 1 additionally has q and its prefixes as action
structures.

Action structures subsume all least sequential semiwords
of a net; hence their augmentations subsume all semiwords,
in particular all interval semiwords and all least sequential
interval semiwords.

Using this result, we can show that N and N$ are swap-
equivalent. Since N is contained in N$, it is quite clear that
ISW(N)�ISW(N$), hence we have swap-ISW(N)�
swap-ISW(N$). For the reverse containment, we want to
apply Theorem 5.12(ii), and for this we want to construct all
least sequential interval semiwords of N$ from the action
structures of N$.

All action structures of N$ that do not involve the addi-
tional c-transition of N$ are also action structures of N and
nothing has to be checked. The other action structures of N$
are q and the sequence abc. Both are already labelled inter-
val orders, hence these subsume the least sequential interval
semiwords of N$ that we have to check. The sequence abc is
a prefix of q, so by Theorem 5.12(ii) it is enough to check q.
For q we have q # swap*(p) and p # ISW(N); hence
q # swap-ISW(N) and by 5.12(ii) swap-ISW(N$)�
swap-ISW(N). We conclude that N and N$ are indeed swap-
equivalent.

Theorem 5.13. (i) Interval-semiword equivalence strictly
implies swap-equivalence.

(ii) Swap-equivalence strictly implies split2 -equivalence.

(iii) Split2 -equivalence strictly implies step-sequence
equivalence.

Proof. (i) Since swap-ISW(N) can be determined from
ISW(N) by definition, the implication is clear. Strictness
follows from the example above, since q is an interval semi-
word of N$, but not of N.

(ii) follows from Theorems 5.8 and 4.2.

(iii) The proof for the implication is similar to the
proofs of 5.4.7 and 5.4.8 in [Vog92]. Strictness follows from
the example discussed in [GG89]. K

Thus, we have placed swap-equivalence in the inter-
leaving�``true concurrency'' spectrum and we have shown
how it can possibly be checked by hand for small examples.
To decide swap-equivalence in general, it seems to be more
promising to use the (sequential) representations instead of
the labelled interval orders themselves; but so far, no
decision algorithm is known.

6. SWAP-EQUIVALENCE IS THE LIMIT

In this section, we will prove the missing half of Theorem
5.9(i). As already announced, we have to consider a more
detailed version of interval sequences.

Definition 6.1. An n-phase interval sequence (w, l, f)
(over E) consists of a labelled interval sequence (w, l) over
E and a function f : E � [1, ..., n] such that f (e)=n if and
only if e& occurs in w; for e$ � E we consider f (e$) as being
equal to 0. Again, we usually identify isomorphic n-phase
interval sequences; compare Section 2. The length of
(w, l, f) is �e # E f (e). Let (w1 , l1 , f1) and (w2 , l2 , f2) be
n-phase interval sequences over E1 and E2 . Then,
(w1 , l1 , f1) is a prefix of (w2 , l2 , f2) if w1 is a prefix of w2 , l2

equals l1 on E1 and f1(e)�f2(e) for all e # E1 .

Intuitively, an n-phase interval sequence is a labelled
interval sequence where the actions have n phases. The func-
tion f assigns to each event the number of corresponding
action phases that have been completed. If f (e)=n, then all
phases have been completed, e has ended, and consequently
we must have e& in w. The length counts the number of
completed phases. With this intuition, the prefix-definition
should be natural.

Definition 6.2. We can obtain (w, l, f) from an
n-phase interval sequence (w$, l, f $) by swapping e1 and e2 ,
denoted by (w, l, f) # swap(w$, l, f $), if

f $(e1) if e=e2

l(e1)=l(e2), f (e)={ f $(e2) ife=e1

f $(e) otherwise

and one of the following cases applies:

�� e+
1 , e+

2 , e&
1 and e&

2 occur in w$ in this order; w is
obtained from w$ by exchanging e&

1 and e&
2 (in this case

f = f $).

55SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257816 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 6754 Signs: 4788 . Length: 56 pic 0 pts, 236 mm

�� e+
1 , e+

2 and e&
1 occur in w$ in this order, but e&

2 does
not occur; w is obtained from w$ by replacing e&

1 by e&
2 .

�� e+
1 and e+

2 occur in w$ in this order, but e&
1 and e&

2 do
not occur, and f $(e2)<f $(e1); w=w$.

If (w, l, f) is obtained from (w$, l, f $) by swapping several
(including zero) times, we write (w, l, f) # swap*(w$, l, f $).

