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Super machine learning: improving 
accuracy and reducing variance of behaviour 
classification from accelerometry
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and Robert G Harcourt1

Abstract 

Background: Semi‑automating the analyses of accelerometry data makes it possible to synthesize large data sets. 
However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse 
and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new 
method, super learning, that combines base learners (different machine learning methods) in an optimal manner to 
achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to 
predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on 
which to train the models.

Results: The super learner accurately classified behaviour categories with higher accuracy and lower variance than 
comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of 
accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better 
than longer epochs (25 and 75).

Conclusions: Correct model selection, training and testing are imperative to creating reliable and valid classifica‑
tion models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of 
these including model, number of behaviours to classify and epoch length and then used a parameter grid search to 
implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behav‑
iour categories and shorter epoch length improved the performance of all models tested. The super learner classified 
behaviours with higher accuracy and lower variance than other models tested. However, when using this model, 
users need to consider the additional human and computational time required for implementation. Machine learn‑
ing is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the 
modelling parameters evaluated in this study are essential when using this type of statistical analysis.
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Background
Advances in biologging technologies and comput-
ing power have enabled biologists to pry into the daily 
existence of many difficulties to observe animals [1, 
2]. A powerful new approach is to create ethograms 
from accelerometers using machine learning [3]. 

Accelerometers measure the inertial acceleration of an 
animal while moving, most commonly on three axes [4]. 
Unique combinations of these three axes over a period 
of time identify specific movements that correspond to a 
single behaviour or series of behaviours. Binary classes of 
behaviour can be identified with high degree of accuracy 
using machine learning, e.g. prey captures in penguins 
using support vector machines (SVM’s) [5]. A variety 
of machine learning algorithms have attempted to dis-
tinguish between multiple classes of behaviours, some 
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successfully [e.g. 6–10] and some with less success [e.g. 
11]. There are a number of reasons why machine learning 
methods may not be able to classify data from accelerom-
etry accurately, including the number of categories to be 
classified [12], the duration of the sample of behaviour 
to be classified [13], the number of sample behaviours 
to classify from [14] and the machine learning method 
that is used [7]. Using too many categories of behaviour 
may affect the ability of the machine learning method to 
accurately classify all behaviour. For example, the attack/
peck category created for crab plovers could not be pre-
dicted using decision trees from a study attempting to 
classify seven categories of behaviour [11]. Using hid-
den semi-Markov models, two categories of behaviours 
were able to be classified with much higher accuracy than 
three, four or five categories [12]. Accuracies of machine 
learning models are likely to improve when using fewer 
categories because the algorithm has fewer classes to dis-
tinguish between. This is especially true if the classes that 
are being combined are often misclassified as each other. 
For example, if we have three classes A, B and C, and 
classes B and C are often misclassified as each other, then 
combining them into one class will increase classification 
accuracy, at the cost of less detail overall. Alternatively, 
extending the sample of time from the accelerometry 
data used to classify behaviour can improve the overall 
accuracy machine learning methods by providing more 
samples overall [13].

The machine learning method selected to classify the 
data will also influence the overall accuracy [7, 12]. There 
have been several attempts to evaluate the accuracies of 
different machine learning methods [7, 13, 15]. However, 
due to vastly distinct dynamic movement of different 
animal species, it is unlikely that there will ever be a uni-
versal set template for creating ethograms from acceler-
ometry [16, 17]. Instead, a new machine learning method 
described here may afford a solution to the problem of 
method selection. Super learning takes a set of candidate 
learners (other machine learning methods), applies them 
to a data set and chooses an optimal learner or combi-
nation of learners based on the resultant cross-validated 
risk [18]. The super learner model (SL) seeks to find the 
optimal combination candidate learners such that it will 
perform as well or better than any of the learner inputs 
[19]. Super learning has previously been applied to large 
medical data sets in order to make survival predictions 
with considerable success [20], but has until now not 
been evaluated for its ability to classify behaviour from 
accelerometry data.

The ability to reliably build highly generalizable mod-
els for the classification of animal behaviour will be a sig-
nificant advance for the study of those species that are 
difficult or impossible to observe in the wild or sustain 

in captivity [6, 16]. Otariid pinnipeds, fur seals and sea 
lions, play an important role in the trophic interactions of 
many marine ecosystems [21], yet despite the importance 
of this group to understanding marine ecosystems, there 
is still much to learn about the behaviour of these and 
other marine predators [22]. Marine animals are very dif-
ficult to observe in the wild as they are active in remote 
locations and deep underwater where direct observation 
is often not possible, but being large and semi-aquatic, 
otariids are ideal candidates for remote observation using 
accelerometry [2, 23]. To reliably classify animal behav-
iours from accelerometry, it is necessary to evaluate the 
performance of different models and their parameters 
[7]. The aims of this study are twofold: (1) assess whether 
super learning can improve the accuracy of classifying 
accelerometry data in general and (2) identify the opti-
mal time window and number of behaviour categories 
required to create reliable ethograms for a representative 
group of animals: fur seals and sea lions.

Methods
Animals
We conducted captive experiments at three Australian 
marine facilities: Dolphin Marine Magic, Coffs Harbour 
(RF1: −30°17′N, 153°8′E); Underwater World, Sunshine 
Coast (RF2: −25°40′N, 153°7′E); and Taronga Zoo, Syd-
ney (RF3: −33°50′N, 151°14′E) from August to November 
2014 and again at RF2 in August 2015. We used two Aus-
tralian fur seals (Arctocephalus pusillus doriferus), three 
New Zealand fur seals (Arctocephalus forsteri), one sub-
antarctic fur seal (Arctocephalus tropicalis) and six Aus-
tralian sea lions (Neophoca cinerea) (Table  1). All seals 
were on permanent display at their respective marine 
facilities and were fed and cared for under the guidelines 
of the individual facility. All Australian sea lions in the 
study were born as part of an ongoing captive breeding 
programme in Australian aquaria. All fur seals came into 
captivity as juveniles after they were found in poor health 
or were injured and being deemed unsuitable for release 
back into the wild.

Experimental protocol
We used a triaxial accelerometer (CEFAS G6a+: 
40 mm × 28 mm × 16.3 mm, 18 g in air and 4.3 g in sea-
water, CEFAS Technology Ltd, Lowestoft, UK) to meas-
ure the movement of the seals. We used two attachment 
methods for accelerometers: either taped between the 
shoulder blades or secured in a custom-designed har-
ness. Accelerometers were set to record at ±8 g and at 25 
samples per second (25 Hz) on each axis. We recorded all 
trials continuously with one or two cameras (GoPro Hero 
3—Black edition, USA; HDRSR11E: Sony, Japan), and tri-
als had a maximum duration of 2.5 h. Videos were scored 
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to an ethogram consisting of 26 unique behaviours devel-
oped previously [14]. We time-matched the videos and 
the accelerometry output to generate annotated accelera-
tion data sets.

Behaviour segmenting
We grouped the 26 behaviours into broader behavioural 
categories. As the number of behavioural categories used 
to classify behaviour may affect the overall results, the 
analysis was run twice using four (feeding, grooming, 
resting and travelling) and then six categories (feeding, 
foraging, thrashing, grooming, resting and travelling) 
(Table 3; for a description of the individual behaviours in 
each of the categories please see [14—S1 File]). We also 
compared the ability of the model to discriminate behav-
iours over a range of discrete periods. We tested four 
epochs (number of accelerometer samples): 7 (0.28  s), 
13 (0.52  s), 25 (1  s) and 75 (3  s) [24]. Behaviours could 
also be “contaminated” where two behaviours occur in 
the same time window. In these cases, we used the domi-
nant behaviour with resultant windows of uneven time 
duration.

Summary statistics
We created 147 summary statistics as the inputs to the 
machine learning models. Most were summary statistics 
created from the x, y and z inputs (described below), and 
a few related to the animal or the behaviour including 
where the behaviour occurred (surface, underwater or 
land), device attachment method (harness or tape), age, 
mass, sex and species of the individual [14]. The location 
of the behaviour was determined by observation; how-
ever, in the wild, it can be using a combination of depth 
and the wet/dry sensor on the accelerometer (M. Ladds, 

M. Salton, R. McIntosh, D. Hocking, D. Slip, R. Harcourt, 
unpublished observations). For each of the three axes (x, 
y, z), we calculated mean, median, minimum, maximum, 
range, standard deviation, skewness, kurtosis, absolute 
value, inverse covariance and autocorrelation trend (the 
coefficient derived from a linear regression) and the 
10th and 90th percentiles. We also calculated q as the 
square root of the sum of squares of the three axis [7] and 
included pairwise correlations of the three axis (x–y, y–z, 
x–z) [25]. The inclination and azimuth were calculated as 
per Nathan et al. [7]. We calculated dynamic body accel-
eration (DBA) by using a running mean of each axis over 
three seconds to create a value for static acceleration [26]. 
We then subtracted the static acceleration at each point 
from the raw acceleration value to create a value for par-
tial dynamic body acceleration (PDBA). We calculated 
overall dynamic body acceleration (ODBA) [26, 27] using

We calculated vectorial dynamic body acceleration 
(VeDBA) [28] using

We calculated the area under the curve for both ODBA 
and VeDBA using the package “MESS” in R [29, 30]. The 
minimum, maximum and 10th and 90th percentiles were 
calculated for PDBA, ODBA and VeDBA.