K

Obviously, swapping yields another n-phase interval
sequence. Furthermore, swapping as in 6.2 extends swap-
ping of labelled interval sequences:

Lemma 6.3. If (w, l, f) # swap*(w$, l, f $) for an n-phase
interval sequence (w$, l, f $) over E, then:

(i) (w, l) # swap*(w$, l);

(ii) f and f $have the same values (also with the same mul-
tiplicities) on each set Ea=[e # E | l(e)=a], a # 7.

Proof. (i) In 6.2, swapping is defined on the (w$, l)-part
as for labelled interval sequences except for the third case. In
this case (w$, l)=(w, l) and hence (w, l) # swap*(w$, l), too.

(ii) Obvious.

Swapping and the prefix-relation are compatible in the
following way:

Lemma 6.4. Let (w1 , l1 , f1), (w$1 , l1 , f $1) and (w$2 , l2 , f $2)
be n-phase interval sequences such that (w1 , l1 , f1) #
swap*(w$1 , l1 , f $1) and (w$1 , l1 , f $1) is a prefix of (w$2 , l2 , f $2).
Then (w1 , l1 , f1) is a prefix of some (w2 , l2 , f2) #
swap*(w$2 , l2 , f $2).

Proof. It is enough to consider (w1 , l1 , f1) #
swap(w$1 , l1 , f $1) and to apply induction afterwards. There-
fore, let (w1 , l1 , f1) be obtained from (w$1 , l1 , f $1) by swap-
ping e1 and e2 .

We have to check the three cases of Definition 6.2
separately; in each case, we will obtain (w2 , l2 , f2) from
(w$2 , l2 , f $2) by swapping e1 and e2 or, in the third case where
neither e&

1 nor e&
2 occurs in w$1=w1 , we might choose

(w2 , l2 , f2) equal to (w$2 , l2 , f $2). In all cases, it is clear that:
w1 is a prefix of w2 just as w$1 is a prefix of w$2 ; all labellings
coincide on those events occurring in w1; for all e � [e1 , e2],
f1(e)= f $1(e)� f $2(e)= f2(e); furthermore, (w2 , l2 , f2) #
swap*(w$2 , l2 , f $2).

It remains to check the phase-values of e1 and e2 and the
applicability of swapping for (w$2 , l2 , f $2). If we can apply
swapping, then f1(e1)= f $1(e2)�f $2(e2)= f2(e1) and ana-
logously for e2 .

If the first case of 6.2 applies for the swapping of e1 and
e2 in (w$1 , l1 , f $1), then we can also swap e1 and e2 in
(w$2 , l2 , f $2) by the first case of 6.2.

If the second case of 6.2 applies, then e&
2 might occur in

w$2 such that we can swap e1 and e2 in (w$2 , l2 , f $2) by the first
case of 6.2; or e&

2 does not occur in w$2 and the second case
of 6.2 can be applied.

Finally, if the third case of 6.2 applies for the swapping in
(w$1 , l1 , f $1), then there are two subcases.

(a) e&
1 occurs in w$2 before e&

2 , it occurs in w$2 without
e&

2 occuring, or neither e&
1 nor e&

2 occur in w$2 . Then we can
swap e1 and e2 in (w$2 , l2 , f $2) by the first, second or third
case respectively of 6.2.

(b) e&
2 occurs in w$2 , either before or without e&

1 . Then
we choose (w2 , l2 , f2) equal to (w$2 , l2 , f $2). We have
f1(e1)= f $1(e2)<f $1(e1)�f $2(e1)= f2(e1); f2(e2) equals the
maximal possible value n, hence f1(e2)�f2(e2). K

Next, we define n-refinements of n-phase interval sequen-
ces. Here, the role of the function f should become clearer.

Definition 6.5. A concrete n-refinement v of an n-phase
interval sequence (w, l, f) over E is a concrete n-refinement
of (w, l) such that, for all e # E, f (e) is the maximal k for
which some (ak , e) appears in v. If v is a concrete n-refine-
ment of (w, l, f), then abs(v) is an abstract n-refinement of
(w, l, f).

The following connection to Definition 5.4 is obvious.

Lemma 6.6. Let (w, l) be a labelled interval sequence.
Then v is a concrete (abstract) n-refinement of (w, l) if and
only if v is a concrete (abstract) n-refinement of some n-phase
interval sequence (w, l, f).

The following lemma is crucial for the proof we give in
this section. It shows how we can deduce some interval
semiword of a net N from the language of some
splitn(N)��at least up to swapping in a certain sense.

Lemma 6.7. Let (w, l, f) be an n-phase interval sequence
over some set E such that n>|E|. Then there exists a con-
crete n-refinement v of (w, l, f) such that for any concrete
n-refinement v$ of any (w$, l $, f $), we have that abs(v)=
abs(v$) implies (w, l, f) # swap*(w$, l $, f $).