Classification models
There are many candidate models suitable for classify-
ing behavioural data obtained from accelerometry [7], 
and choosing the most appropriate method for the data 
in question can be complicated and time-consuming. The 
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Table 1 Study species and  characteristics of  seal identification, marine facility, species, age, mass range, sex, number 
of trials and method of accelerometer attachment for fur seals and sea lions used in the study

AFS Australian fur seal, NZFS New Zealand fur seal; SFS subantarctic fur seal, ASL Australian sea lion

Seal ID Marine facility Species Age Mass range (kg) Sex Number of trials Attachment method

ASF1 RF1 ASL 5 44–47 Female 13 Harness

ASF3 RF2 ASL 17 58–74 Female 4 Harness

ASF4 RF1 ASL 17 66–70 Female 12 Harness

ASF6 RF1 ASL 7 50 Female 2 Harness

ASM1 RF1 ASL 9 108–110 Male 8 Harness

AFF1 RF2 AFS 17 69–79 Female 7 Tape

AFM1 RF2 AFS 16 175–242 Male 7 Tape

ASM2 RF3 ASL 13 160–162 Male 9 Tape

NFM1 RF3 NZFS 8 47–54 Male 5 Tape

NFM2 RF2 NZFS 11 108–152 Male 5 Tape

NFM3 RF3 NZFS 13 111–154 Male 8 Tape

SFM1 RF2 SFS 4 28–30 Male 3 Tape
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super learner model (SL) combines candidate models 
(other machine learning models, henceforth referred to 
as base learners) by applying a selection of them to a set 
of data and then weighting all of these learners through 
another learner. The optimal combination is chosen 
based on cross-validated risk [18, 31]. The base learners 
chosen for this study were: random forests (RF), gradi-
ent boosting machine (GBM) (both of which have previ-
ously been demonstrated to effectively classify this type 
of data well [14]) and a baseline model, logistic regres-
sion (LR) to which performances of the other models 
could be compared. Logistic regression was included as a 
baseline model as it is well tested, easy to implement and 
unlikely to overfit. Each base learner was trained across 
a set of parameters, with the predictions of each model 
kept. These predictions, plus the raw data, then became 
the inputs to the SL. The SL then learned from the pre-
dictions of the base learners as well as the summary and 
feature statistics to predict the outcomes.

For each of the models, data were split into a train 
(evaluation) and test (validation) set using 70 and 30% of 
the data, respectively. In total, the models were trained 
on ~90,000 individual data points or roughly ~13  h 
of coded data. Note that the test data were not seen by 
the model during training. This ensured that the scores 
obtained from the models reflected the ability of the 
model to predict from data outside training. Results 
of the model were reported as cross-validation scores 
and out-of-sample scores, which include accuracy and 
kappa (Additional file  1). Accuracy was the proportion 
of true positives identified by the model, while kappa 
was employed as more than two observers were used to 
classify data, thereby providing a measure for the fact 
that some of their observations will agree or disagree by 
chance [32]. This value was used to assess agreement of 
observed and predicted values in the confusion tables 
[24]. Precision and sensitivity are reported in the confu-
sion matrix (Table  4) where precision is defined as the 

proportion of predictions from a behaviour category that 
were actually that behaviour, and sensitivity is the pro-
portion of behaviours from a category that were classified 
as that behaviour [16].

Parameter grid search
Within each model, there were a number of parameters 
from which models can be trained. Samples of each of 
these parameters were chosen, and each model was run 
through every combination using a grid search (Table 2; 
Additional file 2). We evaluated best parameter grids of 
each model using H20 [33] for GBM and RF, glmnet [34] 
for LR and the SL. All analyses were run using R [30].

Results
Triaxial acceleration data were collected from 12 seals 
over a range of trials lasting in duration from 10 min to 
2.5  h (Table  1). From these we were able to mark 7525 
bouts of behaviour, split into either four or six categories 
(Table 3).

Comparing model performance
All three test models (SL, RF and GBM) had signifi-
cantly higher accuracies across the range of epochs and 
categories of behaviour tested compared to the baseline 
model (LR; Fig. 1). The SL accuracy ranged from 71.6% (7 
epochs) to 73.6% (13 epochs) accuracy for six categories 
of behaviour and from 83.4% (25 and 75 epochs) to 85.1% 
(13 epochs) accuracy for four categories of behaviour 
(Additional file 2). The RF achieved slightly less accuracy 
ranging from 82.3% (75 epochs) to 84.4% (13 epochs) 
for four categories and from 67.8% (75 epochs) to 72.7% 
(13 epochs) for six categories. GBM performed slightly 
less well than the SL and about the same as the RF with 
accuracies ranging from 70.9% (75 epochs) to 73.4% (13 
epochs) for six behaviour categories and from 82.0% 
(75 epochs) to 84.7% (13 epochs) for four categories of 
behaviour. The LR accuracies were significantly below all 

Table 2 Parameters for the four models tested

Nbins number of bins, Mtry number of splits in branches, Ntree total number of trees grown, Max depth maximum depth to grow the trees (for a detailed description of 
the model parameters and how they are used see Additional file 3)

Model Nbins Mtry Ntree Max depth

Random forest 20, 30, 40 (numeric) 5, 10, 15 200 5, 10, 15

3 (categorical)

Nbins Learn rate ntree Max depth Sample rate

Gradient boosting machine 20, 30, 40 (numeric) 0.1, 0.001 250, 700 5, 10 0.7, 0.8, 0.9

3 (categorical)

Lambda Alpha

Logistic regression and super learner Range exp(−11) to exp(6) 0–1 by 0.025
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of these for all categories ranging from 74.1% (7 epochs) 
to 77.0% (75 epochs) for four categories and from 63.2% 
(75 epochs) to 65.1% (13 epochs) for six categories.

SL classified categories of behaviour with higher accu-
racy and lower variance than both RF and GBM across all 
epochs (except GBM 7 epochs, six categories). The variance 
was reduced by ~70% across all model combinations tested, 
and accuracy was improved by between −0.1 and 10.1% 
(Fig. 1; Additional file 1). The variances obtained from the 
logistic regression models were similar to the SL. Accuracy 
and precision of all models improved when using four as 
opposed to six categories of behaviour. Looking at the over-
all performance of the models from the highest cross-vali-
dation score, out-of-sample score and the kappa score, we 
concluded that using 13 epochs produced the best results 
across the four models (Additional file 1).

Identifying categories of behaviour
Across all models and epochs, grooming and resting clas-
sified with the highest accuracy, with grooming generally 
outperforming resting (Fig. 2; Additional file 2). Examin-
ing the confusion matrix from the best performing model 
(SL—four behaviours, 13 epochs), the classification 
errors from the four categories of behaviour revealed that 
foraging often misclassified as travelling and vice versa 
(Table 4). Overall, within the test models (SL, RF, GBM), 
all four behaviours were correctly classified more than 
75% of the time (Fig. 2). Within the six behaviour catego-
ries, the main misclassification stemmed from feeding, 
where only the super learner classified it correctly more 
than 50% of the time. The “thrashing” category that was 
also added to the model was classified with high accu-
racy (>75%). Resting and grooming maintained their high 
predictive accuracies across the test models (>80%). For-
aging also maintained a reasonably high rate of classifi-
cation (>70%), while travelling lost around 10% accuracy 
when compared with the four behaviour models.

Discussion
The aim of this study was to assess whether super learn-
ing would improve the predictive ability of base learners 
(RF, GBM and LR) to classify behaviour from free-living 
animals using accelerometry. While building machine 
learning models, a number of choices must be consid-
ered about how to segment the data. We evaluated sev-
eral combinations of time segmentation and number of 
behaviour categories for this type of accelerometry data. 
Using super learning increased the accuracy of the mod-
els, albeit only slightly, and reduced the prediction error 
when compared with RF, GBM and the baseline model—
LR. Shorter time windows (<13 samples) and fewer cat-
egories of behaviour (4 vs. 6) were better at predicting the 
behaviour state.

Table 3 Number of  unique behaviours observed 
from video analysis for each category of behaviour

Four categories Six categories Behaviour Number 
of bouts

[1] Walking 545

Travelling Surface swimming 1133

(N = 2864) Swimming 1008

Fast 121

Porpoising 57

[2] Lying 17

Resting Sitting 541

(N = 839) Still 281

[3] [3] Scratch 68

Grooming Grooming Rubbing 10

(N = 334) (N = 245) Sailing 29

Jugging 19

Face rub 54

Rolling 115

[NA] High fre‑
quency

Shake 39

[4] [4] Chewing 309

Feeding Feeding Manipulation 792

(N = 1841) (N = 1615) Capture 394

Hold and tear 120

[5] Foraging 
(N = 226)

Searching 226

[6] Thrashing
(N = 303)

Thrashing 303

Other Playing 30

(N = 1344) In/out 475

Other 839

||
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||
||
||
||

||
||
||
||

||
||
||

||
Gradient Boosting Logistic Regression

Super Learner Random Forest

60% 70% 80% 90%60% 70% 80% 90%

07Ep

13Ep

25Ep

75Ep

07Ep

13Ep

25Ep

75Ep

Accuracy

M
od
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6 features

Fig. 1 Classification accuracy from cross‑ and out‑of‑sample valida‑
tion of four different machine learning algorithms. Coloured points 
(blue four‑feature models; orange six‑feature models) represent out‑
of‑sample accuracy witherror bars of ±1 SD. Red bars represent cross‑
validation accuracy for each associated model. SL super learner, RF 
random forest, GBM gradient boosting model, LR logistic regression
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Fig. 2 Classification accuracy of behaviour across epochs and models. Four (a) and six (b) categories of behaviour were tested across four (SL, RF, 
GBM and LR) models across four (7, 13, 25, 75) epochs
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Number of behaviour categories: Less is more?
Four behavioural categories had a higher classification 
rate than six behaviours. At its most basic, accelerom-
eters discriminate between two behavioural states (e.g. 
activity vs. resting or swimming vs. prey capture) and 
can do so accurately [5, 35]. Adding more categories 
for the model to discriminate increases complexity, but 
reduces the uniqueness of the model, thus decreasing its 
overall accuracy [12, 13]. There is also a greater chance 
of overlap with other behavioural categories. Increasing 
behaviour categories from four to six produced an over-
all average 11.5% (range 9.5–14.5%) decrease in accuracy. 
The optimal number of categories becomes a trade-off 
between useful ecological information and high accuracy. 
Reducing the number of categories broadens the scope of 
the remaining categories as more similar behaviours are 
considered together and are thus easier to discriminate 
by the model. An important distinction to make is that 
considering fewer categories does not mean removing 
behaviours from the models, because if those behaviours 
are observed in the wild, the model will still try to classify 
them, resulting in an inaccurate representation of what 
the animal did while being monitored (for a discussion 
of this issue see [14]). As the loss in accuracy is so small, 
this leaves it up to the researcher to determine whether 
quality (fewer behaviours—more accuracy) or quantity 
(more behaviours—less accuracy) is important in the 
study. In this illustration of the method, which is broadly 
applicable to all free-living animals that can be equipped 
with accelerometers, we used fur seals and sea lions. For 
species such as these, four behavioural categories appear 
to be the minimum that provides meaningful informa-
tion about their activities. In future studies that use this 