Proof. It is no restriction to consider only n-phase inter-
val sequences (w$, l $, f $) over the same set E as for (w, l, f)
and with the same labelling l, since |E| is the number of
occurrences of a1 , a # 7, in abs(v) and since we are inter-
ested in n-phase interval sequences only up to isomorphism.

The proof is by induction on the length of (w, l, f), where
the case of length 0, i.e., w=v=*, is clear. Thus, let (w, l, f)
of non-zero length be given; we will choose a suitable prefix
(w1 , l1 , f1) in order to apply induction. There are several
cases to consider. Fig. 13 might help to follow the construc-
tions; the arrows indicate the prefix relation. We will look at
two examples of the construction afterwards.

56 WALTER VOGLER

File: 643J 257817 . By:SD . Date:30:05:96 . Time:09:25 LOP8M. V8.0. Page 01:01
Codes: 6385 Signs: 4598 . Length: 56 pic 0 pts, 236 mm

FIGURE 13

(a) There is some e # E with 1<f (e)<n such that,
for all e1 # E, f (e1)= f (e)&1 implies that e+

1 occurs in w
before e+.

In this case, we choose w1=w, l1=l and f1 according to

f1(e1)={ f (e)&1
f (e1)

if e1=e
otherwise.

Obviously, (w1 , l1 , f1) is an n-phase interval sequence and
we can find a corresponding v1 by induction. Extend v1 to
v=v1 } (l(e)f (e) , e); obviously, v is a concrete n-refinement of
(w, l, f).

Assume that we are given some (w$, l, f $) and v$ with
abs(v)=abs(v$). Then, we have v$=v$1(l(e)f (e) , e$) for some
e$ with l(e$)=l(e). If we define a prefix (w$1 , l1 , f $1) of
(w$, l, f $) by w$1=w$ and

f $1(e1)={ f $(e$)&1
f $(e1)

if e1=e$
otherwise,

then v$1 is a concrete n-refinement of (w$1 , l1 , f $1) with
abs(v1)=abs(v$1). By induction we have (w1 , l1 , f1) #
swap*(w$1 , l1 , f $1). By Lemma 6.4, (w1 , l1 , f1) is a prefix of
some (w2 , l, f2) # swap*(w$, l, f $). Since f2 and f $ have the
same values, cf. 6.3(ii), (w1 , l1 , f1) and (w2 , l, f2) coincide
except for one value of the phase-functions: for e2 , say, we
have f2(e2)= f1(e2)+1. Furthermore, for e2 , we have
f1(e2)= f1(e) and l(e2)=l(e).

Hence, if e=e2 , we conclude that (w, l, f)=(w2 , l, f2) #
swap*(w$, l, f $). Otherwise, (w, l, f) and (w2 , l, f2) coincide
except that f2(e2)= f1(e2)+1= f1(e)+1= f (e) and
f2(e)= f1(e)= f1(e2)= f (e2); this implies f2(e2)= f1(e)+
1>f2(e) and f (e2)= f1(e)= f (e)&1. By choice of e, e+

2

occurs in w=w2 before e+; since f2(e2)>f2(e), we can swap
e2 and e in (w2 , l, f2) in order to obtain (w, l, f). In both
cases the result follows.

(b) (a) is not the case.

In particular, if em is the event that starts last in w, then
f (em) # [1, n]. We have the following two subcases.

(b1) f (em)=1 and w=w1 e+
m .

The interval sequence w1 is defined over E1=E&[em]. If
we restrict l and f to E1 , we obtain l1 and f1 such that
(w1 , l1 , f1) is a prefix of (w, l, f) and an n-phase interval

sequence with n>|E|>|E1 |. By induction we find a
suitable v1 , and we define v=v1(l(em)1 , em); obviously, v is
a concrete n-refinement of (w, l, f).

Assume that we are given some (w$, l, f $) over E and v$
with abs(v)=abs(v$). Then we have v$=v$1(l(em)1 , e) for
some e and we may assume that e=em (otherwise, exchange
e and em in (w$, l, f $)). Hence, w$=w$1e+

m ; we restrict f $ to
E1 to get f $1 . Now (w$1 , l1 , f $1) is a prefix of (w$, l, f $) with
concrete n-refinement v$1 . By induction, (w1 , l1 , f1) #
swap*(w$1 , l1 , f $1). By Lemma 6.4, there is some (w2 , l, f2) #
swap*(w$, l, f $) which has (w1 , l1 , f1) as a prefix. We have
w2=w1 e+

m and get (w, l, f)=(w2 , l, f2).

(b2) Neither (a) nor (b1) is the case.

In this case, w has the form w1e& for some e # E.
Otherwise we would have w=w1e+

m ; hence, f (em){n and
f (em)=1, since we are in case (b); but this is case (b1).

Furthermore, there is no e1 # E with f (e1)=n&1.
Otherwise, we would find a value k of f among the n>|E|
possible values such that 1<k<n and k&1 is not a value
of f (note that f (e)=n); hence, we could apply case (a).

Now proceed as in case (a), except that w$1 is defined by
w$=w$1(e$)&; in particular, v=v1(l(e)n , e). At the end, we
can conclude that e=e2 since n= f2(e2)= f1(e2)+1 and
only e has f1-value n&1. Hence, (w, l, f)=(w2 , l, f2) #
swap*(w$, l, f $).

Example. Let us construct a v according to the proof
of 6.7 for two examples with n=4. First, let (w, l, f) be given
by w=1+2+3+1&2&, l([1, 2, 3])=[a], f ([1, 2])=[4]
and f (3)=1. Cases (a) and (b1) above are not applicable;
(b2) shows that v must end (a4 , 2). For the prefix (w1 , f1 , l1)
we have f1(2)=3 and can apply case (a); we get that (a4 , 2)
must be preceded by (a3 , 2). Then we must apply (b2)
again. We finally arrive at the sequence v=(a1 , 1)
(a2 , 1)(a1 , 2)(a3 , 1)(a2 , 2)(a1 , 3)(a4 , 1)(a3 , 2)(a4 , 2). If we
observe abs(v), we see an a starting and proceeding to phase
2 before a second a starts. Hence, the first a3 belongs to the
first a-action, the succeeding a2 to the second one. After the
third a-action has started some a finishes, and this must be
the first a since only this one is in its third phase.

As a second example, consider (w$, l, f) with w$=
1+2+3+2&1& and with l and f as above. In this case, the
above proof yields v=(a1 , 1)(a1 , 2)(a2 , 2)(a2 , 1)(a1 , 3)
(a3 , 2)(a4 , 2)(a3 , 1)(a4 , 1) or v=(a1 , 1)(a2 , 1)(a1 , 2)(a2 , 2)
(a1 , 3)(a3 , 2)(a4 , 2)(a3 , 1)(a4 , 1). In these sequences, one
can see that the third a never gets to its second phase; thus,
the a3 's and a4 's are phases of the first or second a. But the
first and the second a get to the same phase when (a1 , 2) or
(a2 , 2) occurs. Thus, when the first a4 occurs in abs(v), we
can not be sure whether it belongs to the first or the second
a. Hence, the structure of starts and ends corresponding to
abs(v) is w$ or w as above; this fits our result, since
(w$, l, f) # swap(w, l, f).

57SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257818 . By:CV . Date:10:07:96 . Time:10:14 LOP8M. V8.0. Page 01:01
Codes: 6508 Signs: 5552 . Length: 56 pic 0 pts, 236 mm

It might be a little surprising that the first and second a
get confused in their first or second phase already. Con-
structing a suitable v ``by hand,'' we would possibly end up
with (a1 , 1)(a2 , 1)(a1 , 2)(a3 , 1)(a2 , 2)(a1 , 3)(a3 , 2)(a4 , 2)
(a4 , 1). Here, we keep the three a-actions in different phases
as long as possible. Only when we have to finish the second
a after the start of the third a, we have to move it to the same
phase as the first a, which is in this case the third phase. The
reason that the proof gives v as described above is, that the
construction works inductively; i.e., v is in a way constructed
from back to front. Seen from the back, it is clear that the
second a overtakes the first one, hence they must get to the
same phase at some stage anyway.

Now we are ready to prove the result of this section.

Theorem 6.8. If nets are splitn -equivalent for all n # N,
then they are swap-equivalent.

Proof. Consider nets N1 and N2 that are splitn -equiv-
alent for all n # N and some (w, l) # swap-IW(N1). Let
(w, l) be defined over E and choose some n�2 with n>|E|.
Choose some n-phase interval sequence (w, l, f) and
according to Lemma 6.7 a concrete n-refinement v. By
Lemma 6.6, abs(v) is an abstract n-refinement of (w, l) and
by Lemma 5.7 in L(splitn(N1))=L(splitn(N2)). Again by
Lemma 5.7, we find some (w$, l$) # swap-IW(N2) such that
abs(v) is an abstract n-refinement of (w$, l $). By 6.6, abs(v)
is an abstract n-refinement of some (w$, l $, f $).