method, the number of categories must be tailored to the 
species concerned and aims of the study.

Epoch size: Smaller is better?
We found that smaller epochs gave better overall predic-
tions, and that the length of the epoch was significant in 
predicting different categories of behaviour. Increasing 
the window size reduces the sample size, which likely 
decreases the overall ability of the models to predict 
accurately. Having smaller epochs increases the sam-
ple size and reduces the chances of the model overfit-
ting. Large epoch sizes are also more likely to capture 
more than one behaviour, increasing the difficulty for 
the model to distinguish between classes. In contrast to 
our results, a study of cow behaviour found that longer 
epochs tended to perform better than shorter epochs 
(5 and 10 vs. 1 min) [13]. However, a similar study with 
humans discovered that epochs of one to two seconds 
had the best precision values [36]. They also found that 
epoch length significantly affected the overall accuracy 
of individual behaviours, which concords with our find-
ings. We found different prediction accuracies by adding 
thrashing and feeding to the model. All models predicted 
thrashing with high accuracy (~75%), while only the SL 
predicted feeding with more than 50% accuracy. Thrash-
ing is a very distinctive behaviour, with accelerometer 
readings exceeding 4  g; very few other behaviours have 
this feature. By contrast, we defined feeding as a seal tak-
ing fish out of the water column, and animals were swim-
ming while taking fish; therefore, it was difficult for the 
models to distinguish between these two behaviours. 
Therefore, any additional behaviours added to the base 
four-category model need to be clearly distinct from any 

Table 4 Confusion matrices from three test models using four behaviours and 13 epochs

Foraging Grooming Resting Travelling Precision Sensitivity

Super learner

Foraging 1248 17 53 182 0.83 0.82

Grooming 18 1292 27 64 0.92 0.91

Resting 80 37 1321 61 0.88 0.89

Travelling 185 79 77 1158 0.77 0.79

Gradient boosting machine

Foraging 1243 23 54 180 0.83 0.81

Grooming 20 1300 30 52 0.93 0.89

Resting 80 39 1305 76 0.87 0.90

Travelling 191 92 68 1149 0.77 0.79

Random forest

Foraging 1220 25 57 198 0.81 0.80

Grooming 17 1291 42 52 0.92 0.90

Resting 86 35 1312 67 0.87 0.89

Travelling 195 88 59 1158 0.77 0.79
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other behaviour. Future studies investigating seal feeding 
behaviour should seek to gather examples of seals captur-
ing live prey.

Super models: Is it worth it?
The idea of a super machine learning model is enticing, 
allowing a multitude of machine learning models to be 
trained and tested on a single set of data and thus allow-
ing the model to optimally combine each of the individual 
models to give better overall predictions. Super learning 
has been successfully used in medical research [20] and 
spatial analyses [19] and improved the behaviour clas-
sification models from accelerometry, albeit marginally. 
With the exception of a single model combination (GBM; 
7 epochs, 6 features), the super learner performed better 
than any other model combination. This was expected as 
super learning will use the optimal model it has trained 
on if it is unable to compute a more optimal solution 
[19]. We found an average increase of 3.4% (range −0.1 to 
10.1%) in the classification accuracy of the models using 
super learning. While any improvement in model perfor-
mance is welcome, single-state-of-the-art algorithms like 
GBM are easy to implement in software environments 
like R. However, this research has only investigated a 
small aspect of the potential of super learner models. 
Super learners are unrestricted by the number and type 
of models that constitute the base learners, so can be 
optimized for the type of data that is input. This is par-
ticularly useful if researchers are interested in a particu-
lar behaviour that is usually difficult to distinguish with a 
single model (i.e. attack/peck in plovers [11]) or very high 
accuracy is imperative for the research objectives. We 
suggest the individual researcher takes this into consid-
eration when deciding whether the additional human and 
computational time required to implement super learn-
ing will be beneficial for their behavioural data study.