Lemma 6.7 shows (w, l, f) # swap*(w$, l $, f $), Lemma 6.3
gives (w, l) # swap*(w$, l $). Hence, we have (w, l) # swap-
IW(N2). We conclude by symmetry that swap-IW(N1)=
swap-IW(N2).

7. FURTHER CONSEQUENCES

In this section, we will sketch two consequences of our
main result. The first concerns parallel composition with
synchronization as in TCSP: in N &A N$, where A�7, the
systems N and N$ work in parallel; in general, they perform
actions independently, but actions from A they have to per-
form together. The net N &A N$ is constructed from N and
N$ by merging, for each a # A, each a-labelled transition of
N with each a-labelled transition of N$; i.e., these transitions
are replaced by all possible pairs. See [Vog92] for a formal
definition.

We will see below that swap-equivalence is not a con-
gruence for this important operation for the modular con-
struction of systems. Thus, swap-equivalence is not ade-
quate for comparing components of systems, and neither for
coarse system descriptions from which final systems should
be constructed hierarchically by action refinement. It is ade-
quate for the comparison of completely specified systems,
where we are interested in the duration of system runs, but
do not know how long the single actions will take in actual
implementations.

If we are looking for a linear-time semantics that supports
action refinement and parallel composition, we should take
interval semiwords, which give a congruence for both
families of operations [Vog92, Theorems 5.3.18 and 5.3.19].
As a consequence of our main result, we will see in the
following that interval-semiword equivalence is already
fully abstract for language equivalence, parallel composi-
tion, and a very simple form of action refinement, namely
splitting.

It is quite easy to turn an action-labelled partial order p
into a net N(p) such that its semiwords are p, its prefixes
and their augmentations. E.g., for p in Fig. 2 we can choose
N(p)=N in Fig. 1; compare also [Vog92, pp. 186, 187]. If
p is an action labelled interval order, then for each net N,
ISW(N &7 N(p)) contains only prefixes of p and their
augmentations, i.e., ISW(N &7 N(p))�ISW(N(p)), and it
contains p if and only if p # ISW(N). See [Vog92, Definition
3.1.5 and Theorem 5.3.19]. Since swapping preserves the
sizes of the event set and of the ordering relation and since
p is unique with these sizes in ISW(N(p)), we conclude
from ISW(N &7 N(p))�ISW(N(p)) that p # swap-
ISW(N &7 N(p)) if and only if p # ISW(N &7 N(p)) if and
only if p # ISW(N).

Now consider N and N$ in Fig. 1 and q in Fig. 2. N and
N$ are not interval-semiword equivalent, since q # ISW(N$)
and q � ISW(N). This implies, by the above, that N &7 N(q)
and N$ &7 N(q) are not swap-equivalent, i.e., swap-equiv-
alence is not a congruence for parallel composition.

The same argument works in general: for any two nets N
and N$ that are not interval-semiword equivalent, there is a
context splitn(. &7 N(p)) in which N and N$ give different
languages. Hence:

Theorem 7.1. Interval-semiword equivalence is fully
abstract for language equivalence, parallel composition, and
splitting, split2 resp.

As a second consequence of Theorem 5.9(i), we will
sketch how the validity of certain equations in formal
language theory can be checked. The expressions in these
equations are built from variables with the operations con-
catenation } , choice or union + and shuffle &. We call an
equation for two such expressions valid, if it is true for all
substitutions of words for the variables. It is easy to see that
it is sufficient to check those substitutions where all the
words have equal length and each letter appears at most
once; such substitutions are essentially splittings. The other
substitutions can be obtained by homomorphisms that
rename letters to letters or to the empty word *.

For each expression P we can construct a net N(P)
such that for all n the language described by P under the
substitution splitn is just��more or less��L(splitn(N(P))). A
thorough treatment is beyond the scope of this paper; we
just show example nets N(P) below. For a formal treatment,
we would have to modify the definitions of L(N), ISW(N),

58 WALTER VOGLER

File: 643J 257819 . By:SD . Date:30:05:96 . Time:10:49 LOP8M. V8.0. Page 01:01
Codes: 5928 Signs: 4930 . Length: 56 pic 0 pts, 236 mm

FIGURE 14

and swap-ISW(N) such that only ``complete'' runs of N would
be considered; these modified definitions could be related to
our definitions by introducing a special action - to signal
completion. But we leave out the details here and just say that
Theorems 5.9, 5.10 and 5.11 can be modified accordingly��
while 5.12 obviously cannot. From this we get that P=Q is
valid if and only if N(P) and N(Q) are swap-equivalent.

As an example, we consider the equation XY & YZ=
(XY & YZ)+(XYZ & Y). Figure 14 shows the nets for the
two expressions; observe that & corresponds to &< for nets.

These nets are in fact very similar to our standard pair of
nets from the introduction. To deduce swap-equivalence we
simply have to observe that the interval semiword in Fig. 15
belongs to swap-ISW(N(XY & YZ)). Hence, the equation is
true for all words X, Y and Z.

Note that the equation fails for languages; by the result
mentioned in the introduction, it must fail since the nets in
Fig. 14 do not have the same interval semiwords due to the
one shown in Fig. 15. Let X=[a], Y=[b1b2 , c1 c2] and
Z=[d]; then only the language belonging to the right-hand
side contains b1 ac1c2db2 .

8. CONCLUSION

We have defined the swap-interval-semiword semantics
of Petri nets and have shown that this partial order seman-
tics is fully abstract with respect to language equivalence
and splitting, which is a particular case of action refinement.
This new semantics makes fewer distinctions than interval-
semiword semantics, which is fully abstract with respect to
language equivalence and general action refinement; i.e., the
new semantics does not induce a congruence for general
action refinement.

This result has to be contrasted with the following result
on the level of bisimulations. ST-bisimulation, which
corresponds to the interval idea on the level of bisimula-
tions, is not only fully abstract with respect to bisimulation
and general action refinement, but also with respect to
bisimulation and splitting.

FIGURE 15

A natural question is what the situation is like for other
semantics in the linear time-branching time spectrum. For
example, I conjecture that failure semantics can be treated
similarly to the treatment of language presented in this
paper; hence, I conjecture that on the level of failure seman-
tics full abstractness for splitting is different from full
abtractness for general action refinement; see [Vog92] for
the latter.

More challenging is the question which ingredient of
bisimulation makes bisimulation different from the
language in this comparison of splitting and action refine-
ment. Is this ingredient characterisic for bisimulation? More
precisely, is bisimulation the coarsest semantics in the linear
time�branching time spectrum such that full abstractness
for splitting and for general action refinement coincide?

We have also placed swap-interval-semiword equivalence
in the interleaving�``true concurrency'' spectrum, and have
seen how it can be checked for small examples using some
nice closure properties of the new semantics. It seems that
the new equivalence is decidable for finite nets, but no deci-
sion algorithm is known so far. Finally, we have sketched
how our full abstraction result for splitting can be applied to
certain equations in formal language theory and to prove
that interval-semiword equivalence is fully abstract for
language equivalence, parallel composition and splitting.

APPENDIX

In Theorem 2.7, we have studied the representation of
finite interval orders. One could also be interested in infinite
system runs and, thus, in representing countably infinite
interval orders by infinite sequences; this is shortly dis-
cussed in this appendix.

In fact, all definitions before Theorem 2.7 and 2.1 and 2.6
also work for the countably infinite case [Fis85]. In this
case, 2.6 still shows that a co\-equivalence class consists of
starts only or of ends only, but now we can only say that
every two start classes are separated by an end class with
respect to <\ and vice versa; furthermore, each start class
is succeeded by an end class and each end class is preceded
by a start class due to 2.6(iii). As regards 2.7(i), we have to
be careful since in the countable case not every total order,
hence not every linearization, corresponds to a sequence.

Let some countably infinite interval order p=(E, <) be
given. If there are infinitely many e1 with e1<e or e1 co e for
some given e # E, then for each of these e1 we have
e+

1 <\e&, hence in a closed representation we would have
infinitely many e+

1 before e&, which is impossible.
If this case does not apply, p is called initially finite in

[JK93]. For initially finite p, the definition of <\ shows
that each end e& has only finitely many starts as prede-
cessors. Since each end is preceded by the corresponding
start in (E\, <\), this shows that e& has only finitely many
ends as predecessors. Furthermore, if e& co\ e&

1 then

59SPLITn-LANGUAGE EQUIVALENCE

File: 643J 257820 . By:SD . Date:30:05:96 . Time:09:24 LOP8M. V8.0. Page 01:01
Codes: 6637 Signs: 5431 . Length: 56 pic 0 pts, 236 mm

e+
1 <\e&; hence, the co\-equivalence class of e& is finite.

Similarly, e+ has only finitely many predecessors and
finitely many concurrent (w.r.t. <\) starts, since all of these
are predecessors of e&. Thus, in a linearization w of
(E\, <\), each element has only finitely many prede-
cessors and w is a sequence.