Conclusions
This study evaluated a number of machine learning meth-
ods to classify accelerometry data and compare them to a 
new method—super learning. We found that super learn-
ing improved the accuracy and reduced the variance in 
the predictive accuracy of the model. We showed that the 
epochs (number of samples) and number of behavioural 
categories influenced the overall accuracy of the model. 
This study demonstrates the importance of evaluating 
all options when using machine learning to classify ani-
mal behaviour. While this is by no means an exhaustive 
demonstration of the possible choices to be made when 
implementing machine learning methods, the options 
highlighted here (number of behaviour categories, 
epoch size, model selection and parameter grid search) 
are some of the most important and easiest to test when 

conducting this type of statistical analysis. Future studies 
classifying animal behaviour from accelerometry using 
machine learning should, where possible, test their mod-
els across a selection of these options in order to obtain 
the highest accuracies.

Abbreviations
RF: random forest; GBM: gradient boosting machine; SL: super learner; LR: 
logistic regression; PDBA: partial dynamic body acceleration; ODBA: overall 
dynamic body acceleration; VeDBA: vectorial dynamic body acceleration.

Authors’ contributions
ML conceived the study design, collected data, performed data analysis and 
drafted the manuscript. AT performed data analysis and contributed to writ‑
ing. DH, RH and DS were involved in study design, data collection and manu‑
script editing. JK was involved in data collection, data analysis and manuscript 
editing. All authors read and approved the final manuscript.

Author details
1 Marine Predator Research Group, Department of Biological Sciences, Mac‑
quarie University, North Ryde, NSW 2113, Australia. 2 TAL Life Limited, La Trobe 
St, Melbourne, VIC 3000, Australia. 3 Taronga Conservation Society Australia, 
Bradley’s Head Road, Mosman, NSW 2088, Australia. 4 Ecology of Fishes Lab, 
Department of Biological Sciences, Macquarie University, North Ryde, NSW 
2113, Australia. 5 School of Biological Sciences, Monash University, Melbourne, 
VIC, Australia. 

Acknowledgements
We thank all of the marine mammal staff at Dolphin Marine Magic, Underwa‑
ter World Mooloolaba and Taronga for their invaluable assistance with data 
collection, training the seals and ongoing commitment to this project. We 
thank Guy Bedford for his assistance in designing and producing the harness 
used for the sea lions.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The data set(s) supporting the conclusions of this article is(are) available in the 
GitHub repository, https://github.com/aptperson/behaviour_accelerometry.

Ethics approval
This study was carried out under permits from Macquarie University Ethics 
Committee (ARA‑2012_064) and Taronga Ethics Committee (4c/10/13). All 
experiments were conducted under the current laws of Australia authorized 
under New South Wales Office of Environment and Heritage Scientific Licence 
SL100746 to RH.

Funding
This project is funded by Australian Research Council Linkage Grant (Grant 
Number LP110200603) to RH and DS, with support from Taronga Conserva‑
tion Society, Australia. ML is a recipient of a Macquarie University Research 

Additional files

Additional file 1. Accuracy summaries and sample size used to train and 
test for four machine learning models. Models were tested across four dif‑
ferent size epochs and with four and six behavioural categories. Statistics 
reported are: cross validation (training) accuracy and 95% confidence 
interval; out‑of‑sample (testing) accuracy and standard deviation (SD); 
the Kappa statistic and the proportion improvement made by the SL 
compared to other models.

Additional file 2. Sensitivity and specificity of each behaviour category 
for all model combinations tested. SL super learner, RF random forest, GBM 
stochastic gradient boosting, LR logistic regression.

Additional file 3. Parameter grid search variables.

https://github.com/aptperson/behaviour_accelerometry
http://dx.doi.org/10.1186/s40317-017-0123-1
http://dx.doi.org/10.1186/s40317-017-0123-1
http://dx.doi.org/10.1186/s40317-017-0123-1


Page 9 of 9Ladds et al. Anim Biotelemetry  (2017) 5:8 

Excellence Scholarship. Funding was provided by Macquarie University (Grant 
No. 43000215).

Received: 27 September 2016   Accepted: 9 March 2017

References
 1. Wilson RP, Shepard E, Liebsch N. Prying into the intimate details of animal 

lives: use of a daily diary on animals. Endanger Species Res. 2008;4:123–
37. doi:10.3354/esr00064.

 2. Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt 
RG, Holland KN, Iverson SJ, Kocik JF, et al. Aquatic animal telemetry: a pan‑
oramic window into the underwater world. Science. 2015;348:1255642. 
doi:10.1126/science.1255642.

 3. Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wan‑
less S. Can ethograms be automatically generated using body accelera‑
tion data from free‑ranging birds? PLoS ONE. 2009;4:e5379. doi:10.1371/
journal.pone.0005379.

 4. Brown DD, Kays R, Wikelski M, Wilson R, Klimley AP. Observing the 
unwatchable through acceleration logging of animal behavior. Anim 
Biotelem. 2013;1:20. doi:10.1186/2050‑3385‑1‑20.

 5. Carroll G, Slip DJ, Jonsen I, Harcourt RG. Supervised accelerometry 
analysis can identify prey capture by penguins at sea. J Exp Biol. 
2014;217:4295–302. doi:10.1242/jeb.113076.