So we get that a countable interval order has a closed
representation if and only if it is initially finite. This result is
essentially given in [JK93], since a closed representation
more or less coincides with what is in [JK93] called an
injective discrete interval representation with positive
values. Furthermore, the closed representations of an
initially finite interval order (E, <) are exactly the lineariza-
tions of (E\, <\). An analogue of 2.7(ii) holds for a
suitable definition of commuting (possibly infinitely often)
elements in an infinite sequence.

If we also consider arbitrary representations, we first
observe the following: If (E, <) is countable and initially
finite, then each e # E has a successor, hence e& must occur
in a representation. Thus, each representation is closed.

Now let (E, <) be a countable interval order that is not
initially finite��and hence no closed representation exists. If
for some e1 # E there are infinitely many e for which we can
find some e$ with e co e$ and e$<e1 , then e+

1 has infinitely
many predecessors in (E \, <\), hence no representation
exists. If this is not the case, we call (E, <) weakly initially
finite. Figure 16 shows two examples, which are not initially
finite.

Observe that for such an (E, <) each event has only
finitely many predecessors (since co is reflexive). Hence:

(C) Each start has only finitely many predecessors in
(E \, <\).

Since (E, <) is not initially finite, but weakly initially
finite, it must have some e and infinitely many events con-
current to it. In (E\, <\), e& has the starts of all these
events as predecessors and so have all the ends in the co\-
equivalence class C of e&. Hence, a representation of (E, <)
cannot contain an element of C. By (C), C is not followed
by any element in (E\, <\). But all other ends must be
followed by some start, again by 2.6(v). We conclude that
each representation contains exactly the elements of
E\&C.

Furthermore, we conclude that the co\-equivalence
classes form an alternating sequence of start- and end-
classes, beginning with a start class, and this sequence is
followed by C, which consists of all maximal elements of
(E \, <\). All the co\-equivalence classes {C consisting
of ends are separated by a start from C; from (C) we see that

FIGURE 16

they are finite and that there elements have finitely many
predecessors.

If all co\-equivalence classes��except possibly C��are
finite, then each linearization gives a sequence on E\&C.
Thus, a representation exists and all other representations
can be obtained by commuting ends and commuting starts.

If some co\-equivalence class C1 {C is infinite, it con-
sists of starts; the alternating sequence of co\-equivalence
classes is finite and ends with C1C. Each linearization of
(E\, <\) that is a sequence on E\&C consists of a finite
sequence on E\&C1&C followed by the elements of C1 in
some arbitrary sequence (and followed by the elements of
C). Again we see that a representation exists and all other
representations can be obtained by commuting ends and
commuting starts.

Collecting all our conclusions we obtain:

An infinite interval order p has a representation
if and only if it is weakly initially finite. All
representations can be obtained from a given one
by commuting ends and commuting starts. The
representations are closed if and only if p is initially
finite.

Received May 4, 1995; final manuscript received March 5, 1996

REFERENCES

[AH93] Aceto, L., and Hennessy, M. (1993), Towards action-refine-
ment in process algebras, Inform. and Comput. 103, 204�269.

[AM96] Aceto, L., and Murphy, D. (1996), On the ill-timed but well-
caused, Acta Informat. 33, to appear.

[BDKP91] Best, E., Devillers, R., Kiehn, A., and Pomello, L. (1991),
Concurrent bisimulations in Petri nets, Acta Informat. 28,
231�264.

[BF88] Best, E., and Fernande� z, C. (1988), ``Nonsequential
Processes. A Petri Net View,'' EATCS Monographs on
Theoretical Computer Science, Vol. 13, Springer-Verlag,
Berlin�New York.

[Dev92] Devillers, R. (1992), Maximality preservation and the ST-
idea for action refinement, in ``Advances in Petri Nets 1992''
(G. Rozenberg, Ed.), Lecture Notes in Computer Science,
Vol. 609, pp. 108�151, Springer-Verlag, Berlin�New York.

[DG95] Degano, P., and Gorrieri, R. (1995), A causal operational
definition of action refinement, Informat. and Comput. 122,
97�191.

[Die90] Diekert, V. (1990), ``Combinatorics on Traces,'' Lecture
Notes in Computer Science, Vol. 454. Springer-Verlag,
Berlin�New York.

[Fis85] Fishburn, P. C. (1985), ``Interval Orders and Interval
Graphs,'' Wiley, New York.

[GG89a] Glabbeek, R. J. v., and Goltz, U. (1989), Partial order seman-
tics for refinement of actions��Neither necessary nor always
sufficient, but appropriate when used with care, EATCS Bull.
38, 154�163.