 6. Bidder OR, Campbell HA, Gomez‑Laich A, Urge P, Walker J, Cai YZ, Gao LL, 
Quintana F, Wilson RP. Love thy neighbour: automatic animal behavioural 
classification of acceleration data using the K‑nearest neighbour algo‑
rithm. PLoS ONE. 2014;9:7. doi:10.1371/journal.pone.0088609.

 7. Nathan R, Spiegel O, Fortmann‑Roe S, Harel R, Wikelski M, Getz WM. Using 
tri‑axial acceleration data to identify behavioral modes of free‑ranging 
animals: general concepts and tools illustrated for griffon vultures. J Exp 
Biol. 2012;215:986–96. doi:10.1242/jeb.058602.

 8. Resheff YS, Rotics S, Nathan R, Weinshall D. Matrix factorization approach 
to behavioral mode analysis from acceleration data. In: 2015 IEEE interna‑
tional conference on data science and advanced analytics (DSAA), 19–21 
October 2015; 2015. p. 1–6.

 9. Resheff YS, Rotics S, Harel R, Spiegel O, Nathan R. AcceleRater: a web 
application for supervised learning of behavioral modes from accelera‑
tion measurements. Mov Ecol. 2014;2:27. doi:10.1186/s40462‑014‑0027‑0.

 10. Chimienti M, Cornulier T, Owen E, Bolton M, Davies IM, Travis JMJ, 
Scott BE. The use of an unsupervised learning approach for character‑
izing latent behaviors in accelerometer data. Ecol Evol. 2016;6:727–41. 
doi:10.1002/ece3.1914.

 11. Bom RA, Bouten W, Piersma T, Oosterbeek K, van Gils JA. Optimizing 
acceleration‑based ethograms: the use of variable‑time versus fixed‑time 
segmentation. Mov Ecol. 2014;2:1–8. doi:10.1186/2051‑3933‑2‑6.

 12. Hammond TT, Springthorpe D, Walsh RE, Berg‑Kirkpatrick T. Using acceler‑
ometers to remotely and automatically characterize behavior in small 
animals. J Exp Biol. 2016;219:1618–24. doi:10.1242/jeb.136135.

 13. Diosdado JAV, Barker ZE, Hodges HR, Amory JR, Croft DP, Bell NJ, 
Codling EA. Classification of behaviour in housed dairy cows using an 
accelerometer‑based activity monitoring system. Anim Biotelem. 2015;. 
doi:10.1186/s40317‑015‑0045‑8.

 14. Ladds MA, Thompson AP, Slip DJ, Hocking DP, Harcourt RG. Seeing it all: 
evaluating supervised machine learning methods for the classification 
of diverse otariid behaviours. PLoS ONE. 2016;11:e0166898. doi:10.1371/
journal.pone.0166898.

 15. Dutta R, Smith D, Rawnsley R, Bishop‑Hurley G, Hills J, Timms G, Henry 
D. Dynamic cattle behavioural classification using supervised ensem‑
ble classifiers. Comput Electron Agric. 2015;111:18–28. doi:10.1016/j.
compag.2014.12.002.

 16. Campbell HA, Gao L, Bidder OR, Hunter J, Franklin CE. Creating a 
behavioural classification module for acceleration data: using a captive 
surrogate for difficult to observe species. J Exp Biol. 2013;216:4501–6. 
doi:10.1242/jeb.089805.

 17. Gerencser L, Vasarhelyi G, Nagy M, Vicsek T, Miklosi A. Identification of 
behaviour in freely moving dogs (Canis familiaris) using inertial sensors. 
PLoS ONE. 2013;8:e77814. doi:10.1371/journal.pone.0077814.

 18. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet 
Mol Biol 2007;6. Article 25.

 19. Davies MM, van der Laan MJ. Optimal spatial prediction using ensemble 
machine learning. Int J Biostat. 2016;12:179–201.

 20. Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van der Laan 
MJ. Mortality prediction in intensive care units with the Super ICU Learner 
Algorithm (SICULA): a population‑based study. Lancet Respir Med. 
2015;3:42–52. doi:10.1016/S2213‑2600(14)70239‑5.

 21. Bowen W. Role of marine mammals in aquatic ecosystems. Mar Ecol Prog 
Ser. 1997;158:267–74.

 22. Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM, Bailey H, 
Bailleul F, Bowen WD, Caley MJ, Costa DP, et al. Key questions in marine 
megafauna movement ecology. Trends Ecol Evol. 2016;31:463–75. 
doi:10.1016/j.tree.2016.02.015.

 23. Bowen W, Tully D, Boness D, Bulheier B, Marshall G. Prey‑dependent forag‑
ing tactics and prey profitability in a marine mammal. Mar Ecol Prog Ser. 
2002;244:235–45.

 24. Alvarenga FAP, Borges I, Palkovič L, Rodina J, Oddy VH, Dobos RC. Using 
a three‑axis accelerometer to identify and classify sheep behav‑
iour at pasture. Appl Anim Behav Sci. 2016;181:91–9. doi:10.1016/j.
applanim.2016.05.026.