[GG89b] Glabbeek, R. J. v., and Goltz, U. (1989), Equivalence notions
for concurrent systems and refinement of actions, in ``MFCS
89'' (A. Kreczmar, and G. Mirkowska, Eds.), Lecture Notes
in Computer Science, Vol. 379, pp. 237�248, Springer-Verlag,
Berlin�New York.

60 WALTER VOGLER

File: 643J 257821 . By:CV . Date:10:07:96 . Time:10:15 LOP8M. V8.0. Page 01:01
Codes: 4131 Signs: 3273 . Length: 56 pic 0 pts, 236 mm

[GL95] Gorrieri, R., and Laneve, C. (1995), Split and ST bisimulation
semantics, Inform. and Comput. 118, 272�288.

[Gla90] Glabbeek, R. J. v. (1990), The refinement theorem for
ST-bisimulation semantics, in ``Programming Concepts
and Methods, Proceedings, IFIP Working Conference,''
(M. Broy and C. B. Jones, Eds.), pp. 27�52, Elsevier, (North-
Holland), Amsterdam.

[GR83] Goltz, U., and Reisig, W. (1983), The non-sequential
behaviour of Petri nets, Inform. and Control 57, 125�147.

[Gra81] Grabowski, J. (1981), On partial languages, Fund. Informat.
4, No. 2, 428�498.

[GV95] Glabbeek, R. J. v., and Vaandrager, F. (1995), ``The difference
between Splitting in n and n+1,'' Technical Report CS-
R9553, CWI.

[Hen88] Hennessy, M. (1988), Axiomatising finite concurrent pro-
cesses, SIAM J. Comput. 17, 997�1017.

[JK93] Janicki, R., and Koutny, M. (1993), ``Representations of
Discrete Interval Orders and Semi-orders,'' Technical Report
93-02, Dept. Comp. Sci. Sys., McMaster University,
Hamilton, Ontario.

[JM92] Jategaonkar, L. A., and Meyer, A. R. (1982), Testing equiv-
alence for Petri nets with action refinement, in ``CONCUR
'92'' (W. R. Cleaveland, Ed.), Lecture Notes in Computer
Science, Vol. 630, pp. 17�31, Springer-Verlag, Berlin�New York.

[Kie88] Kiehn, A. (1988), On the interrelationship between syn-
chronized and non-synchronized behaviour of Petri nets,
J. Inf. Process. Cybernet. EIK 24, 3�18.

[Lar88] Larsen, K. S. (1988), ``A Fully Abstract Model for a Process
Algebra with Refinement,'' Master's thesis, Dept. Comp. Sci.,
Aarhus University.

[Mey95] Meyer, A. R. (1995), Concurrent process equivalences: Some
decision problems (invited talk), in ``STACS 95'' (E. Mayr
and C. Puech, Eds.), Lecture Notes in Computer Science,
Vol. 900, p. 349, Springer-Verlag, Berlin�New York.

[NEL89] Nielsen, M., Engberg, U, and Larsen, K. (1989), Partial order
semantics for concurrency, in ``Proc. REX School � Workshop
Linear Time, Branching Time and Partial Order in Logic and
Models of Concurrency, Noordwijkerhout, 1988'' (J. W.
Bakker et al., Eds.), Lecture Notes in Computer Science,
Vol. 354, pp. 523�548, Springer-Verlag, Berlin�New York.

[Pet81] Peterson, J. L. (1981), ``Petri Net Theory,'' Prentice�Hall,
New York.

[Rei85] Reisig, W. (1985), ``Petri Nets,'' EATCS Monographs on
Theoretical Computer Science, Vol. 4, Springer-Verlag,
Berlin�New York.

[Ren93] Rensink, A. (1993), ``Models and Methods for Action Refine-
ment,'' Ph.D. thesis, Faculteit der Informatica, Universiteit
Twente.

[Sta81] Starke, P. H. (1981), Processes in Petri nets, J. Inform.
Process. Cybernet. EIK 17, 389�416.

[Vog91] Vogler, W. (1991), Failures semantics based on interval semi-
words is a congruence for refinement, Distrib. Comput. 4,
139�162.

[Vog92] Vogler, W. (1992), ``Modular Construction and Partial Order
Semantics of Petri Nets,'' Lecture Notes in Computer Science,
Vol. 625, Springer-Verlag, Berlin�New York.

[Vog93] Vogler, W. (1993), Bisimulation and action refinement,
Theoret. Comput Sci. 114, 173�200.

[Vog95] Vogler, W. (1995), Timed testing of concurrent systems,
Inform. and Comput. 121, 149�171.

Printed in Belgium

61SPLITn-LANGUAGE EQUIVALENCE