 25. Ravi N, Dandekar N, Mysore P, Littman ML. Activity recognition from 
accelerometer data. In: Proceedings of the seventeenth conference on 
innovative applications of artificial intelligence, July 9–13; Pittsburgh; 
2005. p. 1541–1546.

 26. Shepard EL, Wilson RP, Halsey LG, Quintana F, Laich AG, Gleiss AC, Liebsch 
N, Myers AE, Norman B. Derivation of body motion via appropriate 
smoothing of acceleration data. Aquat Biol. 2008;4:235–41. doi:10.3354/
ab00104.

 27. Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler 
PJ. Moving towards acceleration for estimates of activity specific meta‑
bolic rate in free living animals: the case of the cormorant. J Anim Ecol. 
2006;75:1081–90. doi:10.1111/j.1365‑2656.2006.01127.x.

 28. Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard EL, Gleiss 
AC, Wilson R. Tri‑axial dynamic acceleration as a proxy for animal energy 
expenditure; should we be summing values or calculating the vector? 
PLoS ONE. 2012;7:e31187. doi:10.1371/journal.pone.0031187.

 29. Ekstrom C. MESS: miscellaneous esoteric statistical scripts. In: R package 
version 03‑2 R package version 0.3‑2 edition; 2014.

 30. R Core Development Team. R: a language and environment for statistical 
computing. In: R version 331, R package version 3.2.3 edition. Vienna: R 
Foundation for Statistical Computing; 2015.

 31. Sinisi SE, Polley EC, Petersen ML, Rhee S‑Y, van der Laan MJ. Super Learn‑
ing: an application to the prediction of HIV‑1 drug resistance. Stat Appl 
Genet Mol Biol 2007;6. Article 7. doi:10.2202/1544‑6115.1240.

 32. Viera AJ, Garrett JM. Understanding interobserver agreement: The kappa 
statistic. Fam Med. 2005;37:360–3.

 33. Lendell E. h2oEnsemble. 2015.
 34. Friedman JH, Hastie T, Tibshirani R. Regularization paths for generalized 

linear models via coordinate descent. J Stat Softw. 2010;33:1–22.
 35. Takahashi M, Tobey JR, Pisacane CB, Andrus CH. Evaluating the utility of 

an accelerometer and urinary hormone analysis as indicators of estrus 
in a zoo‑housed koala (Phascolarctos cinereus). Zoo Biol. 2009;28:59–68. 
doi:10.1002/zoo.20212.

 36. Huynh T, Schiele B. Analyzing features for activity recognition. In: 
Proceedings of the 2005 joint conference on smart objects and ambient 
intelligence. New York: Association for Computing Machinery; 2005. p. 
159–163.

http://dx.doi.org/10.3354/esr00064
http://dx.doi.org/10.1126/science.1255642
http://dx.doi.org/10.1371/journal.pone.0005379
http://dx.doi.org/10.1371/journal.pone.0005379
http://dx.doi.org/10.1186/2050-3385-1-20
http://dx.doi.org/10.1242/jeb.113076
http://dx.doi.org/10.1371/journal.pone.0088609
http://dx.doi.org/10.1242/jeb.058602
http://dx.doi.org/10.1186/s40462-014-0027-0
http://dx.doi.org/10.1002/ece3.1914
http://dx.doi.org/10.1186/2051-3933-2-6
http://dx.doi.org/10.1242/jeb.136135
http://dx.doi.org/10.1186/s40317-015-0045-8
http://dx.doi.org/10.1371/journal.pone.0166898
http://dx.doi.org/10.1371/journal.pone.0166898
http://dx.doi.org/10.1016/j.compag.2014.12.002
http://dx.doi.org/10.1016/j.compag.2014.12.002
http://dx.doi.org/10.1242/jeb.089805
http://dx.doi.org/10.1371/journal.pone.0077814
http://dx.doi.org/10.1016/S2213-2600(14)70239-5
http://dx.doi.org/10.1016/j.tree.2016.02.015
http://dx.doi.org/10.1016/j.applanim.2016.05.026
http://dx.doi.org/10.1016/j.applanim.2016.05.026
http://dx.doi.org/10.3354/ab00104
http://dx.doi.org/10.3354/ab00104
http://dx.doi.org/10.1111/j.1365-2656.2006.01127.x
http://dx.doi.org/10.1371/journal.pone.0031187
http://dx.doi.org/10.2202/1544-6115.1240
http://dx.doi.org/10.1002/zoo.20212

	Super machine learning: improving accuracy and reducing variance of behaviour classification from accelerometry
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Animals
	Experimental protocol
	Behaviour segmenting
	Summary statistics
	Classification models
	Parameter grid search

	Results
	Comparing model performance
	Identifying categories of behaviour

	Discussion
	Number of behaviour categories: Less is more?
	Epoch size: Smaller is better?
	Super models: Is it worth it?

	Conclusions
	Authors’ contributions
	References




